Skip to main content
Log in

Combinatorial bounds and characterizations of splitting authentication codes

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We present several generalizations of results for splitting authentication codes by studying the aspect of multi-fold security. As the two primary results, we prove a combinatorial lower bound on the number of encoding rules and a combinatorial characterization of optimal splitting authentication codes that are multi-fold secure against spoofing attacks. The characterization is based on a new type of combinatorial designs, which we introduce and for which basic necessary conditions are given regarding their existence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beth, T., Jungnickel, D., Lenz, H.: Design Theory, vols. I and II. Encyclopedia of Math. and Its Applications, vols. 69/78. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  2. Blundo, C., De Santis, A., Kurosawa, K., Ogata, W.: On a fallacious bound for authentication codes. J. Cryptol. 12, 155–159 (1999)

    Article  MATH  Google Scholar 

  3. Brickell, E.F.: A few results in message authentication. Congr. Numer. 43, 141–154 (1984)

    MathSciNet  Google Scholar 

  4. Colbourn, C.J., Dinitz, J.H. (eds.): Handbook of Combinatorial Designs, 2nd edn. CRC Press, Boca Raton (2006)

    Google Scholar 

  5. De Soete, M.: Some constructions for authentication-secrecy codes. In: Günther, Ch.G. (ed.) Advances in Cryptology-EUROCRYPT 1988. Lecture Notes in Computer Science, vol. 330, pp. 23–49. Springer, Berlin, Heidelberg, New York (1988)

    Google Scholar 

  6. De Soete, M.: New bounds and constructions for authentication/secrecy codes with splitting. J. Cryptol. 3, 173–186 (1991)

    Article  MATH  Google Scholar 

  7. Du, B.: Splitting balanced incomplete block designs with block size 3 ×2. J. Comb. Des. 12, 404–420 (2004)

    Article  MATH  Google Scholar 

  8. Ge, G., Miao, Y., Wang, L.: Combinatorial constructions for optimal splitting authentication codes. SIAM J. Discrete Math. 18, 663–678 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gilbert, E.N., MacWilliams, F.J., Sloane, N.J.A.: Codes which detect deception. Bell Syst. Tech. J. 53, 405–424 (1974)

    MathSciNet  Google Scholar 

  10. Huber, M.: Authentication and secrecy codes for equiprobable source probability distributions. In: Proc. IEEE International Symposium on Information Theory (ISIT) 2009, pp. 1105–1109 (2009)

  11. Huber, M.: Flag-transitive Steiner Designs. Birkhäuser, Basel, Berlin, Boston (2009)

    Google Scholar 

  12. Huber, M.: Coding theory and algebraic combinatorics. In: Woungang, I., et al. (eds.) Selected Topics in Information and Coding Theory, 38 pp. World Scientific, Singapore (2010)

    Google Scholar 

  13. Johansson, T.: Lower bounds on the probability of deception in authentication with arbitration. IEEE Trans. Inf. Theory 40, 1573–1585 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kurosawa, K.: New bound on authentication code with arbitration. In: Desmedt, Y. (ed.) Advances in Cryptology-CRYPTO 1994. Lecture Notes in Computer Science, vol. 839, pp. 140–149. Springer, Berlin, Heidelberg, New York (1994)

    Google Scholar 

  15. Kurosawa, K., Obana, S.: Combinatorial bounds on authentication codes with arbitration. Designs Codes Cryptogr. 22, 265–281 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Massey, J.L.: Cryptography—a selective survey. In: Biglieri, E., Prati, G. (eds.) Digital Communications, pp. 3–21. North-Holland, Amsterdam, New York, Oxford (1986)

    Google Scholar 

  17. Ogata, W., Kurosawa, K., Stinson, D.R., Saido, H.: New combinatorial designs and their applications to authentication codes and secret sharing schemes. Discrete Math. 279, 383–405 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Pei, D.: Authentication Codes and Combinatorial Designs. CRC Press, Boca Raton (2006)

    MATH  Google Scholar 

  19. Schöbi, P.: Perfect authentication systems for data sources with arbitrary statistics (presented at EUROCRYPT 1986) (unpublished)

  20. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28, 656–715 (1949)

    MATH  MathSciNet  Google Scholar 

  21. Simmons, G.J.: A game theory model of digital message authentication. Congr. Numer. 34, 413–424 (1982)

    MathSciNet  Google Scholar 

  22. Simmons, G.J.: Message authentication: a game on hypergraphs. Congr. Numer. 45, 161–192 (1984)

    MathSciNet  Google Scholar 

  23. Simmons, G.J.: Authentication theory/coding theory. In: Blakley, G.R., Chaum, D. (eds.) Advances in Cryptology-CRYPTO 1984. Lecture Notes in Computer Science, vol. 196, pp. 411–432. Springer, Berlin, Heidelberg, New York (1985)

    Google Scholar 

  24. Simmons, G.J.: Message authentication with arbitration of transmitter/receiver disputes. In: Chaum, D., Price, W.L. (eds.) Advances in Cryptology-EUROCRYPT 1987. Lecture Notes in Computer Science, vol. 304, pp. 150–165. Springer, Berlin, Heidelberg, New York (1988)

    Chapter  Google Scholar 

  25. Simmons, G.J.: A Cartesian product construction for unconditionally secure authentication codes that permit arbitration. J. Cryptol. 2, 77–104 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  26. Simmons, G.J.: A survey of information authentication. In: Simmons, G.J. (ed.) Contemporary Cryptology: The Science of Information Integrity, pp. 379–419. IEEE Press, Piscataway (1992)

    Google Scholar 

  27. Stinson, D.R.: The combinatorics of authentication and secrecy codes. J. Cryptol. 2, 23–49 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  28. Stinson, D.R.: Combinatorial characterizations of authentication codes. Designs Codes Cryptogr. 2, 175–187 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  29. Stinson, D.R., Rees, R.S.: Combinatorial characterizations of authentication codes II. Designs Codes Cryptogr. 7, 239–259 (1996)

    MATH  MathSciNet  Google Scholar 

  30. Wang, J.: A new class of optimal 3-splitting authentication codes. Designs Codes Cryptogr. 38, 373–381 (2006)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

I thank the two anonymous referees for their careful reading and suggestions that helped improving the presentation of the paper. I also thank Moritz Eilers and Christoff Hische for running the computer search for Example 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Huber.

Additional information

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) via a Heisenberg grant (Hu954/4) and a Heinz Maier-Leibnitz Prize grant (Hu954/5).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huber, M. Combinatorial bounds and characterizations of splitting authentication codes. Cryptogr. Commun. 2, 173–185 (2010). https://doi.org/10.1007/s12095-010-0020-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-010-0020-4

Keywords

Mathematics Subject Classifications (2000)

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy