Skip to main content

Advertisement

Log in

Design and manufacturing of high-performance prostheses with additive manufacturing and fiber-reinforced polymers

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

This paper presents an approach combining additive manufacturing (AM) with carbon fiber reinforced polymers (CFRP) in an autoclave prepreg process for the development of complex-shaped hybrid AM-CFRP structures with the potential for individualization. The goal of this paper is to investigate the processing route in the context of low volume industrial applications and to assess the mechanical performance of hybrid AM-CFRP structures in ultimate strength and fatigue. The approach was applied to lower-limb prostheses using dissolvable in-autoclave tooling made of ST-130 by fused deposition modeling, two load introduction elements made of titanium by selective laser melting, and pre-impregnated carbon fiber reinforcements. The parts were cured in an autoclave at a pressure of 3 bar and a temperature of 110 °C. The inner toolings were dissolved in a basic solution after curing. The prostheses were subjected to ultimate strength and fatigue tests to assess the mechanical performance of the structures. Results show that the target load of 5474 N was exceeded by 40% and that no fatigue failure occurred for the given loading. Weight savings of 28% compared to a state-of-the-art aluminum reference part were achieved. Results demonstrate that the combination of technologies could be appropriate for high-performance lightweight components with complex geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shurr DG, Michael JW (2001) Prosthetics and Orthotics, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  2. Gailey R, Allen K, Castles J, Kucharik J, Roeder M (2008) Review of secondary physical conditions associated with lower-limb amputation and long-term prosthesis use. J Rehabil Res Dev. 45(1):15–30 (http://www.rehab.research.va.gov/jour/08/45/1/pdf/gailey.pdf)

    Article  Google Scholar 

  3. Salles AS, Gyi DE (2013) Delivering personalised insoles to the high street using additive manufacturing. Int J Comput Integr Manuf 26(1):386–400. https://doi.org/10.1080/0951192X.2012.717721

    Article  Google Scholar 

  4. Salles AS, Gyi DE (2013) An evaluation of personalised insoles developed using additive manufacturing. J Sports Sci 31(4):442–450. https://doi.org/10.1080/02640414.2012.736629

    Article  Google Scholar 

  5. Saleh J, Dalgarno K (2009) Cost and benefit analysis of fused deposition modelling (FDM) technique and selective laser sintering (SLS) for fabrication of customised foot orthoses. In: Proceedings of 4th international conference advanced research virtual rapid manufacturing, innovative developments in design manufacturing

  6. Jin Y, Plott J, Chen R, Wensmann J, Shih A (2015) Additive manufacturing of custom orthoses and prostheses—a review. Proc CIRP 36:199–204. https://doi.org/10.1016/j.procir.2015.02.125

    Article  Google Scholar 

  7. Li H, Taylor G, Bheemreddy V, Iyibilgin O, Leu M, Chandrashekhara K (2015) Modeling and characterization of fused deposition modeling tooling for vacuum assisted resin transfer molding process. Addit Manuf 7:64–72. https://doi.org/10.1016/j.addma.2015.02.003

    Article  Google Scholar 

  8. Schniepp T (2016) Design guide development for additive manufacturing (FDM) of composite tooling. In: SAMPE conference proceedings, Long Beach, CA, pp 2259–2269

  9. Love L, Kunc V, Rios O, Duty CE, Elliot AM, Post BK, Smith RJ, Blue CA (2014) The importance of carbon fiber to polymer additive manufacturing. J Mater Res 20:1893–1898. https://doi.org/10.1557/jmr.2014.212

    Article  Google Scholar 

  10. Riss F, Schilp J, Reinhart G (2014) Load-dependent optimization of honeycombs for sandwich components—new possibilities by using additive layer manufacturing. Phys Proc 56:327–335. https://doi.org/10.1016/j.phpro.2014.08.178

    Article  Google Scholar 

  11. Türk DA, Züger A, Klahn C, Meboldt M (2015) Combining additive manufacturing with CFRP composites: design potentials. In: Proceedings of the 20th international conference on engineering design (ICED15), vol 8, ISBN: 978-1-904670-71-1

  12. Leddy MT, Belter JT, Gemmel KD, Dollar AM (2015) Lightweight custom composite prosthetic components using an additive manufacturing-based molding technique. In: 2015 37th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, pp 4797–4802. https://doi.org/10.1109/EMBC.2015.7319467

  13. Mazumdar SK (2002) Composites manufacturing—materials, product, and process engineering. CRC Press, Boca Raton. (ISBN 0-8493-0585-3)

    Google Scholar 

  14. Gutowski TG (1997) Advanced composites manufacturing. Wiley, Cambridge. (ISBN: 978-0-471-15301-6)

    Google Scholar 

  15. Türk DA, Triebe L, Meboldt M (2016) Combining additive manufacturing with advanced composites for highly integrated robotic structures. In: 26th CIRP design conference vol 50, pp 402–407. https://doi.org/10.1016/j.procir.2016.04.202

  16. Türk DA, Kussmaul R, Zogg M, Klahn C, Spierings AB, Ermanni P, Meboldt M (2016) Additive manufacturing with composites for integrated aircraft structures. J Adv Mater 3:55–69. (ISSN 1070-9789)

    Google Scholar 

  17. Chen RK, Jin Y, Wensman J, Shih A (2016) Additive manufacturing of custom orthoses and prostheses—a review. Addit Manuf 12:77–89. https://doi.org/10.1016/j.addma.2016.04.002

    Article  Google Scholar 

  18. Mattes S (2014) Is lighter better? Thoughts on the relationship between device weight and function. The O&P Edge. http://opedge.com/Articles/ViewArticle/2014-05_07. Accessed 20 Dec 2016

  19. Lewallen R, Dyck G, Quanbury A, Ross K, Letts M (1986) Gait kinematics in below-knee child amputees: a force place analysis. J Pediatr Orthop 6(3):291–298

    Article  Google Scholar 

  20. Gibson I, Rosen DW, Stucker B (2010) Additive manufacturing technologies. Springer, New York. (ISBN: 978-1-4419-1119-3)

    Book  Google Scholar 

  21. Parry L, Ashcroft IA, Wildman RD (2016) Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation. Addit Manuf 12:1–15. https://doi.org/10.1016/j.addma.2016.05.014

    Article  Google Scholar 

  22. Zaeh MF, Branner G (2010) Investigations on residual stresses and deformations in selective laser melting. Prod Eng Res Dev 4(1):35–45. https://doi.org/10.1007/s11740-009-0192-y

    Article  Google Scholar 

  23. Zhao X, Iyer A, Promoppatum P, Yao S-C (2017) Numerical modeling of the thermal behavior and residual stress in the direct metal laser sintering process of titanium alloy products. Addit Manuf 14:126–136. https://doi.org/10.1016/j.addma.2016.10.005

    Article  Google Scholar 

  24. Vastola G, Zhang G, Pei QX, Zhang Y-W (2016) Controlling of residual stress in additive manufacturing of Ti6Al4V by finite element modeling. Addit Manuf 12:231–239. https://doi.org/10.1016/j.addma.2016.05.010

    Article  Google Scholar 

  25. Leutenecker-Twelsiek B, Klahn C, Meboldt M (2016) Considering part orientation in design for additive manufacturing. Proc CIRP 50:408–413. https://doi.org/10.1016/j.procir.2016.05.016

    Article  Google Scholar 

  26. Schmid M, Amado A, Wegener K (2014) Materials perspective of polymers for additive manufacturing with selective laser sintering. J Mater Res 29(17):1824–1832. https://doi.org/10.1557/jmr.2014.138

    Article  Google Scholar 

  27. Schmid M, Amado A, Wegener K (2016) Polymer powders for selective laser sintering (SLS). In: AIP Conference proceedings 1664, 160009. https://doi.org/10.1063/1.4918516

  28. Breuninger J, Becker R, Wolf A, Rommel S, Verl A (2013) Generative Fertigung mit Kunststoffen. Konzeption und Konstruktion für Selektives Lasersintern. Springer, New York. https://doi.org/10.1007/978-3-642-24325-7$4

    Book  Google Scholar 

  29. Bellini A, Güçeri S (2003) Mechanical characterization of parts fabricated using fused deposition modeling. Rapid Prototyp J 9(4):252–264. https://doi.org/10.1108/13552540310489631

    Article  Google Scholar 

  30. Masood SH, Song WQ (2004) Development of new metal/polymer materials for rapid tooling using fused deposition modelling. Mater Des 25:587–594. https://doi.org/10.1016/j.matdes.2004.02.009

    Article  Google Scholar 

  31. Nikzad M, Masood SH, Sbarski I (2011) Thermo-mechanical properties of a highly filled polymeric composites for fused deposition modeling. Mater Des 32:3448–3456. https://doi.org/10.1016/j.matdes.2011.01.056

    Article  Google Scholar 

  32. Tekinalp HL, Kunc V, Velez-Garcia GM, Duty CE, Love LJ, Naskar AK, Blue CA, Ozcan S (2014) Highly oriented carbon fiber-polymer composites via additive manufacturing. Compos Sci Technol 105:144–150. https://doi.org/10.1016/j.compscitech.2014.10.009

    Article  Google Scholar 

  33. Matsuzaki R, Ueda M, Namiki M, Jeong T-K, Asahara H, Horiguchi K, Nakamura T, Todoroki A, Hirano Y (2015) Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Nat Sci Rep. https://doi.org/10.1038/srep23058

    Google Scholar 

  34. Ahn S-H, Montero M, Odell D, Roundy S, Wright PK (2002) Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp J 8:248–257. https://doi.org/10.1108/13552540210441166

    Article  Google Scholar 

  35. Össur Iceland ehf (2017) Mauch® Knee specifications. https://www.ossur.com/prosthetic-solutions/products/all-products/knees-and-legs/mauch-knee. Accessed 14 Jan 2017

  36. EN ISO 10328 standard, Prosthetics. (2006) Structural testing of lower-limb prostheses. Requirements and test methods

  37. Gibson RF (2010) A review of recent research on mechanics of multifunctional composite materials and structures. J Compos Struct 92:2793–2810. https://doi.org/10.1016/j.compstruct.2010.05.003

    Article  Google Scholar 

  38. Gagné M, Therriault D (2014) Lightning-strike protection of composites. Prog Aerosp Sci 64:1–16. https://doi.org/10.1016/j.paerosci.2013.07.002

    Article  Google Scholar 

  39. Mohseni M, Amirfazli A (2013) A novel electro-thermal anti-icing system for fiber-reinforced polymer composite airfoils. Cold Reg Sci Technol 87:47–58. https://doi.org/10.1016/j.coldregions.2012.12.003

    Article  Google Scholar 

  40. Concept, Laser (2017) CL 41TI ELI Titanium alloy data sheet. https://www.concept-laser.de/fileadmin//user_upload/Datasheet_CL_41TI_ELI.pdf. Accessed 20 Dec 2016

  41. Stratasys, Ltd. (2017) ST-130 datasheet. http://www.stratasys.com/materials/fdm/st-130. Accessed 20 Dec 2016

  42. Türk DA, Brenni F, Zogg M, Meboldt M (2017) Mechanical characterization of 3D printed polymers for fiber-reinforced polymers processing. Mater Des 118:256–265. https://doi.org/10.1016/j.matdes.2017.01.050

    Article  Google Scholar 

  43. SGL Group (2017) Sigratex prepreg CE 1007-15-38 datasheet. http://www.carbon-vertrieb.com/shop/media/products/0447494001371540646.pdf. Accessed 10 Dec 2016

  44. SGL Group (2017) Sigratex prepreg C W200-TW/2-E323/45%/3K datasheet. http://www.carbon-vertrieb.com/shop/media/products/0264600001371540621.pdf. Accessed 20 Feb 2017

  45. Loctite EA 9686 (2017) AERO, data sheet, http://www.aero-consultants.ch/view/data/3285/Aero%20Consultings/PDF/LOCTITE_EA_9686_AERO.PDF. Accessed 20 Jan 2017

  46. Smooth-On (2017) SuperSeal data sheet. https://www.smooth-on.com/products/superseal/. Accessed 21 Jan 2017

  47. Altropol (2017) ProtoSil RTV 245 silicone data sheet. http://www.altropol.de/wp-content/uploads/2016/11/E_RTV_245.pdf. Accessed 21 Jan 2017

  48. Witte Weiguss mould clamping technology, bismuth alloy (2017) https://www.witteamerica.com/products/vacuum/mould-clamping-technology.php. Accessed 01 June 2017

  49. Davis MJ, Bond DA (1999) The importance of failure mode identification in adhesive bonded aircraft structures and repairs. In: International conference on composite materials ICCM-12, Paris, July 5–9

  50. ExOne (2017) Casting media alternatives. http://www.exone.com/Portals/0/ResourceCenter/Materials/ExOne-Casting-Media-Alternatives.pdf. Accessed 16 Feb 2017

  51. Hackney PM, Woolridge R (2017) Characterisation of direct 3D sand printing process for the production of sand cast mould tools. Rapid Prototyp J 23(1):7–15. https://doi.org/10.1108/RPJ-08-2014-0101

    Article  Google Scholar 

  52. Gailey RS, Wenger MA, Raya M, Kirk N, Erbs K, Spyropoulos P, Nash MS (1994) Energy expenditure of trans-tibial amputees during ambulation at self-selected pace. Prosthet Orthot Int 18(2):84–91

    Google Scholar 

  53. Mattes SJ, Martin PE, Royer TD (2000) Walking symmetry and energy cost in persons with unilateral transtibial amputations: matching prosthetic and intact limb inertial properties. Arch Phys Med Rehabil 81(5):561–568

    Article  Google Scholar 

  54. Smith JD, Martin PE (2013) Effects of prosthetic mass distribution on metabolic costs and walking symmetry. J Appl Biomech 29(3):317–328

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Össur Iceland ehf and the Product Development Group Zurich, ETH Zurich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel-Alexander Türk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Türk, DA., Einarsson, H., Lecomte, C. et al. Design and manufacturing of high-performance prostheses with additive manufacturing and fiber-reinforced polymers. Prod. Eng. Res. Devel. 12, 203–213 (2018). https://doi.org/10.1007/s11740-018-0799-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-018-0799-y

Keywords

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy