Abstract
High-power fiber laser has been emerged great potential in a wide range of applications and becomes a robust candidate for high energy solid state laser system. To further increase the output brightness of single-channel fiber laser, high-brightness pump sources and high-power-handling passive components should be fabricated and utilized in the fiber laser systems, in addition to the advanced techniques for multiple nonlinear effects managements. The state-of-the-art high power fiber lasers are reviewed, in terms of narrow-linewidth fiber lasers, broadband fiber lasers and fiber lasers at 2 μm. Coherent beam combining is a promising technique to obtain higher output power while maintaining excellent beam quality simultaneously, which breaks through the bottlenecks of single-channel fiber laser. Based on a series of key techniques for coherent beam combining, high-power coherent beam combining of fiber lasers could be enabled with high combining efficiency. In this paper, we review the progress of high-power fiber lasers and their coherent beam combining in the recent decade, particularly the relevant work in our group. The future prospects of fiber lasers and coherent beam combining technique are also discussed.
Similar content being viewed by others
References
Snitzer E. Proposed fiber cavities for optical masers. J Appl Phys, 1961, 32: 36–39
Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives. J Opt Soc Am B, 2010, 27: 63–92
Dong L, Samson B. Fiber Lasers: Basics, Technology, and Applications. Boca Raton: CRC Press, 2016
Zervas M N, Codemard C A. High power fiber lasers: a review. IEEE J Sel Top Quantum Electron, 2014, 20: 219–241
Liu Z, Zhou P, Xu X, et al. Coherent Beam Combining of High Average Power Fiber Lasers. Beijing: National Defense Industry Press, 2016
Stiles E. New developments in IPG fiber laser technology. In: Proceedings of the 5th International Workshop on Fiber Lasers, 2009
Shi W, Fang Q, Zhu X, et al. Fiber lasers and their applications [Invited]. Appl Opt, 2014, 53: 6554–6568
Huang L, Xu J, Ye J, et al. Power scaling of linearly polarized random fiber laser. IEEE J Sel Top Quantum Electron, 2018, 24: 1–8
Shi W, Schulzgen A, Amezcua R, et al. Fiber lasers and their applications: introduction. J Opt Soc Am B, 2017, 34: A1
Zhou J, Wang P, Zhou P. High power fiber laser technology: introduction. Chin J Laser, 2017, 44: 201000
Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power. Opt Express, 2008, 16: 13240–13266
Zhu J, Zhou P, Ma Y, et al. Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers. Opt Express, 2011, 19: 18645–18654
Ke W W, Wang X J, Bao X F, et al. Thermally induced mode distortion and its limit to power scaling of fiber lasers. Opt Express, 2013, 21: 14272–14281
Otto H J, Jauregui C, Limpert J, et al. Average power limit of Ytterbium-doped fiber-laser systems with nearly diffraction-limited beam quality. In: Proceedings of SPIE, San Francisco, 2015. 97280E
Zervas M N. Power scaling limits in high power fiber amplifiers due to transverse mode instability, thermal lensing, and fiber mechanical reliability. In: Proceedings of SPIE, San Francisco, 2018. 1051205
Shcherbakov E, Fomin V, Abramov A, et al. Industrial grade 100 kW power CW fiber laser. In: Advanced Solid State Lasers. Washington: Optical Society of America, 2013. ATh4A.2
Fan T Y. Laser beam combining for high-power, high-radiance sources. IEEE J Sel Top Quantum Electron, 2005, 11: 567–577
Brignon A. Coherent Laser Beam Combining. Weinheim: John Wiley & Sons, 2013
Liu Z J, Zhou P, Xu X J, et al. Coherent beam combining of high power fiber lasers: progress and prospect. Sci China Technol Sci, 2013, 56: 1597–1606
Honea E, Afzal R S, Savage-Leuchs M, et al. Advances in fiber laser spectral beam combining for power scaling. In: Proceedings of SPIE, San Francisco, 2016. 97300Y
Ma Y, Wang X, Zhou P, et al. Coherent beam combination of 137 W fiber amplifier array using single frequency dithering technique. Opt Lasers Eng, 2011, 49: 1089–1092
Su R, Zhou P, Wang X, et al. Active coherent beam combining of a five-element, 800 W nanosecond fiber amplifier array. Opt Lett, 2012, 37: 3978–3980
Liu Z, Ma P, Su R, et al. High-power coherent beam polarization combination of fiber lasers: progress and prospect. J Opt Soc Am B, 2017, 34: A7
Zhou P, Wang X, Ma Y, et al. Active and passive coherent beam combining of thulium-doped fiber lasers. In: Proceedings of SPIE, San Francisco, 2010. 784307
Ma P, Tao R, Su R, et al. 189 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality. Opt Express, 2016, 24: 4187–4195
Yu H, Wang X, Zhang H, et al. Linearly-polarized fiber-integrated nonlinear CPA system for high-average-power femtosecond pulses generation at 1.06 μm. J Lightwave Technol, 2016, 34: 4271–4277
Jin X, Wang X, Zhou P, et al. Powerful 2 μm silica fiber sources: a review of recent progress and prospects. J Electron Sci Tech, 2015, 13: 315–327
Huang L, Wu H, Li R, et al. 414 W near-diffraction-limited all-fiberized single-frequency polarization-maintained fiber amplifier. Opt Lett, 2017, 42: 1–4
Du X, Zhang H, Xiao H, et al. High-power random distributed feedback fiber laser: from science to application. Annalen Der Physik, 2016, 528: 649–662
Xu J, Zhou P, Liu W, et al. Exploration in performance scaling and new application avenues of superfluorescent fiber source. IEEE J Sel Top Quantum Electron, 2018, 24: 1–10
Xiao H, Zhou P, Wang X, et al. Experimental investigation on 1018-nm high-power ytterbium-doped fiber amplifier. IEEE Photon Technol Lett, 2012, 24: 1088–1090
Xiao H, Zhou P, Wang X L, et al. High power 1018 nm ytterbium doped fiber laser with an output power of 309 W. Laser Phys Lett, 2013, 10: 065102
Xiao H, Leng J, Zhang H, et al. High-power 1018 nm ytterbium-doped fiber laser and its application in tandem pump. Appl Opt, 2015, 54: 8166
Yan P, Wang X, Li D, et al. High-power 1018 nm ytterbium-doped fiber laser with output of 805 W. Opt Lett, 2017, 42: 1193
Glick Y, Sintov Y, Zuitlin R, et al. Single-mode 230 W output power 1018 nm fiber laser and ASE competition suppression. J Opt Soc Am B, 2016, 33: 1392–1398
Yang H, Zhao W, Si J, et al. 126 W fiber laser at 1018 nm and its application in tandem pumped fiber amplifier. J Opt, 2016, 18: 125801
Gu G, Liu Z, Kong F, et al. Highly efficient ytterbium-doped phosphosilicate fiber lasers operating below 1020 nm. Opt Express, 2015, 23: 17693
Seah C P, Ng T Y, Chua S. 400 W Ytterbium-doped fiber oscillator at 1018nm. In: Advanced Solid State Lasers. Washington: Optical Society of America, 2015. ATu2A.33
Chen X, Wang J, Zhao X, et al. 307 W high-power 1018 nm monolithic tandem pump fiber source with effective thermal management. Chin Opt Lett, 2017, 15: 071407
Zhang H, Xiao H, Zhou P, et al. A high-power all-fiberized Yb-doped laser directly pumped by a laser diode emitting at long wavelength. Laser Phys Lett, 2013, 10: 095106
Huang L, Zhang H, Wang X, et al. Diode-pumped 1178-nm high-power Yb-doped fiber laser operating at 125 C. IEEE Photonic J, 2016, 8: 1–7
Kurkov A S. Oscillation spectral range of Yb-doped fiber lasers. Laser Phys Lett, 2007, 4: 93–102
Zhou P, Wang X, Xiao H, et al. Review on recent progress on Yb-doped fiber laser in a variety of oscillation spectral ranges. Laser Phys, 2012, 22: 823–831
Pask H M, Carman R J, Hanna D C, et al. Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region. IEEE J Sel Top Quantum Electron, 1995, 1: 2–13
Zhang H W, Xiao H, Zhou P, et al. 119-W monolithic single-mode 1173-nm Raman fiber laser. IEEE Photonic J, 2013, 5: 1501706
Zhang H, Zhou P, Xiao H, et al. Efficient Raman fiber laser based on random Rayleigh distributed feedback with record high power. Laser Phys Lett, 2014, 11: 075104
Du X, Zhang H, Wang X, et al. Short cavity-length random fiber laser with record power and ultrahigh efficiency. Opt Lett, 2016, 41: 571–574
Xiao H, Zhang H, Xu J, et al. 120 W monolithic Yb-doped fiber oscillator at 1150 nm. J Opt Soc Am B, 2017, 34: A63
Zhang H, Zhou P, Wang X, et al. Hundred-watt-level high power random distributed feedback Raman fiber laser at 1150 nm and its application in mid-infrared laser generation. Opt Express, 2015, 23: 17138–17144
Jin X, Lou Z, Chen Y, et al. High-power dual-wavelength Ho-doped fiber laser at >2 μm tandem pumped by a 1.15 μm fiber laser. Sci Rep, 2017, 7: 42402
Chen Y, Xiao H, Xu J, et al. Laser diode-pumped dual-cavity high-power fiber laser emitting at 1150 nm employing hybrid gain. Appl Opt, 2016, 55: 3824–3828
Wang J, Li C, Yan D. High power composite cavity fiber laser oscillator at 1120 nm. Opt Commun, 2017, 405: 318–322
Gu Y, Lei C, Liu J, et al. Side-pumping combiner for high-power fiber laser based on tandem pumping. Opt Eng, 2017, 56: 1
Xiao Q, Yan P, Ren H, et al. A side-pump coupler with refractive index valley configuration for fiber lasers and amplifiers. J Lightwave Technol, 2013, 31: 2715–2722
Lei C, Chen Z, Leng J, et al. The influence of fused depth on the side-pumping combiner for all-fiber lasers and amplifiers. J Lightwave Technol, 2017, 35: 1922–1928
Guo W, Chen Z, Li J, et al. A system for splicing double cladding fiber and glass cone and its splicing method. China Patent, CN103217741A, 2014–09-17
Zhou X F, Chen Z L, Hou J, et al. High power fiber end-cap with 6 kW output power. High Power Laser Part Beams, 2015, 27: 27120101
Lei C, Gu Y, Chen Z, et al. Incoherent beam combining of fiber lasers by an all-fiber 7 × 1 signal combiner at a power level of 14 kW. Opt Express, 2018, 26: 10421–10427
Zhou X, Chen Z, Wang Z, et al. Monolithic fiber end cap collimator for high-power free-space fiber-fiber coupling. Appl Opt, 2016, 55: 4001–4004
Zhi D, Ma Y, Chen Z, et al. Large deflection angle, high-power adaptive fiber optics collimator with preserved near-diffraction-limited beam quality. Opt Lett, 2016, 41: 2217–2220
Zhi D, Zhang Z, Ma Y, et al. Realization of large energy proportion in the central lobe by coherent beam combination based on conformal projection system. Sci Rep, 2017, 7: 2199
Guo W, Chen Z, Zhou H, et al. Cascaded cladding light extracting strippers for high power fiber lasers and amplifiers. IEEE Photonic J, 2014, 6: 1–6
Zhou H, Chen Z, Zhou X, et al. All-fiber 7×1 signal combiner with high beam quality for high-power fiber lasers. Chin Opt Lett, 2015, 13: 061406–61409
Li R, Xiao H, Leng J, et al. 2240 W high-brightness 1018 nm fiber laser for tandem pump application. Laser Phys Lett, 2017, 14: 125102
Gu Y, Leng J, Xiao H, et al. 5 kW all-fiber 1018 nm laser combining. High Power Laser Part Beams, 2017, 29: 29120101
Agrawal G. Nonlinear Fiber Optics. Manhattan: Academic Press, 2012
Lü H, Zhou P, Wang X, et al. Dynamics of stimulated Brillouin scattering in optical fibers without external feedback induced by frequency detuning from resonance. Opt Express, 2015, 23: 18117–18132
Lu H, Zhou P, Wang X, et al. Theoretical and numerical study of the threshold of stimulated brillouin scattering in multimode fibers. J Lightwave Technol, 2015, 33: 4464–4470
Leng J Y, Wang X L, Xiao H, et al. Suppressing the stimulated Brillouin scattering in high power fiber amplifiers by dual-single-frequency amplification. Laser Phys Lett, 2012, 9: 532–536
Huang L, Li L, Ma P, et al. 434 W all-fiber linear-polarization dual-frequency Yb-doped fiber laser carrying low-noise radio frequency signal. Opt Express, 2016, 24: 26722–26731
Ma P, Zhou P, Ma Y, et al. Single-frequency 332 W, linearly polarized Yb-doped all-fiber amplifier with near diffraction-limited beam quality. Appl Opt, 2013, 52: 4854
Huang L, Zhou Z C, Shi C, et al. Towards tapered-fiber-based all-fiberized high power narrow linewidth fiber laser. Sci China Technol Sci, 2018, 61: 971–981
Su R, Tao R, Wang X, et al. 2.43 kW narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression. Laser Phys Lett, 2017, 14: 085102
Smith R G. Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering. Appl Opt, 1972, 11: 2489
Wang Y, Xu C Q, Po H. Analysis of Raman and thermal effects in kilowatt fiber lasers. Opt Commun, 2004, 242: 487–502
Jauregui C, Limpert J, Tünnermann A. Derivation of Raman treshold formulas for CW double-clad fiber amplifiers. Opt Express, 2009, 17: 8476–8490
Liu W, Ma P, Lv H, et al. General analysis of SRS-limited high-power fiber lasers and design strategy. Opt Express, 2016, 24: 26715–26721
Liu W, Ma P, Lv H, et al. Investigation of stimulated Raman scattering effect in high-power fiber amplifiers seeded by narrow-band filtered superfluorescent source. Opt Express, 2016, 24: 8708–8717
Liu W, Ma P, Miao Y, et al. Intrinsic mechanism for spectral evolution in single-frequency raman fiber amplifier. IEEE J Sel Top Quantum Electron, 2018, 24: 1–8
Zhang L, Jiang H, Cui S, et al. Integrated ytterbium-Raman fiber amplifier. Opt Lett, 2014, 39: 1933–1936
Zhang H, Xiao H, Zhou P, et al. High power Yb-Raman combined nonlinear fiber amplifier. Opt Express, 2014, 22: 10248–10255
Zhang H, Tao R, Zhou P, et al. 1.5-kW Yb-Raman combined nonlinear fiber amplifier at 1120 nm. IEEE Photon Technol Lett, 2015, 27: 628–630
Xiao Q, Yan P, Li D, et al. Bidirectional pumped high power Raman fiber laser. Opt Express, 2016, 24: 6758–6768
Smith A V, Smith J J. Influence of pump and seed modulation on the mode instability thresholds of fiber amplifiers. Opt Express, 2012, 20: 24545–24558
Smith A V, Smith J J. Mode instability in high power fiber amplifiers. Opt Express, 2011, 19: 10180–10192
Eidam T, Wirth C, Jauregui C, et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers. Opt Express, 2011, 19: 13218–13224
Jauregui C, Eidam T, Otto H J, et al. Physical origin of mode instabilities in high-power fiber laser systems. Opt Express, 2012, 20: 12912–12925
Ward B, Robin C, Dajani I. Origin of thermal modal instabilities in large mode area fiber amplifiers. Opt Express, 2012, 20: 11407–11422
Hu I, Zhu C, Zhang C, et al. Analytical time-dependent theory of thermally induced modal instabilities in high power fiber amplifiers. In: Proceedings of SPIE, San Francisco, 2013. 860109
Hansen K R, Alkeskjold T T, Broeng J, et al. Theoretical analysis of mode instability in high-power fiber amplifiers. Opt Express, 2013, 21: 1944
Tao R M, Ma P F, Wang X L, et al. Study of wavelength dependence of mode instability based on a semi-analytical model. IEEE J Quantum Electron, 2015, 51: 1–6
Tao R, Ma P, Wang X, et al. Influence of core NA on thermal-induced mode instabilities in high power fiber amplifiers. Laser Phys Lett, 2015, 12: 085101
Tao R, Wang X, Zhou P. Comprehensive theoretical study of mode instability in high-power fiber lasers by employing a universal model and its implications. IEEE J Sel Top Quantum Electron, 2018, 24: 1–19
Tao R, Ma P, Wang X, et al. 13 kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities. Photon Res, 2015, 3: 86–93
Tao R, Ma P, Wang X, et al. Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength. J Opt, 2015, 17: 045504
Dajani I, Flores A, Holten R, et al. Multi-kilowatt power scaling and coherent beam combining of narrow-linewidth fiber lasers. In: Proceedings of SPIE, San Francisco, 2016. 972801
Wirth C, Schmidt O, Tsybin I, et al. High average power spectral beam combining of four fiber amplifiers to 8.2 kW. Opt Lett, 2011, 36: 3118–3120
Zheng Y, Yang Y, Wang J, et al. 108 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation. Opt Express, 2016, 24: 12063–12071
Karow M, Basu C, Kracht D, et al. TEM 00 mode content of a two stage single-frequency Yb-doped PCF MOPA with 246 W of output power. Opt Express, 2012, 20: 5319–5324
Gapontsev V, Avdokhin A, Kadwani P, et al. SM green fiber laser operating in CW and QCW regimes and producing over 550 W of average output power. In: Proceedings of SPIE, San Francisco, 2014. 896407
Zhou P, Huang L, Xu J M, et al. High power linearly polarized fiber laser: generation, manipulation and application. Sci China Technol Sci, 2017, 60: 1784–1800
Ruffin A B, Li M J, Chen X, et al. Brillouin gain analysis for fibers with different refractive indices. Opt Lett, 2005, 30: 3123–3125
Brar K, Savage-Leuchs M, Henrie J, et al. Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers. In: Proceedings of SPIE, San Francisco, 2014. 89611R
Xiao H, Dong X L, Zhou P, et al. A 168-W high-power single-frequency amplifier in an all-fiber configuration. Chin Phys B, 2012, 21: 034207
Wang X L, Zhou P, Xiao H, et al. 310 W single-frequency all-fiber laser in master oscillator power amplification configuration 310 W single-frequency all-fiber laser. Laser Phys Lett, 2012, 9: 591–595
Robin C, Dajani I, Pulford B. Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power. Opt Lett, 2014, 39: 666–669
Jeong Y, Nilsson J, Sahu J K, et al. Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power. Opt Lett, 2005, 30: 459–461
Hildebrandt M, Frede M, Kwee P, et al. Single-frequency master-oscillator photonic crystal fiber amplifier with 148 W output power. Opt Express, 2006, 14: 11071–11076
Gray S, Liu A, Walton D T, et al. 502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier. Opt Express, 2007, 15: 17044–17050
Jeong Y, Nilsson J, Sahu J K, et al. Power scaling of single-frequency ytterbium-doped fiber master-oscillator poweramplifier sources up to 500 W. IEEE J Sel Top Quantum Electron, 2007, 13: 546–551
Mermelstein M D, Yablon A D, Headley C, et al. All-fiber 194 W single-frequency single-mode Yb-doped masteroscillator power-amplifier. In: Proceedings of SPIE, San Francisco, 2008. 68730L
Dajani I, Vergien C, Robin C, et al. Experimental and theoretical investigations of photonic crystal fiber amplifier with 260 W output. Opt Express, 2009, 17: 24317–24333
Zeringue C, Vergien C, Dajani I. Pump-limited, 203 W, single-frequency monolithic fiber amplifier based on laser gain competition. Opt Lett, 2011, 36: 618–620
Zhu C, Hu I, Ma X, et al. Single-frequency and single-transverse mode Yb-doped CCC fiber MOPA with robust polarization SBS-free 511W output. In: Advances in Optical Materials. Washington: Optical Society of America, 2011. AMC5
Theeg T, Sayinc H, Neumann J, et al. All-fiber counter-propagation pumped single frequency amplifier stage with 300-W output power. IEEE Photon Technol Lett, 2012, 24: 1864–1867
Zhang L, Cui S, Liu C, et al. 170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier. Opt Express, 2013, 21: 5456–5462
Theeg T, Ottenhues C, Sayinc H, et al. Core-pumped single-frequency fiber amplifier with an output power of 158 W. Opt Lett, 2016, 41: 9–12
Wang X, Zhou P, Xiao H, et al. Narrow linewidth all-fiber laser with 666 W power output. High Power Laser Particle Beams, 2012, 24: 1261–1262
Ran Y, Tao R, Ma P, et al. 560 W all fiber and polarization-maintaining amplifier with narrow linewidth and near-diffraction-limited beam quality. Appl Opt, 2015, 54: 7258–7263
Beier F, Hupel C, Kuhn S, et al. Single mode 43 kW output power from a diode-pumped Yb-doped fiber amplifier. Opt Express, 2017, 25: 14892–14899
Li T, Zha C, Sun Y, et al. 3.5 kW bidirectionally pumped narrow-linewidth fiber amplifier seeded by white-noisesource phase-modulated laser. Laser Phys, 2018, 28: 105101
Yu C X, Shatrovoy O, Fan T Y, et al. Diode-pumped narrow linewidth multi-kilowatt metalized Yb fiber amplifier. Opt Lett, 2016, 41: 5202–5205
Platonov N, Yagodkin R, De La Cruz J, et al. Up to 2.5-kW on non-PM fiber and 2.0-kW linear polarized on PM fiber narrow linewidth CW diffraction-limited fiber amplifiers in all-fiber format. In: Proceedings of SPIE, San Francisco, 2018. 105120E
Edgecumbe J, Bjrk D, Galipeau J, et al. Kilowatt-level PM amplifiers for beam combining. In: Frontiers in Optics. Washington: Optical Society of America, 2008. FTuJ2
Goodno G D, McNaught S J, Rothenberg J E, et al. Active phase and polarization locking of a 14 kW fiber amplifier. Opt Lett, 2010, 35: 1542–1544
Guintrand C, Edgecumbe J, Farley K, et al. Stimulated Brillouin scattering threshold variations due to bend-induced birefringence in a non-polarization-maintaining fiber amplifier. In: Laser and Electro-Optics. Washington: Optical Society of America, 2014. JW2A.23
Flores A, Robin C, Lanari A, et al. Pseudo-random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers. Opt Express, 2014, 22: 17735–17744
Yagodkin R, Platonov N, Yusim A, et al. > 1.5 kW narrow linewidth CW diffraction-limited fiber amplifier with 40nm bandwidth. In: Proceedings of SPIE, San Francisco, 2015. 972807
Xu Y, Fang Q, Qin Y, et al. 2 kW narrow spectral width monolithic continuous wave in a near-diffraction-limited fiber laser. Appl Opt, 2015, 54: 9419–9421
Nold J, Strecker M, Liem A, et al. Narrow linewidth single mode fiber amplifier with 2.3 kW average power. In: Lasers and Electro-Optics. Washington: Optical Society of America, 2015. CJ 11 4
Yu C X, Shatrovoy O, Fan T Y. All-glass fiber amplifier pumped by ultrahigh brightness pump. In: Proceedings of SPIE, San Francisco, 2015. 972806
Avdokhin A, Gapontsev V, Kadwani P, et al. High average power quasi-CW single-mode green and UV fiber lasers. In: Proceedings of SPIE, San Francisco, 2015. 934704
Beier F, Hupel C, Nold J, et al. Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium-doped low NA fiber amplifier. Opt Express, 2016, 24: 6011–6020
Naderi N A, Flores A, Anderson B M, et al. Beam combinable, kilowatt, all-fiber amplifier based on phase-modulated laser gain competition. Opt Lett, 2016, 41: 3964–3967
Kanskar M, Zhang J, Kaponen J, et al. Narrowband transverse-modal-instability (TMI)-free Yb-doped fiber amplifiers for directed energy applications. In: Proceedings of SPIE, San Francisco, 2018. 105120F
Yu H, Zhang H, lv H, et al. 315 kW direct diode-pumped near diffraction-limited all-fiber-integrated fiber laser. Appl Opt, 2015, 54: 4556–4560
Yu H, Wang X, Tao R, et al. 15 kW, near-diffraction-limited, high-efficiency, single-end-pumped all-fiber-integrated laser oscillator. Appl Opt, 2014, 53: 8055–8059
Yang B, Zhang H, Wang X, et al. Mitigating transverse mode instability in a single-end pumped all-fiber laser oscillator with a scaling power of up to 2 kW. J Opt, 2016, 18: 105803
Yang B, Zhang H, Shi C, et al. Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 25 kW employing bidirectional-pump scheme. Opt Express, 2016, 24: 27828–27835
Yang B, Zhang H, Shi C, et al. 3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability. J Opt, 2018, 20: 025802
Yang B, Zhang H, Ye Q, et al. 4.05 kW monolithic fiber laser oscillator based on home-made large mode area fiber Bragg gratings. Chin Opt Lett, 2018, 16: 031407
Huang L, Wang W, Leng J, et al. Experimental investigation on evolution of the beam quality in a 2-kW high power fiber amplifier. IEEE Photon Technol Lett, 2014, 26: 33–36
Xu J, Huang L, Leng J, et al. 101 kW superfluorescent source in all-fiberized MOPA configuration. Opt Express, 2015, 23: 5485–5490
Zhou P, Xiao H, Leng J, et al. High-power fiber lasers based on tandem pumping. J Opt Soc Am B, 2017, 34: A29
Zhang H, Yang B, Wang X, et al. Home-produced fiber Bragg gratings-based all-fiber oscillator with the output power exceeding 5.2 kW. Chin J Laser, 2018, 45: 0415002
Xu J M, Ye J, Zhou P, et al. Tandem pumping architecture enabled high power random fiber laser with neardiffraction- limited beam quality. Sci China Technol Sci, 2019, 62: 80–86
Ikoma S, Nguyen H K, Kashiwagi M, et al. 3 kW single stage all-fiber Yb-doped single-mode fiber laser for highly reflective and highly thermal conductive materials processing. In: Proceedings of SPIE, San Francisco, 2017. 100830Y
Shima K, Ikoma S, Uchiyama K, et al. 5-kW single stage all-fiber Yb-doped single-mode fiber laser for materials processing. In: Proceedings of SPIE, San Francisco, 2018. 105120C
Yang B, Shi C, Zhang H, et al. Monolithic fiber laser oscillator with record high power. Laser Phys Lett, 2018, 15: 075106
Xiao Y, Brunet F, Kanskar M, et al. 1-kilowatt CW all-fiber laser oscillator pumped with wavelength-beam-combined diode stacks. Opt Express, 2012, 20: 3296–3301
Yu H, Kliner D A V, Liao K, et al. 1.2-kW single-mode fiber laser based on 100-W high-brightness pump diodes. In: Proceedings of SPIE, San Francisco, 2012. 82370G
Ruppik S, Becker F, Grundmann F, et al. High-power disk and fiber lasers: a performance comparison. In: Proceedings of SPIE, San Francisco, 2012. 82350V
Khitrov V, Minelly J D, Tumminelli R, et al. 3kW single-mode direct diode-pumped fiber laser. In: Proceedings of SPIE, San Francisco, 2014. 89610V
Mashiko Y, Nguyen H K, Kashiwagi M, et al. 2 kW single-mode fiber laser with 20-m long delivery fiber and high SRS suppression. In: Proceedings of SPIE, San Francisco, 2016. 972805
Tanaka D. High power fibre lasers for industrial applications. In: Proceedings of Conference on Lasers and Electro- Optics Pacific Rim, 2017
Yao T, Ji J, Nilsson J. Ultra-low quantum-defect heating in ytterbium-doped aluminosilicate fibers. J Lightwave Technol, 2014, 32: 429–434
Liu Z, Zhao Y. Investigation on the nonlinear problem in high power fiber laser. In: Proceedings of LASER 2016, Beijing. 2016
Lin A, Zhan H, Peng K, et al. 10 kW-level pump-gain integrated functional laser fiber. High Power Laser Part Beams, 2018, 30: 60101
Lin H H, Tang X, Li C Y, et al. 10.6 kW high-brightness cascaded-end-pumped monolithic fiber lasers directly pumped by laser diodes (in Chinese). Chin J Laser, 2018, 45: 0315001
Shiner B. The impact of fiber laser technology on the world wide material processing market. In: Proceedings of CLEO: Applications and Technology 2013. Washington: Optical Society of America, 2013. AF2J.1
Wang J, Yan D, Xiong S, et al. High power all-fiber amplifier with different seed power injection. Opt Express, 2016, 24: 14463–14469
Zhan H, Liu Q, Wang Y, et al. 5 kW GTWave fiber amplifier directly pumped by commercial 976 nm laser diodes. Opt Express, 2016, 24: 27087–27095
Fang Q, Li J, Shi W, et al. 5 kW near-diffraction-limited and 8 kW high-brightness monolithic continuous wave fiber lasers directly pumped by laser diodes. IEEE Photonic J, 2017, 9: 1–7
Wang J, Yan D, Xiong S, et al. Mode instability in high power all-fiber amplifier with large-mode-area gain fiber. Opt Commun, 2017, 396: 123–126
Xiao Q, Li D, Huang Y, et al. Directly diode and bi-directional pumping 6 kW continuous-wave all-fibre laser. Laser Phys, 2018, 28: 125107
Jackson S D, Sabella A, Lancaster D G. Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 μm. IEEE J Sel Top Quantum Electron, 2007, 13: 567–572
Geng J, Wang Q, Lee Y, et al. Development of eye-safe fiber lasers near 2 μm. IEEE J Sel Top Quant Electron, 2014, 20: 150–160
Koch G J, Beyon J Y, Barnes B W, et al. High-energy 2 μm Doppler lidar for wind measurements. Opt Eng, 2007, 46: 116201
Fried N M. Thulium fiber laser lithotripsy: an in vitro analysis of stone fragmentation using a modulated 110-watt Thulium fiber laser at 1.94 microm. Lasers Surg Med, 2005, 37: 53–58
Gesierich W, Reichenberger F, Fertl A, et al. Endobronchial therapy with a thulium fiber laser (1940 nm). J Thorac Cardiov Sur, 2014, 147: 1827–1832
Mingareev I, Weirauch F, Olowinsky A, et al. Welding of polymers using a 2 m thulium fiber laser. Opt Laser Tech, 2012, 44: 2095–2099
Scholle K, Sch¨afer M, Lamrini S, et al. All-fiber linearly polarized high power 2-μm single mode Tm-fiber laser for plastic processing and Ho-laser pumping applications. In: Proceedings of SPIE, San Francisco, 2018. 105120O
Simakov N, Davidson A, Hemming A, et al. Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-μm source. In: Proceedings of SPIE, San Francisco, 2012. 82373K
Leindecker N, Marandi A, Byer R L, et al. Octave-spanning ultrafast OPO with 2.6-6.1 μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser. Opt Express, 2012, 20: 7046–7053
Kubat I, Petersen C R, Møller U V, et al. Thulium pumped mid-infrared 0.9-9 μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers. Opt Express, 2014, 22: 3959–3967
Petersen C R, Møller U V, Kubat I, et al. Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nat Photon, 2014, 8: 830–834
Goodno G D, Book L D, Rothenberg J E. Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier. Opt Lett, 2009, 34: 1204–1206
Moulton P F, Rines G A, Slobodtchikov E V, et al. Tm-doped fiber lasers: fundamentals and power scaling. IEEE J Sel Top Quantum Electron, 2009, 15: 85–92
Ehrenreich T, Leveille R, Majid I, et al. 1-kW, all-glass Tm: fiber laser. In: Proceedings of SPIE, San Francisco, 2010. 758016
Hemming A, Simakov N, Davidson A, et al. A monolithic cladding pumped holmium-doped fibre laser. In: Proceedings of CLEO: Science and Innovations. San Jose: Optical Society of America, 2013. CW1M.1
Walbaum T, Heinzig M, Schreiber T, et al. Monolithic thulium fiber laser with 567 W output power at 1970 nm. Opt Lett, 2016, 41: 2632
Newburgh G A, Zhang J, Dubinskii M. Tm-doped fiber laser resonantly diode-cladding-pumped at 1620 nm. Laser Phys Lett, 2017, 14: 125101
Moulton P F. High power Tm: silica fiber lasers: current status, prospects and challenges. In: Proceedings of Lasers and Electro-Optics Europe. San Jose: Optical Society of America, 2011. TF2 3
Creeden D, Johnson B R, Rines G A, et al. High power resonant pumping of Tm-doped fiber amplifiers in core- and cladding-pumped configurations. Opt Express, 2014, 22: 29067–29080
Meleshkevich M, Platonov N, Gapontsev D, et al. 415 W single-mode CW thulium fiber laser in all-fiber format. In: Proceedings of European Conference on Lasers and Electro-Optics. San Jose: Optical Society of America, 2007. CP2 3
Wang X, Zhou P, Zhang H, et al. 100 W-level Tm-doped fiber laser pumped by 1173 nm Raman fiber lasers. Opt Lett, 2014, 39: 4329–4332
Wang Y, Yang J, Huang C, et al. High power tandem-pumped thulium-doped fiber laser. Opt Express, 2015, 23: 2991–2998
Jin X, Lee E, Luo J, et al. High-efficiency ultrafast Tm-doped fiber amplifier based on resonant pumping. Opt Lett, 2018, 43: 1431–1434
Sincore A, Bradford J D, Cook J, et al. High average power thulium-doped silica fiber lasers: review of systems and concepts. IEEE J Sel Top Quantum Electron, 2018, 24: 1–8
Shardlow P C, Jain D, Parker R, et al. Optimising Tm-doped silica fibres for high lasing efficiency. In: Proceedings of the European Conference on Lasers and Electro-Optics. Washington: Optical Society of America, 2015. CJ 14 3
Tumminelli R, Petit V, Carter A, et al. Highly doped and highly efficient Tm doped fiber laser. In: Proceedings of SPIE, San Francisco, 2018. 105120M
Shardlow P C, Simakov N, Billaud A, et al. Holmium doped fibre optimised for resonant cladding pumping. In: Proceedings of Lasers and Electro-Optics. Washington: Optical Society of America, 2017. CJ 11 4
Wang X, Zhou P, Wang X, et al. 102 W monolithic single frequency Tm-doped fiber MOPA. Opt Express, 2013, 21: 32386–32392
Wang X, Jin X, Wu W, et al. 310-W single frequency Tm-Doped all-fiber MOPA. IEEE Photon Technol Lett, 2015, 27: 677–680
Wang X, Jin X, Zhou P, et al. All-fiber-integrated narrowband nanosecond pulsed Tm-doped fiber MOPA. IEEE Photon Technol Lett, 2015, 27: 1473–1476
Wang X, Jin X, Zhou P, et al. All-fiber high-average power nanosecond-pulsed master-oscillator power amplifier at 2 μm with mJ-level pulse energy. Appl Opt, 2016, 55: 1941–1945
Jin X, Wang X, Xu J, et al. High-power thulium-doped all-fibre amplified spontaneous emission sources. J Opt, 2015, 17: 045702
Jin X, Wang X, Xu J, et al. High-power thulium-doped all-fiber superfluorescent source with ultranarrow linewidth. IEEE Photonic J, 2015, 7: 1–6
Wang X, Jin X, Zhou P, et al. High power, widely tunable, narrowband superfluorescent source at 2 m based on a monolithic Tm-doped fiber amplifier. Opt Express, 2015, 23: 3382–3389
Wang X, Zhou P, Miao Y, et al. Raman fiber laser-pumped high-power, efficient Ho-doped fiber laser. J Opt Soc Am B, 2014, 31: 2476
Jin X, Du X, Wang X, et al. High-power ultralong-wavelength Tm-doped silica fiber laser cladding-pumped with a random distributed feedback fiber laser. Sci Rep, 2016, 6: 30052
Smith A V, Smith J J. Mode instability thresholds for Tm-doped fiber amplifiers pumped at 790 nm. Opt Express, 2016, 24: 975–992
Tao R, Zhou P, Xiao H, et al. Theoretical study of high power mode instabilities in 2 μm thulium-doped fiber amplifiers. In: Proceedings of the 16th International Conference on Laser Optics, St. Petersburg, 2014
Bochove E J, Shakir S A. Analysis of a spatial-filtering passive fiber laser beam combining system. IEEE J Sel Top Quantum Electron, 2009, 15: 320–327
Yang Y, Hu M, He B, et al. Passive coherent beam combining of four Yb-doped fiber amplifier chains with injectionlocked seed source. Opt Lett, 2013, 38: 854–856
Huo Y, Cheo P K, King G G. Fundamental mode operation of a 19-core phase-locked Yb-doped fiber amplifier. Opt Express, 2004, 12: 6230–6239
Corcoran C J, Durville F. Experimental demonstration of a phase-locked laser array using a self-Fourier cavity. Appl Phys Lett, 2005, 86: 201118
Wang B, Mies E, Minden M, et al. All-fiber 50 W coherently combined passive laser array. Opt Lett, 2009, 34: 863–865
Chen Z, Hou J, Zhou P, et al. Mutual injection-locking and coherent combining of two individual fiber lasers. IEEE J Quantum Electron, 2008, 44: 515–519
Steinhausser B, Brignon A, Lallier E, et al. High energy, single-mode, narrow-linewidth fiber laser source using stimulated Brillouin scattering beam cleanup. Opt Express, 2007, 15: 6464–6469
Kong H J, Yoon J W, Shin J S, et al. Long-term stabilized two-beam combination laser amplifier with stimulated Brillouin scattering mirrors. Appl Phys Lett, 2008, 92: 021120
Rothenberg J E. Passive coherent phasing of fiber laser arrays. In: Proceedings of SPIE, San Francisco, 2008. 687315
Yu C X, Augst S J, Redmond S M, et al. Coherent combining of a 4 kW, eight-element fiber amplifier array. Opt Lett, 2011, 36: 2686–2688
Wang X, Zhou P, Ma Y, et al. Active phasing a nine-element 1.14 kW all-fiber two-tone MOPA array using SPGD algorithm. Opt Lett, 2011, 36: 3121–3123
Wang X, Leng J, Zhou P, et al. 1.8-kW simultaneous spectral and coherent combining of three-tone nine-channel all-fiber amplifier array. Appl Phys B, 2012, 107: 785–790
Flores A, Ehrehreich T, Holten R, et al. Multi-kW coherent combining of fiber lasers seeded with pseudo random phase modulated light. In: Proceedings of SPIE, San Francisco, 2016. 97281Y
McNaught S J, Thielen P A, Adams L N, et al. Scalable coherent combining of kilowatt fiber amplifiers into a 2.4-kW beam. IEEE J Sel Top Quantum Electron, 2014, 20: 174–181
Yu C X, Kansky J E, Shaw S E J, et al. Coherent beam combining of large number of PM fibres in 2-D fibre array. Electron Lett, 2006, 42: 1024–1025
Huang Z, Tang X, Luo Y, et al. Active phase locking of thirty fiber channels using multilevel phase dithering method. Rev Sci Instrum, 2016, 87: 033109
Su R, Zhou P, Wang X, et al. Phase locking of a coherent array of 32 fiber lasers. High Power Laser Part Beams, 2014, 26: 10101
Bourderionnet J, Bellanger C, Primot J, et al. Collective coherent phase combining of 64 fibers. Opt Express, 2011, 19: 17053–17058
Bellanger C, Toulon B, Primot J, et al. Collective phase measurement of an array of fiber lasers by quadriwave lateral shearing interferometry for coherent beam combining. Opt Lett, 2010, 35: 3931–3933
Seise E, Klenke A, Limpert J, et al. Coherent addition of fiber-amplified ultrashort laser pulses. Opt Express, 2010, 18: 27827–27835
Müller M, Kienel M, Klenke A, et al. 1 kW 1 mJ eight-channel ultrafast fiber laser. Opt Lett, 2016, 41: 3439–3442
Goodno G D, Asman C P, Anderegg J, et al. Brightness-scaling potential of actively phase-locked solid-state laser arrays. IEEE J Sel Top Quantum Electron, 2007, 13: 460–472
Xiao R, Hou J, Liu M, et al. Coherent combining technology of master oscillator power amplifier fiber arrays. Opt Express, 2008, 16: 2015–2022
Vorontsov M A, Carhart G W, Ricklin J C. Adaptive phase-distortioncorrection based on parallel gradient-descent optimization. Opt Lett, 1997, 22: 907–909
Zhou P, Liu Z, Wang X, et al. Coherent beam combination of two-dimensional high power fiber amplifier array using stochastic parallel gradient descent algorithm. Appl Phys Lett, 2009, 94: 231106
Zhou P, Liu Z, Wang X, et al. Coherent beam combining of fiber amplifiers using stochastic parallel gradient descent algorithm and its application. IEEE J Sel Top Quantum Electron, 2009, 15: 248–256
Shay T M. Theory of electronically phased coherent beam combination without a reference beam. Opt Express, 2006, 14: 12188–12195
Ma Y, Zhou P, Wang X, et al. Coherent beam combination with single frequency dithering technique. Opt Lett, 2010, 35: 1308–1310
Jiang M, Su R, Zhang Z, et al. Coherent beam combining of fiber lasers using a CDMA-based single-frequency dithering technique. Appl Opt, 2017, 56: 4255–4260
Su R T, Zhou P, Wang X L, et al. High power narrow-linewidth nanosecond all-fiber lasers and their actively coherent beam combination. IEEE J Sel Top Quantum Electron, 2014, 20: 206–218
Su R, Zhang Z, Zhou P, et al. Coherent beam combining of a fiber lasers array based on cascaded phase control. IEEE Photon Technol Lett, 2016, 28: 2585–2588
Taylor J R, Anderson M S, Bunton P H. High-speed tilt mirror for image stabilization. Appl Opt, 1999, 38: 219–223
Wilcox C C, Andrews J R, Restaino S R, et al. Analysis of a combined tip-tilt and deformable mirror. Opt Lett, 2006, 31: 679–681
Wang X, Wang X, Zhou P, et al. 350-W coherent beam combining of fiber amplifiers with tilt-tip and phase-locking control. IEEE Photon Technol Lett, 2012, 24: 1781–1784
Vorontsov M A, Weyrauch T, Beresnev L A, et al. Adaptive array of phase-locked fiber collimators: analysis and experimental demonstration. IEEE J Sel Top Quantum Electron, 2009, 15: 269–280
Geng C, Luo W, Tan Y, et al. Experimental demonstration of using divergence cost-function in SPGD algorithm for coherent beam combining with tip/tilt control. Opt Express, 2013, 21: 25045–25055
Geng C, Li X, Zhang X, et al. Coherent beam combination of an optical array using adaptive fiber optics collimators. Opt Commun, 2011, 284: 5531–5536
Zhi D, Ma P, Ma Y, et al. Novel adaptive fiber-optics collimator for coherent beam combination. Opt Express, 2014, 22: 31520–31528
Zhi D, Ma Y, Ma P, et al. Adaptive fiber optics collimator based on flexible hinges. Appl Opt, 2014, 53: 5434–5438
Beresnev L A, Weyrauch T, Vorontsov M A, et al. Development of adaptive fiber collimators for conformal fiber-based beam projection systems. In: Proceedings of SPIE, San Francisco, 2008. 709008
Anderegg J, Brosnan S, Cheung E, et al. Coherently coupled high-power fiber arrays. In: Proceedings of SPIE, San Francisco, 2006. 61020U
Fan X, Liu J, Liu J, et al. Coherent combining of a seven-element hexagonal fiber array. Opt Laser Tech, 2010, 42: 274–279
Liu Z, Xu X, Chen J, et al. Multi-beam high-duty-cycle combiner. 2009, CN200920065407
Cheung E C, Ho J G, Goodno G D, et al. Diffractive-optics-based beam combination of a phase-locked fiber laser array. Opt Lett, 2008, 33: 354–356
Flores A, Dajani I. Kilowatt-class, all-fiber amplifiers for beam combining. In: Proceedings of SPIE, 2016
Christensen S E, Koski O. 2-Dimensional waveguide coherent beam combiner. In: Proceedings of Advanced Solid- State Photonics. Washington: Optical Society of America, 2007. WC1
Uberna R, Bratcher A, Alley T G, et al. Coherent combination of high power fiber amplifiers in a two-dimensional re-imaging waveguide. Opt Express, 2010, 18: 13547–13553
Uberna R, Bratcher A, Tiemann B G. Coherent polarization beam combination. IEEE J Quantum Electron, 2010, 46: 1191–1196
Ma P F, Zhou P, Su R T, et al. Coherent polarization beam combining of eight fiber lasers using single-frequency dithering technique coherent polarization beam combining of eight fiber lasers. Laser Phys Lett, 2012, 9: 456–458
Kozlov V A, Hern´andez-Cordero J, Morse T F. All-fibercoherent beam combining of fiber lasers. Opt Lett, 1999, 24: 1814–1816
Montoya J, Hwang C, Martz D, et al. Photonic lantern kW-class fiber amplifier. Opt Express, 2017, 25: 27543–27550
Su R, Zhou P, Wang X, et al. Impact of temporal and spectral aberrations on coherent beam combination of nanosecond fiber lasers. Appl Opt, 2013, 52: 2187–2193
Yu H L, Ma P F, Wang X L, et al. Influence of temporal-spectral effects on ultrafast fiber coherent polarization beam combining system. Laser Phys Lett, 2015, 12: 105301
Klenke A, Seise E, Limpert J, et al. Basic considerations on coherent combining of ultrashort laser pulses. Opt Express, 2011, 19: 25379–25387
Su R, Zhou P, Wang X, et al. Active coherent beam combination of two high-power single-frequency nanosecond fiber amplifiers. Opt Lett, 2012, 37: 497–499
Su R, Zhou P, Ma Y, et al. 1.2 kW average power from coherently combined single-frequency nanosecond all-fiber amplifier array. Appl Phys Express, 2013, 6: 122702
Ma P, Tao R, Wang X, et al. Coherent polarization beam combination of four mode-locked fiber MOPAs in picosecond regime. Opt Express, 2014, 22: 4123–4130
Zhou P, Wang X, Ma Y, et al. Stable coherent beam combination by active phasing a mutual injection-locked fiber laser array. Opt Lett, 2010, 35: 950–952
Zhou P, Ma Y, Wang X, et al. Coherent beam combination of a hexagonal distributed high power fiber amplifier array. Appl Opt, 2009, 48: 6537–6540
Zhou P, Ma Y, Wang X, et al. Coherent beam combination of three two-tone fiber amplifiers using stochastic parallel gradient descent algorithm. Opt Lett, 2009, 34: 2939–2941
Su R, Zhou P, Wang X, et al. Actively coherent beam combining of two single-frequency 1083 nm nanosecond fiber amplifiers in low-repetition-rate. IEEE Photon Technol Lett, 2013, 25: 1485–1487
Chen Z, Zhou P, Wang X, et al. Synchronization and coherent addition of three pulsed fiber lasers by mutual injection and phase modulation. Opt Laser Tech, 2009, 41: 710–713
Zhou P, Wang X, Chen Z, et al. Coherent combining of two pulsed fibre lasers in phase modulated mutually coupled fibre laser array. Electron Lett, 2008, 44: 1238–1239
Ma P, Zhou P, Wang X, et al. Influence of perturbative phase noise on active coherent polarization beam combining system. Opt Express, 2013, 21: 29666–29678
Ma P, Wang X, Ma Y, et al. Analysis of multi-wavelength active coherent polarization beam combining system. Opt Express, 2014, 22: 16538–16551
Ma P, Lü Y, Zhou P, et al. Investigation of the influence of mode-mismatch errors on active coherent polarization beam combining system. Opt Express, 2014, 22: 27321–27338
Ma P F, Zhou P, Ma Y X, et al. Coherent polarization beam combining of four high-power fiber amplifiers using single-frequency dithering technique. IEEE Photon Technol Lett, 2012, 24: 1024–1026
Ma P, Zhou P, Xiao H, et al. Generation of a 481-W single frequency and linearly polarized beam by coherent polarization locking. IEEE Photon Technol Lett, 2013, 25: 1936–1938
Ma P, Zhou P, Wang X, et al. Coherent polarization beam combining of four 200-W-level fiber amplifiers. Appl Phys Express, 2014, 7: 022703
Liu Z, Zhou P, Ma P, et al. 5 kW level laser generation by coherent polarization beam combining of four high-power narrow-linewidth linearly-polarized fiber amplifiers (in Chinese). Chin J Laser, 2017, 44: 0415001–0415004
Bochove E J, Ray W, Durville F, et al. A linear model for passive coherent combining a large number of fiber lasers. In: Proceedings of Advances in Optical Materials. Washington: Optical Society of America, 2012. JTh2A-19
Shamir Y, Zuitlin R, Sintov Y, et al. 3kW-level incoherent and coherent mode combining via all-fiber fused Y-couplers. In: Proceedings of Frontiers in Optics. Washington: Optical Society of America, 2012. FW6C-1
Redmond S M, Ripin D J, Yu C X, et al. Diffractive coherent combining of a 25 kW fiber laser array into a 19 kW Gaussian beam. Opt Lett, 2012, 37: 2832–2834
Yu H L, Zhang Z X, Wang X L, et al. High average power coherent femtosecond pulse combining system based on an all fiber active control method. Laser Phys Lett, 2018, 15: 075101
Kienel M, Müller M, Klenke A, et al. 12 mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition. Opt Lett, 2016, 41: 3343–3346
Müller M, Klenke A, Stark H, et al. High-energy 1.8 kW 16-channel ultrafast fiber laser system. In: Proceedings of SPIE, San Francisco, 2018. 1051208
Zervas M N. Power scalability in high power fibre amplifiers. In: Proceedings of Conference on Lasers and Electro- Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), 2017
Steinke M, Tünnermann H, Kuhn V, et al. Single-frequency fiber amplifiers for next-generation gravitational wave detectors. IEEE J Sel Top Quant Electron, 2018, 24: 1–13
Johnson M C, Brunton S L, Kundtz N B, et al. Extremum-seeking control of the beam pattern of a reconfigurable holographic metamaterial antenna. J Opt Soc Am A, 2016, 33: 59–68
Fu X, Brunton S L, Nathan Kutz J. Classification of birefringence in mode-locked fiber lasers using machine learning and sparse representation. Opt Express, 2014, 22: 8585–8597
Acknowledgements
This work was supported by National Natural Science Foundation of China (Grant Nos. 61705264, 61705265). Authors would like to acknowledge Jinyong LENG, Hu XIAO, Yanxing MA, Jiangming XU, Xiaolin WANG, Zilun CHEN, Liangjin HUANG, Wei LIU, Tianyue HOU, Baolai YANG, and Zhaokai LOU in College of Advanced Interdisciplinary Studies, National University of Defense Technology for their collaboration.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Invited article
Rights and permissions
About this article
Cite this article
Liu, Z., Jin, X., Su, R. et al. Development status of high power fiber lasers and their coherent beam combination. Sci. China Inf. Sci. 62, 41301 (2019). https://doi.org/10.1007/s11432-018-9742-0
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11432-018-9742-0