Skip to main content
Log in

Vector morphological operators in HSV color space

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In HSV color space, the current vector morphological operators have low capability to reduce color noise caused by hue and saturation in color image processing. Because they sort the color pixels according to the hierarchical ordering of V, S, H, which is against the equal principle of the three channels in color image processing. A novel vector ordering based on the combination of H, S and V is proposed in this paper, and the associated vector morphological erosion, dilation and composite filtering operators are defined. Compared with the popular vector morphological operators, experimental results show that the new operators can reduce the color noise effectively without any new color pixels while preserving the image details. And the filtered images have higher peak signal-to-noise ratio (PSNR) and lower mean absolute error (MSE).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Soille P. Morphological Image Analysis: Principles and Applications. New York: Springer-Verlag, 2003. 50–220

    MATH  Google Scholar 

  2. Heijmans H J A M. Composing morphological filters. IEEE Trans Image Process, 1997, 6: 713–723

    Article  Google Scholar 

  3. Serra J. Connectivity on complete lattices. J Math Imag Vision, 1998, 9: 231–251

    Article  MathSciNet  MATH  Google Scholar 

  4. Serra J. Colour and multispectral morphological processing. In: ICAPR’09, Kolkata, India, 2009. 9–13

  5. Goutsias J, Heijamans H J A M, Sivakumar K. Morphological operators for image sequences. Comput Vision Image Understand, 1995, 62: 326–346

    Article  Google Scholar 

  6. Angulo J. Morphological colour operators in totally ordered lattices based on distances: Application to image filtering, enhancement and analysis. Comput Vision Image Understand, 2007, 107: 56–73

    Article  Google Scholar 

  7. Angulo J. Polar modelling and segmentation of genomic microarry spots using mathematical morphology. Image Anal Ster, 2008, 27: 107–124

    Article  Google Scholar 

  8. Luengo-Oraz M A, Faure E, Angulo J. Robust iris segmentation on uncalibrated noisy images using mathematical morphology. Image Vision Comput, 2010, 28: 278–284

    Article  Google Scholar 

  9. Luengo-Oraz M A, Angulo J. Cyclic mathematical morphology in polar-logarithmic representation. IEEE Trans Image Process, 2009, 18: 1090–1096

    Article  Google Scholar 

  10. Vardavolia M I, Andreadis I, Tsalides P. Vector ordering and morphological operations for colour image processing: Fundamentals and applications. Patt Anal Appl, 2002, 5: 271–287

    Article  Google Scholar 

  11. Louverdis G, Vardavoulia M I, Andreadis I, et al. A new approach to morphological color image processing. Patt Recog, 2002, 35: 1733–1741

    Article  MATH  Google Scholar 

  12. Louverdis G, Andreadis I, Tsalides P. New fuzzy model for morphological colour image processing. IEE Proc Vision Image Signal Process, 2002, 149: 129–139

    Article  Google Scholar 

  13. Louverdis G, Andreadis I. Design and implementation of a fuzzy hardware structure for morphological color image processing. IEEE Trans Circ Syst Video Tech, 2003, 13: 277–288

    Article  Google Scholar 

  14. Hanbury A, Serra J. Mathematical morphology in the HLS colour space. In: Proceedings of the 12th British Machine Vision Conference, Manchester, UK, 2001. 451–460

  15. Peters Π R A. Mathematical morphology for angle-valued images. Proc SPIE Nonlin Image Process, 1997, 3026: 84–94

    Google Scholar 

  16. Hanbury A, Serra J. Mathematical morphology in the CIELAB space. Image Anal Ster, 2002, 21: 201–206

    Article  MathSciNet  Google Scholar 

  17. Witte V D, Schulte S, Nachtegael M, et al. Vector morphological operators for colour images. LNCS, 2005, 3656: 667–675

    Google Scholar 

  18. Hanbury A, Serra J. Morphological operators on the unit circle. IEEE Trans Image Process, 2001, 10: 1842–1850

    Article  MathSciNet  MATH  Google Scholar 

  19. Hanbury A, Serra J. Colour image analysis in 3D-polar coordinates. LNCS, 2003, 2781: 124–131

    Google Scholar 

  20. Hanbury A. Constructing cylindrical coordinate colour models. Patt Recog Lett, 2008, 29: 494–500

    Article  Google Scholar 

  21. Aptoula E, Lefévre S. On the morphological processing of hue. Image Vision Comput, 2009, 27: 1394–1401

    Article  Google Scholar 

  22. Aptoula E, Lefévre S. A comparative study on multivariate mathematical morphology. Patt Recogn, 2007, 40: 2914–2929

    Article  MATH  Google Scholar 

  23. Aptoula E, Lefévre S. Morphological description of color images for content-based image retrieval. IEEE Trans Image Process, 2009, 18: 2505–2517

    Article  MathSciNet  Google Scholar 

  24. Lei T, Fan Y Y. Noise gradient reduction using dual morphological operators. IET Image Process, 2011, 5: 1–17

    Article  MathSciNet  Google Scholar 

  25. Lukac R. Adaptive vector median filtering. Patt Recog Lett, 2003, 24: 1889–1899

    Article  Google Scholar 

  26. Andreas K, Mongi A. Digital Color Image Processing. New York: Wiley-Interscience, 2008. 70–160

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Lei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, T., Wang, Y., Fan, Y. et al. Vector morphological operators in HSV color space. Sci. China Inf. Sci. 56, 1–12 (2013). https://doi.org/10.1007/s11432-011-4475-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-011-4475-5

Keywords

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy