Abstract
Data clustering is a crucial machine learning technique that helps divide a given dataset into many similar data objects where the data members resemble each other. It is an unsupervised learning algorithm and is hugely applied in different machine learning and data mining applications. k-means algorithm is one of the popular methods for clustering the data. However, this algorithm is not much suitable as it causes the problem of local entrapment. To resolve such issues, nature-inspired algorithms (NIAs) came into existence. Harris hawks optimizer (HHO) is a recently developed NIA inspired by the chasing and collaborative behavior of Harris hawks in real nature. The efficacy of HHO has already been proved by researchers in solving complex problems of different domains. In this paper, an opposition-based learning HHO (OHHO) is proposed for data clustering. The performance of OHHO is compared against six well-known algorithms on ten benchmark datasets of the UCI machine learning repository. Experimental values have justified the effectiveness of the proposed approach.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abualigah L, Diabat A, Geem ZW (2020) A comprehensive survey of the harmony search algorithm in clustering applications. Appl Sci 10(11):3827
Ahmadi R, Ekbatanifard G, Bayat P (2021) A modified grey wolf optimizer based data clustering algorithm. Appl Artificial Intell 35(1):63–79
Aljarah I, Faris H, Mirjalili S (2021). Evolutionary data clustering: Algorithms and applications
Aljarah I, Mafarja M, Heidari A. A, Faris H, Mirjalili S (2020). Multi-verse optimizer: theory, literature review, and application in data clustering. Nature-inspired optimizers, 123–141
Alswaitti M, Albughdadi M, Isa NAM (2019) Variance-based differential evolution algorithm with an optional crossover for data clustering. Appl Soft Comput 80:1–17
Arora S, Singh S (2019) Butterfly optimization algorithm: a novel approach for global optimization. Soft Comput 23(3):715–734
Bhavithra J, Saradha A (2019) Personalized web page recommendation using case-based clustering and weighted association rule mining. Cluster Comput 22(3):6991–7002
Boushaki SI, Kamel N, Bendjeghaba O (2018) A new quantum chaotic cuckoo search algorithm for data clustering. Expert Syst Appl 96:358–372
Chandar SK (2019) Stock market prediction using subtractive clustering for a neuro fuzzy hybrid approach. Cluster Comput 22(6):13159–13166
Cho PPW, Nyunt TTS (2020) Data clustering based on modified differential evolution and quasi-oppositionbased learning. Intell Eng Syst 13(6):168–178
Dinkar S. K, Deep K (2020). Opposition-based antlion optimizer using cauchy distribution and its application to data clustering problem. Neural Computing & Applications, 32(11)
Esmin AA, Coelho RA, Matwin S (2015) A review on particle swarm optimization algorithm and its variants to clustering high-dimensional data. Artificial Intell Rev 44(1):23–45
Figueiredo E, Macedo M, Siqueira HV, Santana CJ Jr, Gokhale A, Bastos-Filho CJ (2019) Swarm intelligence for clustering–a systematic review with new perspectives on data mining. Eng Appl Artificial Intell 82:313–329
Fränti P, Sieranoja S (2018) K-means properties on six clustering benchmark datasets. Appl Intell 48(12):4743–4759
Gan G, Valdez EA (2020) Data clustering with actuarial applications. North Am Actuarial J 24(2):168–186
Gong X, Liu L, Fong S, Xu Q, Wen T, Liu Z (2019) Comparative research of swarm intelligence clustering algorithms for analyzing medical data. IEEE Access 7:137560–137569
Gupta IK, Yadav V, Kumar S (2019) Medical data clustering based on particle swarm optimisation and genetic algorithm. Int J Adv Intell Paradigms 14(3–4):345–358
Han X, Quan L, Xiong X, Almeter M, Xiang J, Lan Y (2017) A novel data clustering algorithm based on modified gravitational search algorithm. Eng Appl Artificial Intell 61:1–7
Hatamlou A (2013) Black hole: a new heuristic optimization approach for data clustering. Inform Sci 222:175–184
Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Future Generation Comput Syst 97:849–872
Holm S (1979). A simple sequentially rejective multiple test procedure. Scandinavian journal of statistics, 65–70
Jadhav AN, Gomathi N (2018) Wgc: Hybridization of exponential grey wolf optimizer with whale optimization for data clustering. Alexandria Eng J 57(3):1569–1584
Jafari Jabal Kandi R, Soleimanian Gharehchopogh F (2020) An improved opposition-based crow search algorithm for data clustering. J Adv Comput Res 11(4):1–22
Karaboga D, Ozturk C (2011) A novel clustering approach: Artificial bee colony (abc) algorithm. Appl Soft Comput 11(1):652–657
Kaur A, Pal SK, Singh AP (2020) Hybridization of chaos and flower pollination algorithm over k-means for data clustering. Appl Soft Comput 97:105523
Khamparia A, Pandey B (2020) Association of learning styles with different e-learning problems: a systematic review and classification. Educ Inform Technol 25(2):1303–1331
Kumar Y, Sahoo G (2017) An improved cat swarm optimization algorithm based on opposition-based learning and cauchy operator for clustering. J Inform Process Syst 13(4):1000–1013
Kushwaha N, Pant M, Kant S, Jain VK (2018) Magnetic optimization algorithm for data clustering. Pattern Recog Lett 115:59–65
Kuwil FH, Atila Ü, Abu-Issa R, Murtagh F (2020) A novel data clustering algorithm based on gravity center methodology. Expert Syst Appl 156:113435
Lei T, Liu P, Jia X, Zhang X, Meng H, Nandi AK (2019) Automatic fuzzy clustering framework for image segmentation. IEEE Trans Fuzzy Syst 28(9):2078–2092
Li C, Zhou J, Kou P, Xiao J (2012) A novel chaotic particle swarm optimization based fuzzy clustering algorithm. Neurocomputing 83:98–109
Li W, Wang G.-G (2021). Improved elephant herding optimization using opposition-based learning and k-means clustering to solve numerical optimization problems. Journal of Ambient Intelligence and Humanized Computing, 1–32
Li Z, Nie F, Chang X, Nie L, Zhang H, Yang Y (2018) Rank-constrained spectral clustering with flexible embedding. IEEE Trans Neural Netw Learn Syst 29(12):6073–6082
Li Z, Nie F, Chang X, Yang Y, Zhang C, Sebe N (2018) Dynamic affinity graph construction for spectral clustering using multiple features. IEEE Trans Neural Netw Learn Syst 29(12):6323–6332
Li Z, Yao L, Chang X, Zhan K, Sun J, Zhang H (2019) Zero-shot event detection via event-adaptive concept relevance mining. Pattern Recognit 88:595–603
Mabu AM, Prasad R, Yadav R (2020) Mining gene expression data using data mining techniques: a critical review. J Inform Opt Sci 41(3):723–742
Mahdavi S, Rahnamayan S, Deb K (2018) Opposition based learning: a literature review. Swarm Evol Comput 39:1–23
Martínez-Sánchez J. F, Cruz-García S, Venegas-Martínez F (2020). Money laundering control in mexico: A risk management approach through regression trees (data mining). Journal of Money Laundering Control
Mirjalili S (2016) Sca: a sine cosine algorithm for solving optimization problems. Knowledge-Based Syst 96:120–133
Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191
Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multiverse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2):495–513
Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adva Eng Softw 69:46–61
Nanda SJ, Panda G (2014) A survey on nature inspired metaheuristic algorithms for partitional clustering. Swarm Evol Comput 16:1–18
Nasiri J, Khiyabani FM (2018) A whale optimization algorithm (woa) approach for clustering. Cogent Math Stat 5(1):1483565
Nie F, Zhao X, Wang R, Li X, Li Z (2020). Fuzzy k-means clustering with discriminative embedding. IEEE Transactions on Knowledge and Data Engineering
Qaddoura R, Faris H, Aljarah I (2020). An efficient evolutionary algorithm with a nearest neighbor search technique for clustering analysis. Journal of Ambient Intelligence and Humanized Computing, 1–26
Rana S, Jasola S, Kumar R (2011) A review on particle swarm optimization algorithms and their applications to data clustering. Artificial Intell Rev 35(3):211–222
Ren P, Xiao Y, Chang X, Huang P-Y, Li Z, Chen X, Wang X (2021) A comprehensive survey of neural architecture search: Challenges and solutions. ACM Computing Surveys (CSUR) 54(4):1–34
Sheskin D. J (2003). Handbook of parametric and nonparametric statistical procedures. Chapman and Hall/CRC
Singh T (2020) A chaotic sequence-guided harris hawks optimizer for data clustering. Neural Comput Appl 32:17789–17803
Singh T (2021) A novel data clustering approach based on whale optimization algorithm. Expert Syst 38(3):e12657
Singh T, Mishra KK, et al. (2019a). Data clustering using environmental adaptation method. In International conference on hybrid intelligent systems (pp. 156–164)
Singh T, Mishra KK et al (2019) Multiobjective environmental adaptation method for solving environmental/ economic dispatch problem. Evol Intell 12(2):305–319
Singh T, Mishra KK, Ranvijay. (2020) A variant of eam to uncover community structure in complex networks. Int J Bio-Inspired Comput 16(2):102–110
Singh T, Saxena N (2021). Chaotic sequence and opposition learning guided approach for data clustering. Pattern Analysis and Applications, 1–15
Singh T, Saxena N, Khurana M, Singh D, Abdalla M, Alshazly H (2021) Data clustering using moth-flame optimization algorithm. Sensors 21(12):4086
Tizhoosh H R (2005). Opposition-based learning: a new scheme for machine intelligence. In International conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce (cimcaiawtic’06) (Vol. 1, pp. 695–701)
Wan M, Li L, Xiao J, Wang C, Yang Y (2012) Data clustering using bacterial foraging optimization. J Intell Inform Syst 38(2):321–341
Wan M, Wang C, Li L, Yang Y (2012) Chaotic ant swarm approach for data clustering. Appl Soft Comput 12(8):2387–2393
Wang R, Ji W, Liu M, Wang X, Weng J, Deng S, Yuan C-a (2018) Review on mining data from multiple data sources. Pattern Recognit Lett 109:120–128
Wangchamhan T, Chiewchanwattana S, Sunat K (2017) Efficient algorithms based on the k-means and chaotic league championship algorithm for numeric, categorical, and mixed-type data clustering. Expert Syst App 90:146–167
Wen L, Zhou K, Yang S (2019) A shape-based clustering method for pattern recognition of residential electricity consumption. J Clean Prod 212:475–488
Xia K, Gu X, Zhang Y (2020) Oriented groupingconstrained spectral clustering for medical imaging segmentation. Multimedia Syst 26(1):27–36
Xu Q, Wang L, Wang N, Hei X, Zhao L (2014) A review of opposition-based learning from 2005 to 2012. Eng Appl Artificial Intell 29:1–12
Yahaya L, Oye ND, Garba EJ (2020) A comprehensive review on heart disease prediction using data mining and machine learning techniques. Am J Artificial Intell 4(1):20–29
Yan C, Chang X, Luo M, Zheng Q, Zhang X, Li Z, Nie F (2020) Self-weighted robust lda for multiclass classification with edge classes. ACM Trans Intell Syst Technol (TIST) 12(1):1–19
Yan X, Zhu Y, Zou W, Wang L (2012) A new approach for data clustering using hybrid artificial bee colony algorithm. Neurocomputing 97:241–250
Zhou Y, Wu H, Luo Q, Abdel-Baset M (2019) Automatic data clustering using nature-inspired symbiotic organism search algorithm. Knowl-Based Syst 163:546–557
Acknowledgements
Funding information is not applicable/No funding was received.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The author declares that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Singh, T., Panda, S.S., Mohanty, S.R. et al. Opposition learning based Harris hawks optimizer for data clustering. J Ambient Intell Human Comput 14, 8347–8362 (2023). https://doi.org/10.1007/s12652-021-03600-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12652-021-03600-3