Skip to main content

Opposition learning based Harris hawks optimizer for data clustering

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

Data clustering is a crucial machine learning technique that helps divide a given dataset into many similar data objects where the data members resemble each other. It is an unsupervised learning algorithm and is hugely applied in different machine learning and data mining applications. k-means algorithm is one of the popular methods for clustering the data. However, this algorithm is not much suitable as it causes the problem of local entrapment. To resolve such issues, nature-inspired algorithms (NIAs) came into existence. Harris hawks optimizer (HHO) is a recently developed NIA inspired by the chasing and collaborative behavior of Harris hawks in real nature. The efficacy of HHO has already been proved by researchers in solving complex problems of different domains. In this paper, an opposition-based learning HHO (OHHO) is proposed for data clustering. The performance of OHHO is compared against six well-known algorithms on ten benchmark datasets of the UCI machine learning repository. Experimental values have justified the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abualigah L, Diabat A, Geem ZW (2020) A comprehensive survey of the harmony search algorithm in clustering applications. Appl Sci 10(11):3827

    Article  Google Scholar 

  • Ahmadi R, Ekbatanifard G, Bayat P (2021) A modified grey wolf optimizer based data clustering algorithm. Appl Artificial Intell 35(1):63–79

    Article  Google Scholar 

  • Aljarah I, Faris H, Mirjalili S (2021). Evolutionary data clustering: Algorithms and applications

  • Aljarah I, Mafarja M, Heidari A. A, Faris H, Mirjalili S (2020). Multi-verse optimizer: theory, literature review, and application in data clustering. Nature-inspired optimizers, 123–141

  • Alswaitti M, Albughdadi M, Isa NAM (2019) Variance-based differential evolution algorithm with an optional crossover for data clustering. Appl Soft Comput 80:1–17

    Article  Google Scholar 

  • Arora S, Singh S (2019) Butterfly optimization algorithm: a novel approach for global optimization. Soft Comput 23(3):715–734

    Article  Google Scholar 

  • Bhavithra J, Saradha A (2019) Personalized web page recommendation using case-based clustering and weighted association rule mining. Cluster Comput 22(3):6991–7002

    Article  Google Scholar 

  • Boushaki SI, Kamel N, Bendjeghaba O (2018) A new quantum chaotic cuckoo search algorithm for data clustering. Expert Syst Appl 96:358–372

    Article  MATH  Google Scholar 

  • Chandar SK (2019) Stock market prediction using subtractive clustering for a neuro fuzzy hybrid approach. Cluster Comput 22(6):13159–13166

    Article  Google Scholar 

  • Cho PPW, Nyunt TTS (2020) Data clustering based on modified differential evolution and quasi-oppositionbased learning. Intell Eng Syst 13(6):168–178

    Article  Google Scholar 

  • Dinkar S. K, Deep K (2020). Opposition-based antlion optimizer using cauchy distribution and its application to data clustering problem. Neural Computing & Applications, 32(11)

  • Esmin AA, Coelho RA, Matwin S (2015) A review on particle swarm optimization algorithm and its variants to clustering high-dimensional data. Artificial Intell Rev 44(1):23–45

    Article  Google Scholar 

  • Figueiredo E, Macedo M, Siqueira HV, Santana CJ Jr, Gokhale A, Bastos-Filho CJ (2019) Swarm intelligence for clustering–a systematic review with new perspectives on data mining. Eng Appl Artificial Intell 82:313–329

    Article  Google Scholar 

  • Fränti P, Sieranoja S (2018) K-means properties on six clustering benchmark datasets. Appl Intell 48(12):4743–4759

    Article  MATH  Google Scholar 

  • Gan G, Valdez EA (2020) Data clustering with actuarial applications. North Am Actuarial J 24(2):168–186

    Article  MathSciNet  MATH  Google Scholar 

  • Gong X, Liu L, Fong S, Xu Q, Wen T, Liu Z (2019) Comparative research of swarm intelligence clustering algorithms for analyzing medical data. IEEE Access 7:137560–137569

    Article  Google Scholar 

  • Gupta IK, Yadav V, Kumar S (2019) Medical data clustering based on particle swarm optimisation and genetic algorithm. Int J Adv Intell Paradigms 14(3–4):345–358

    Article  Google Scholar 

  • Han X, Quan L, Xiong X, Almeter M, Xiang J, Lan Y (2017) A novel data clustering algorithm based on modified gravitational search algorithm. Eng Appl Artificial Intell 61:1–7

    Article  Google Scholar 

  • Hatamlou A (2013) Black hole: a new heuristic optimization approach for data clustering. Inform Sci 222:175–184

    Article  MathSciNet  Google Scholar 

  • Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Future Generation Comput Syst 97:849–872

    Article  Google Scholar 

  • Holm S (1979). A simple sequentially rejective multiple test procedure. Scandinavian journal of statistics, 65–70

  • Jadhav AN, Gomathi N (2018) Wgc: Hybridization of exponential grey wolf optimizer with whale optimization for data clustering. Alexandria Eng J 57(3):1569–1584

    Article  Google Scholar 

  • Jafari Jabal Kandi R, Soleimanian Gharehchopogh F (2020) An improved opposition-based crow search algorithm for data clustering. J Adv Comput Res 11(4):1–22

    Google Scholar 

  • Karaboga D, Ozturk C (2011) A novel clustering approach: Artificial bee colony (abc) algorithm. Appl Soft Comput 11(1):652–657

    Article  Google Scholar 

  • Kaur A, Pal SK, Singh AP (2020) Hybridization of chaos and flower pollination algorithm over k-means for data clustering. Appl Soft Comput 97:105523

    Article  Google Scholar 

  • Khamparia A, Pandey B (2020) Association of learning styles with different e-learning problems: a systematic review and classification. Educ Inform Technol 25(2):1303–1331

    Article  Google Scholar 

  • Kumar Y, Sahoo G (2017) An improved cat swarm optimization algorithm based on opposition-based learning and cauchy operator for clustering. J Inform Process Syst 13(4):1000–1013

    Google Scholar 

  • Kushwaha N, Pant M, Kant S, Jain VK (2018) Magnetic optimization algorithm for data clustering. Pattern Recog Lett 115:59–65

    Article  Google Scholar 

  • Kuwil FH, Atila Ü, Abu-Issa R, Murtagh F (2020) A novel data clustering algorithm based on gravity center methodology. Expert Syst Appl 156:113435

    Article  Google Scholar 

  • Lei T, Liu P, Jia X, Zhang X, Meng H, Nandi AK (2019) Automatic fuzzy clustering framework for image segmentation. IEEE Trans Fuzzy Syst 28(9):2078–2092

    Article  Google Scholar 

  • Li C, Zhou J, Kou P, Xiao J (2012) A novel chaotic particle swarm optimization based fuzzy clustering algorithm. Neurocomputing 83:98–109

    Article  Google Scholar 

  • Li W, Wang G.-G (2021). Improved elephant herding optimization using opposition-based learning and k-means clustering to solve numerical optimization problems. Journal of Ambient Intelligence and Humanized Computing, 1–32

  • Li Z, Nie F, Chang X, Nie L, Zhang H, Yang Y (2018) Rank-constrained spectral clustering with flexible embedding. IEEE Trans Neural Netw Learn Syst 29(12):6073–6082

    Article  MathSciNet  Google Scholar 

  • Li Z, Nie F, Chang X, Yang Y, Zhang C, Sebe N (2018) Dynamic affinity graph construction for spectral clustering using multiple features. IEEE Trans Neural Netw Learn Syst 29(12):6323–6332

    Article  MathSciNet  Google Scholar 

  • Li Z, Yao L, Chang X, Zhan K, Sun J, Zhang H (2019) Zero-shot event detection via event-adaptive concept relevance mining. Pattern Recognit 88:595–603

    Article  Google Scholar 

  • Mabu AM, Prasad R, Yadav R (2020) Mining gene expression data using data mining techniques: a critical review. J Inform Opt Sci 41(3):723–742

    Google Scholar 

  • Mahdavi S, Rahnamayan S, Deb K (2018) Opposition based learning: a literature review. Swarm Evol Comput 39:1–23

    Article  Google Scholar 

  • Martínez-Sánchez J. F, Cruz-García S, Venegas-Martínez F (2020). Money laundering control in mexico: A risk management approach through regression trees (data mining). Journal of Money Laundering Control

  • Mirjalili S (2016) Sca: a sine cosine algorithm for solving optimization problems. Knowledge-Based Syst 96:120–133

    Article  Google Scholar 

  • Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Article  Google Scholar 

  • Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multiverse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2):495–513

    Article  Google Scholar 

  • Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adva Eng Softw 69:46–61

    Article  Google Scholar 

  • Nanda SJ, Panda G (2014) A survey on nature inspired metaheuristic algorithms for partitional clustering. Swarm Evol Comput 16:1–18

    Article  Google Scholar 

  • Nasiri J, Khiyabani FM (2018) A whale optimization algorithm (woa) approach for clustering. Cogent Math Stat 5(1):1483565

    Article  MathSciNet  MATH  Google Scholar 

  • Nie F, Zhao X, Wang R, Li X, Li Z (2020). Fuzzy k-means clustering with discriminative embedding. IEEE Transactions on Knowledge and Data Engineering

  • Qaddoura R, Faris H, Aljarah I (2020). An efficient evolutionary algorithm with a nearest neighbor search technique for clustering analysis. Journal of Ambient Intelligence and Humanized Computing, 1–26

  • Rana S, Jasola S, Kumar R (2011) A review on particle swarm optimization algorithms and their applications to data clustering. Artificial Intell Rev 35(3):211–222

    Article  Google Scholar 

  • Ren P, Xiao Y, Chang X, Huang P-Y, Li Z, Chen X, Wang X (2021) A comprehensive survey of neural architecture search: Challenges and solutions. ACM Computing Surveys (CSUR) 54(4):1–34

    Article  Google Scholar 

  • Sheskin D. J (2003). Handbook of parametric and nonparametric statistical procedures. Chapman and Hall/CRC

  • Singh T (2020) A chaotic sequence-guided harris hawks optimizer for data clustering. Neural Comput Appl 32:17789–17803

    Article  MathSciNet  Google Scholar 

  • Singh T (2021) A novel data clustering approach based on whale optimization algorithm. Expert Syst 38(3):e12657

    Article  MathSciNet  Google Scholar 

  • Singh T, Mishra KK, et al. (2019a). Data clustering using environmental adaptation method. In International conference on hybrid intelligent systems (pp. 156–164)

  • Singh T, Mishra KK et al (2019) Multiobjective environmental adaptation method for solving environmental/ economic dispatch problem. Evol Intell 12(2):305–319

    Article  Google Scholar 

  • Singh T, Mishra KK, Ranvijay. (2020) A variant of eam to uncover community structure in complex networks. Int J Bio-Inspired Comput 16(2):102–110

  • Singh T, Saxena N (2021). Chaotic sequence and opposition learning guided approach for data clustering. Pattern Analysis and Applications, 1–15

  • Singh T, Saxena N, Khurana M, Singh D, Abdalla M, Alshazly H (2021) Data clustering using moth-flame optimization algorithm. Sensors 21(12):4086

    Article  Google Scholar 

  • Tizhoosh H R (2005). Opposition-based learning: a new scheme for machine intelligence. In International conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce (cimcaiawtic’06) (Vol. 1, pp. 695–701)

  • Wan M, Li L, Xiao J, Wang C, Yang Y (2012) Data clustering using bacterial foraging optimization. J Intell Inform Syst 38(2):321–341

    Article  Google Scholar 

  • Wan M, Wang C, Li L, Yang Y (2012) Chaotic ant swarm approach for data clustering. Appl Soft Comput 12(8):2387–2393

    Article  Google Scholar 

  • Wang R, Ji W, Liu M, Wang X, Weng J, Deng S, Yuan C-a (2018) Review on mining data from multiple data sources. Pattern Recognit Lett 109:120–128

    Article  Google Scholar 

  • Wangchamhan T, Chiewchanwattana S, Sunat K (2017) Efficient algorithms based on the k-means and chaotic league championship algorithm for numeric, categorical, and mixed-type data clustering. Expert Syst App 90:146–167

    Article  Google Scholar 

  • Wen L, Zhou K, Yang S (2019) A shape-based clustering method for pattern recognition of residential electricity consumption. J Clean Prod 212:475–488

    Article  Google Scholar 

  • Xia K, Gu X, Zhang Y (2020) Oriented groupingconstrained spectral clustering for medical imaging segmentation. Multimedia Syst 26(1):27–36

    Article  Google Scholar 

  • Xu Q, Wang L, Wang N, Hei X, Zhao L (2014) A review of opposition-based learning from 2005 to 2012. Eng Appl Artificial Intell 29:1–12

    Article  Google Scholar 

  • Yahaya L, Oye ND, Garba EJ (2020) A comprehensive review on heart disease prediction using data mining and machine learning techniques. Am J Artificial Intell 4(1):20–29

    Article  Google Scholar 

  • Yan C, Chang X, Luo M, Zheng Q, Zhang X, Li Z, Nie F (2020) Self-weighted robust lda for multiclass classification with edge classes. ACM Trans Intell Syst Technol (TIST) 12(1):1–19

    Google Scholar 

  • Yan X, Zhu Y, Zou W, Wang L (2012) A new approach for data clustering using hybrid artificial bee colony algorithm. Neurocomputing 97:241–250

    Article  Google Scholar 

  • Zhou Y, Wu H, Luo Q, Abdel-Baset M (2019) Automatic data clustering using nature-inspired symbiotic organism search algorithm. Knowl-Based Syst 163:546–557

    Article  Google Scholar 

Download references

Acknowledgements

Funding information is not applicable/No funding was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tribhuvan Singh.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, T., Panda, S.S., Mohanty, S.R. et al. Opposition learning based Harris hawks optimizer for data clustering. J Ambient Intell Human Comput 14, 8347–8362 (2023). https://doi.org/10.1007/s12652-021-03600-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-021-03600-3

Keywords

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy