Skip to main content

Advertisement

Log in

Digital computation of the weighted-type fractional Fourier transform

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The paper reveals the time-frequency symmetric property of the weighted-type fractional Fourier transform (WFRFT) by investigating the original definition of the WFRFT, and proposes a discrete algorithm of the WFRFT based on the weighted discrete Fourier transform (WDFT) algorithm with constraint conditions of the definition of the WFRFT and time-domain sampling. When the WDFT is considered in digital computation of the WFRFT, the Fourier transform in the definition of the WFRFT should be defined in frequency (Hz) but not angular frequency (rad/s). The sampling period Δt and sampling duration T should satisfy \(\Delta t = {T \mathord{\left/ {\vphantom {T N}} \right. \kern-\nulldelimiterspace} N} = {1 \mathord{\left/ {\vphantom {1 {\sqrt N }}} \right. \kern-\nulldelimiterspace} {\sqrt N }}\) when N-point DFT is utilized. Since Hermite-Gaussian functions are the best known eigenfunctions of the fractional Fourier transform (FRFT), digital computation based on eigendecomposition is also carried out as the additional verification and validation for the WFRFT calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sejdic E, Djurovic I, Jiang J. Time-frequency feature representation using energy concentration: An overview of recent advances. Digit Signal Prog, 2009, 19: 153–183

    Article  Google Scholar 

  2. Sejdic E, Djurovic I, Stankovic L. Fractional Fourier transform as a signal processing tool: An overview of recent developments. Signal Process, 2011, 91: 1351–1369

    Article  MATH  Google Scholar 

  3. Cariolaro G, Erseghe T, Kraniauskas P, et al. A unified framework for the fractional Fourier transforms. IEEE Trans Signal Process, 1998, 46: 3206–3219

    Article  MathSciNet  MATH  Google Scholar 

  4. Cariolaro G, Erseghe T, Kraniauskas P, et al. Multiplicity of fractional Fourier transforms and their relationships. IEEE Trans Signal Process, 2000, 48: 227–241

    Article  MathSciNet  MATH  Google Scholar 

  5. Ran Q, Yeung D S, Tsang E C C, et al. General multifractional Fourier transform method based on the generalized permutation matrix group. IEEE Trans Signal Process, 2005, 53: 83–98

    Article  MathSciNet  Google Scholar 

  6. Tao R, Zhang F, Wang Y. Research progress on discretization of fractional Fourier transform. Sci China Ser F-Inf Sci, 2008, 51: 859–880

    Article  MathSciNet  Google Scholar 

  7. Ozaktas H M, Ankan O, Kutay M A, et al. Digital computation of the fractional Fourier transform. IEEE Trans Signal Process, 1996, 44: 2141–2150

    Article  Google Scholar 

  8. Candan C, Kutay M A, Ozaktas H M. The discrete fractional Fourier transform. IEEE Trans Signal Process, 2000, 48: 1329–1337

    Article  MathSciNet  MATH  Google Scholar 

  9. Erseghe T, Cariolaro G. An orthonormal class of exact and simple DFT eigenvectors with a high degree of symmetry. IEEE Trans Signal Process, 2003, 51: 2527–2539

    Article  MathSciNet  Google Scholar 

  10. Pei S C, Hsue W L, Ding J J. Discrete fractional Fourier transform based on new nearly tridiagonal commuting matrices. IEEE Trans Signal Process, 2006, 54: 3815–3828

    Article  Google Scholar 

  11. Santhanam B, McClellan J. The discrete rotational Fourier transform. IEEE Trans Signal Process, 1996, 44: 994–998

    Article  Google Scholar 

  12. Pei S C, Yeh M H, Tseng C C. Discrete fractional Fourier transform based on orthogonal projections. IEEE Trans Signal Process, 1999, 47: 1335–1348

    Article  MathSciNet  MATH  Google Scholar 

  13. Shih C C. Fractionalization of Fourier transform. Opt Commun, 1995, 118: 495–498

    Article  Google Scholar 

  14. Xia X G. On bandlimited signals with fractional Fourier transform. IEEE Signal Process Lett, 1996, 3: 72–74

    Article  Google Scholar 

  15. Bhandari A, Zayed A I. Shift-invariant and sampling spaces associated with the fractional Fourier transform domain signal. IEEE Trans Signal Process, 2012, 60: 1627–1637

    Article  MathSciNet  Google Scholar 

  16. Feng Z, Ran T, Yue W. Multi-channel sampling theorems for band-limited signals with fractional Fourier transform. Sci China Ser E-Tech Sci, 2008, 51: 790–802

    Article  Google Scholar 

  17. Shi J, Chi Y, Zhang N T. Multichannel sampling and reconstruction of bandlimited signals in fractional Fourier domain. IEEE Signal Process Lett, 2010, 17: 909–912

    Article  Google Scholar 

  18. Bhandari A, Marziliano P. Sampling and reconstruction of sparse signals in fractional Fourier domain. IEEE Signal Process Lett, 2010, 17: 221–224

    Article  Google Scholar 

  19. Tao R, Li B Z, Wang Y. Spectral analysis and reconstruction for periodic nonuniformly sampled signals in fractional Fourier domain. IEEE Trans Signal Process, 2007, 55: 3541–3547

    Article  MathSciNet  Google Scholar 

  20. Meng X, Tao R, Wang Y. Fractional Fourier domain analysis of decimation and interpolation. Sci China Ser F-Inf Sci, 2007, 50: 521–538

    Article  MathSciNet  MATH  Google Scholar 

  21. Tao R, Deng B, Zhang W Q, et al. Sampling and sampling rate conversion of band limited signals in the fractional Fourier transform domain. IEEE Trans Signal Process, 2008, 56: 158–171

    Article  MathSciNet  Google Scholar 

  22. Ozaktas H M, Mendlovic D. Fourier transforms of fractional order and their optical interpretation. Opt Commun, 1993, 101: 163–169

    Article  Google Scholar 

  23. Liu S T, Zhang J D, Zhang Y. Properties of the fractionalization of a Fourier transform. Opt Commun, 1997, 133: 50–54

    Article  Google Scholar 

  24. Yeung D S, Ran Q W, Tsang E C, et al. Complete way to fractionalize Fourier transform. Opt Commun, 2004, 230: 55–57

    Article  Google Scholar 

  25. Lang J, Tao R, Ran Q W, et al. The multiple-parameter fractional Fourier transform. Sci China Ser F-Inf Sci, 2008, 51: 1010–1024

    Article  MathSciNet  MATH  Google Scholar 

  26. Candan C. On higher order approximations for Hermite-Gaussian functions and discrete fractional Fourier transforms. IEEE Signal Process Lett, 2007, 14: 699–702

    Article  Google Scholar 

  27. Santhanam B, Santhanam T S. On discrete Gauss-Hermite functions and eigenvectors of the discrete Fourier transform. Signal Process, 2008, 88: 2738–2746

    Article  MATH  Google Scholar 

  28. Hanna M T. Direct batch evaluation of optimal orthonormal eigenvectors of the DFT matrix. IEEE Trans Signal Process, 2008, 56: 2138–2143

    Article  MathSciNet  Google Scholar 

  29. Hanna M T, Seif N P A, AhmedWA E M. Discrete fractional Fourier transform based on the eigenvectors of tridiagonal and nearly tridiagonal matrices. Digit Signal Prog, 2008, 18: 709–727

    Article  Google Scholar 

  30. Ran Q W, Zhang H Y, Zhang J, et al. Deficiencies of the cryptography based on multiple-parameter fractional Fourier transform. Opt Lett, 2009, 34: 2945

    Article  Google Scholar 

  31. Lang J, Tao R, Wang Y. Image encryption based on the multiple-parameter discrete fractional Fourier transform and chaos function. Opt Commun, 2010, 283: 2092–2096

    Article  Google Scholar 

  32. Lang J, Tao R, Wang Y. The discrete multiple-parameter fractional Fourier transform. Sci China Inf Sci, 2010, 53: 2287–2299

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Mei or QinYu Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mei, L., Zhang, Q., Sha, X. et al. Digital computation of the weighted-type fractional Fourier transform. Sci. China Inf. Sci. 56, 1–12 (2013). https://doi.org/10.1007/s11432-013-4818-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-013-4818-5

Keywords

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy