Abstract
The quantum phenomena of electromagnetically induced transparency (EIT) or plasmonic analogue of electromagnetically induced transparency (PIT) can be mimicked in the classical resonators, leading to a unique way to explore the coherent coupling mechanism in metamaterial systems. Various metamaterial structures have been proposed to excite and manipulate the PIT effect with flexibility and performance with geometry-controllable, polarization-independent, broadband-transparency and active-modulated characteristics. These in turn promise the fascinating functionalities and applications of the PIT effects, such as slow-light components, nonlinear devices and high-sensitivity sensors. Here, we present a review on the progress in developing the PIT effect in terahertz metamaterials over the past few years.
Similar content being viewed by others
References
Harris S E. Electromagnetically induced transparency. Phys Today, 1997, 50: 36–42
Boiler K J, Imamoglu A, Harris S E. Observation of electromagnetically induced transparency. Phys Rev Lett, 1991, 66: 2593–2596
Fleischhauer M, Imamoglu A, Marangos J P. Electromagnetically induced transparency: optics in coherent media. Rev Mod Phys, 2005, 77: 633–673
Krauss T F. Why do we need slow light. Nat Photonics, 2008, 2: 448–450
Monat C, Sterke M D, Eggleton B J. Slow light enhanced nonlinear optics in periodic structures. J Opt, 2010, 12: 104003
Boyd R W. Material slow light and structural slow light: similarities and differences for nonlinear optics. J Opt Soc Am B-Opt Phys, 2011, 28: 38–43
Phillips D F, Fleischhauer A, Mair A, et al. Storage of light in atomic vapor. Phys Rev Lett, 2001, 86: 783–786
Luk’yanchuk B, Zheludev N I, Maier S A, et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater, 2010, 9: 707–715
Yang X, Yu M, Kwong D, et al. All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities. Phys Rev Lett, 2009, 102: 173902
Xu Q, Sandhu S, Povinelli M L, et al. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency. Phys Rev Lett, 2006, 96: 123901
Alzar C L G, Martinez M A G, Nussenzveig P. Classical analog of electromagnetically induced transparency. Am J Phys, 2002, 70: 37–41
Zhang S, Genov D A, Wang Y, et al. Plasmon-induced transparency in metamaterials. Phys Rev Lett, 2008, 101: 047401
Papasimakis N, Fedotov V A, Zheludev N I. Metamaterial analog of electromagnetically induced transparency. Phys Rev Lett, 2008, 101: 253903
Tassin P, Zhang L, Koschny T, et al. Low-loss metamaterials based on classical electromagnetically induced transparency. Phys Rev Lett, 2009, 102: 053901
Singh R, Rockstuhl C, Lederer F, et al. Coupling between a dark and a bright eigenmode in a terahertz metamaterial. Phys Rev B, 2009, 79: 085111
Chiam S Y, Singh R, Rockstuhl C, et al. Analogue of electromagnetically induced transparency in a terahertz metamaterial. Phys Rev B, 2009, 80: 153103
Cao W, Singh R, Al-Naib I A I, et al. Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials. Opt Lett, 2012, 37: 3366–3368
Singh R, Al-Naib I A I, Koch M, et al. Asymmetric planar terahertz metamaterials. Opt Express, 2010, 18: 13044–13050
Kekatpure R D, Barnard E S, Cai W, et al. Phase-coupled plasmon-induced transparency. Phys Rev Lett, 2010, 104: 243902
Singh R, Al-Naib I A I, Koch M, et al. Sharp Fano resonances in THz metamaterials. Opt Express, 2011, 19, 6312–6319
Wu C, Khanikaev A B, Shvets G. Broadband slow light metamaterial based on a double-continuum Fano resonance. Phys Rev Lett, 2011, 106: 107403
Gu J, Singh R, Azad A K, et al. An active hybrid plasmonic metamaterial. Opt Mater Express, 2012, 2: 31–37
Li Z, Ma Y, Huang R, et al. Manipulating the plasmon-induced transparency in terahertz metamaterials. Opt Express, 2011, 19: 8912–8919
Ma Y, Li Z, Yang Y, et al. Plasmon-induced transparency in twisted Fano terahertz metamaterial. Opt Mater Express, 2011, 1: 391–399
Liu X, Gu J, Singh R, et al. Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode. Appl Phys Lett, 2012, 100: 131101
Zhang X, Li Q, Cao W, et al. Polarization-independent plasmon-induced transparency in a fourfold symmetric terahertz metamaterial. IEEE J, 2013, 19: 8400707
Zhu Z, Yang X, Gu J, et al. Broadband plasmon induced transparency in terahertz metamaterials. Nanotechnology, 2013, 24: 214003
Gu J, Singh R, Liu X, et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat Commun, 2012, 3: 1151
Zhang L, Tassin P, Koschny T, et al. Large group delay in a microwave metamaterial analog of electromagnetically induced transparency. Appl Phys Lett, 2010, 97: 241904
Zhang J, Xiao S, Jeppesen C, et al. Electromagnetically induced transparency in metamaterials at near-infrared frequency. Opt Express, 2010, 18: 17187–17192
Singh R, Al-Naib I A I, Yang Y, et al. Observing metamaterial induced transparency in individual Fano resonators with broken symmetry. Appl Phys Lett, 2011, 99: 201107
Liu N, Langguth L, Weiss T, et al. Plasmonic analogue of electro-magnetically induced transparency at the Drude damping limit. Nat Mater, 2009, 8: 758–762
Wang J, Wang S, Singh R, et al. Metamaterial inspired terahertz devices: from ultra-sensitive sensing to near field manipulation. Chin Opt Lett, 2013, 11: 011602
Cao W, Song C, Lanier T E, et al. Tailoring terahertz plasmons with silver nanorod arrays. Sci Rep, 2013, 3: 1766
Chowdhury D R, Singh R, Taylor A J, et al. Coupling Schemes in Terahertz Planar Metamaterials. Int J Opt, 2012, 2012: 148985
Singh R, Lu X, Gu J, et al. Random terahertz metamaterials. J Opt, 2010, 12: 015101
Al-Naib I, Singh R, Shalaby M, et al. Enhanced Q-factor in optimally coupled macrocell THz metamaterials: effect of spatial arrangement. IEEE J Sel Top Quant, 2013, 19: 8400807
Zhou Y, Jiang Q, Cui T. Three-dimensional subwavelength components utilizing THz surface plasmons. Sci China Inf Sci, 2012, 55: 79–89
Rao L, Yang D. Surface electromagnetic modes contribution to the anomalous terahertz transmission through doublelayered metal hole array. Sci China Inf Sci, 2012, 55: 90–97
Singh R, Azad A K, O’Hara J F, et al. Effect of metal permittivity on resonant properties of terahertz metamaterials. Opt Lett, 2008, 33: 1506–1508
Azad A K, Dai J, Zhang W. Transmission properties of terahertz pulses through subwavelength double split-ring resonators. Opt Lett, 2006, 31: 634–636
Grischkowsky D, Keiding S, Exter M V, et al. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J Opt Soc Am B-Opt Phys, 1990, 7: 2006–2015
Zhang W. Resonant terahertz transmission in plasmonic arrays of subwavelength holes. Eur Phys J Appl Phys, 2008, 4: 31
Tian Z, Azad A K, Lu X, et al. Large dynamic resonance transition between surface plasmon and localized surface plasmon modes. Opt Express, 2010, 18: 12482–12488
Singh R, Rockstuhl C, Zhang W. Strong influence of packing density in terahertz metamaterials. Appl Phys Lett, 2010, 9: 241108
Singh R, Rockstuhl C, Lederer F, et al. The impact of nearest neighbor interaction on the resonances in terahertz metamaterials. Appl Phys Lett, 2009, 94: 021116
Lu X, Han J, Zhang W. Localized plasmonic properties of subwavelength geometries resonating at terahertz frequencies. IEEE J Sel Top Quantum Electron, 2011, 17: 119–129
Corrigan T D, Kolb P W, Sushkov A B, et al. Optical plasmonic resonances in split-ring resonator structures: an improved LC model. Opt Express, 2008, 16: 19850–19864
Chowdhury D R, Singh R, Reiten M, et al. Tailored resonator coupling for modifying the terahertz metamaterial response. Opt Express, 2011, 19: 10679–10685
Al-Naib I A I, Jansen C, Born N, et al. Polarization and angle independent terahertz metamaterials with high Q-factors. Appl Phys Lett, 2011, 98: 091107
Singh R, Plum E, Menzel C, et al. Terahertz metamaterial with asymmetric transmission. Phys Rev B, 2009, 80: 153104
Wang B, Zhou J, Koschny T, et al. Chiral metamaterials: simulations and experiments. J Opt A: Pure Appl Opt, 2009, 11: 114003
Singh R, Plum E, Zhang W, et al. Highly tunable optical activity in planar achiral terahertz metamaterials. Opt Express, 2010, 18: 13425–13430
Chen H T, O’Hara J F, Azad A K, et al. Experimental demonstration of frequency-agile terahertz metamaterials. Nat Photon, 2008, 2: 295–298
Chen H T, Padilla W J, Zide J M O, et al. Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices. Opt Lett, 2007, 32: 1620–1623
Lapine M, Powell D, Gorkunov M, et al. Structural tunability in metamaterials. Appl Phys Lett, 2009, 95: 084105
Padilla W J, Taylor A J, Highstrete C, et al. Dynamical electric and magnetic metamaterial response at terahertz frequencies. Phys Rev Lett, 2006, 96: 107401
Chen H T, Padilla W J, Cich M J, et al. A metamaterial solid-state terahertz phase modulator. Nat Photon, 2009, 3: 148–151
Kleine-Ostmann T, Dawson P, Pierz K, et al. Room-temperature operation of an electrically driven terahertz modulator. Appl Phys Lett, 2004, 84: 3555–3557
Dong Z G, Liu H, Cao J X, et al. Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials. Appl Phys Lett, 2010, 97: 114101
Lu Y, Rhee J Y, Jang W H, et al. Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance. Opt Express, 2010, 18: 20912–20917
Chowdhury D R, Singh R, O’Hara J F, et al. Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor. Appl Phys Lett, 2011, 99: 231101
Chowdhury D R, Singh R, Taylor A J, et al. Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial. Appl Phys Lett, 2013, 102: 011122
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Jing, H., Zhu, Z., Zhang, X. et al. Plasmon-induced transparency in terahertz metamaterials. Sci. China Inf. Sci. 56, 1–18 (2013). https://doi.org/10.1007/s11432-013-5035-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11432-013-5035-y