Abstract
Many currently existing face anti-spoofing methods do not generalize well to new scenarios due to the changes of background, light, and other factors. To tackle this problem, a face anti-spoofing model based on conditional adversarial domain generalization is proposed in this paper. The model tries to alleviate the discrepancy between source and target domains through the adversarial training of a generator and a domain discriminator. The domain discriminator uses the joint variables generated by multilinear mapping of the features and the classifier predictions as input data. The multiplicative interaction of the input data can promote the domain adversarial model to align multiple domains at the feature and class level, and form a feature space shared by the multiple domains. Besides, the domain discriminator uses the entropy criterion to adjust the priority of samples to reduce the adverse effects of difficult-to-transfer samples with the inaccurate prediction on domain generalization. The generator of the adversarial network consists of attention-Unet and ResNet-18 architectures, where the Unet embedded with the attention mechanism can extract more richer multi-scale domain shared features. The following supervised auxiliary classifier further amplifies the distinguishing features between classes. During the training phase, the model introduces an asymmetric triplet loss in order to get a clearer classification boundary, and introduces a face depth loss to enhance scenario-invariant. Comparative experiments on four public datasets and a custom dataset verify the feasibility of our model. The code is available at https://github.com/17863205785/CADG-master.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Akhtar Z, Micheloni C, Foresti GL (2015) Biometric liveness detection: challenges and research opportunities. IEEE Secur Priv 13(5):63–72. https://doi.org/10.1109/MSP.2015.116
Boulkenafet Z, Komulainen J, Hadid A (2016) Face spoofing detection using colour texture analysis. IEEE Trans Inf Forensics Secur 11(8):1818–1830. https://doi.org/10.1109/TIFS.2016.2555286
Boulkenafet Z, Komulainen J, Hadid A (2017a) Face antispoofing using speeded-up robust features and fisher vector encoding. IEEE Signal Process Lett 24(2):141–145. https://doi.org/10.1109/LSP.2016.2630740
Boulkenafet Z, Komulainen J, Li L, Feng X, Hadid A (2017b) Oulu-npu: a mobile face presentation attack database with real-world variations. IEEE Int Conf Autom Face Gesture Recogn 5:5. https://doi.org/10.1109/FG.2017.77
Chingovska I, Anjos A, Marcel S (2012) On the effectiveness of local binary patterns in face anti-spoofing. In: 2012 BIOSIG-Proceedings of the International Conference of Biometrics Special Interest Group (BIOSIG), IEEE, pp 1–7
Damodaran BB, Kellenberger B, Flamary R, Tuia D, Courty N (2018) Deepjdot: deep joint distribution optimal transport for unsupervised domain adaptation. Proc Eur Conf Comput Vis (ECCV). https://doi.org/10.1007/978-3-030-01225-0_28
de Freitas Pereira T, Komulainen J, Anjos A, De Martino JM, Hadid A, Pietikäinen M, Marcel S (2014) Face liveness detection using dynamic texture. EURASIP J Image Video Process 1:1–15. https://doi.org/10.1186/1687-5281-2014-2
Feng Y, Wu F, Shao X, Wang Y, Zhou X (2018) Joint 3d face reconstruction and dense alignment with position map regression network. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y (eds) Computer vision – ECCV 2018. Lecture notes in computer science, vol 11218. Springer, Cham. https://doi.org/10.1007/978-3-030-01264-9_33
Feng H, Hong Z, Yue H, Chen Y, Wang K, Han J, Liu J, Ding E (2020) Learning generalized spoof cues for face anti-spoofing. arXiv:2005.03922
Ghifary M, Kleijn WB, Zhang M, Balduzzi D (2015) Domain generalization for object recognition with multi-task autoencoders. IEEE Int Conf Comput Vis (ICCV). https://doi.org/10.1109/ICCV.2015.293
Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial networks. arXiv:1406.2661
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. Proc IEEE Conf Comput Vis Pattern Recogn. https://doi.org/10.1109/CVPR.2016.90
Hu L, Kan M, Shan S, Chen X (2018) Duplex generative adversarial network for unsupervised domain adaptation. IEEE/CVF Conf Comput Vis Pattern Recogn. https://doi.org/10.1109/CVPR.2018.00162
Hu J, Shen L, Albanie S, Sun G, Wu E (2020) Squeeze-and-excitation networks. IEEE Trans Pattern Anal Mach Intell 42(8):2011–2023. https://doi.org/10.1109/TPAMI.2019.2913372
Jia Y, Zhang J, Shan S, Chen X (2020) Single-side domain generalization for face anti-spoofing. IEEE/CVF Conf Comput Vis Pattern Recogn (CVPR). https://doi.org/10.1109/CVPR42600.2020.00851
Kar P, Karnick H (2012) Random feature maps for dot product kernels. In: Lawrence ND, Girolami M (eds) Proceedings of the fifteenth international conference on artificial intelligence and statistics. PMLR, La Palma, pp 583–591
Kertész G (2021) Different triplet sampling techniques for lossless triplet loss on metric similarity learning. IEEE World Symp Appl Mach Intell Inf (SAMI). https://doi.org/10.1109/SAMI50585.2021.9378628
Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 60(6):84–90. https://doi.org/10.1145/3065386
Laparra V, Gonzalez DM, Tuia D, Camps-Valls G (2015) Large-scale random features for kernel regression. IEEE Int Geosci Remote Sens Symp (IGARSS). https://doi.org/10.1109/IGARSS.2015.7325686
Li D, Yang Y, Song YZ, Hospedales TM (2017) Deeper, broader and artier domain generalization. IEEE International Conference on Computer Vision (ICCV). https://doi.org/10.1109/ICCV.2017.591
Liu S, Yuen PC, Zhang S, Zhao G (2016) 3d mask face anti-spoofing with remote photoplethysmography. European conference on computer vision. Springer, Berlin, pp 85–100. https://doi.org/10.1007/978-3-319-46478-7_6
Liu SQ, Lan X, Yuen PC (2018a) Remote photoplethysmography correspondence feature for 3D mask face presentation attack detection. Proc Eur Conf Comput Vis (ECCV). https://doi.org/10.1007/978-3-030-01270-0_34
Liu Y, Jourabloo A, Liu X (2018b) Learning deep models for face anti-spoofing: binary or auxiliary supervision. IEEE/CVF Conf Comput Vis Pattern Recogn. https://doi.org/10.1109/CVPR.2018.00048
Määttä J, Hadid A, Pietikäinen M (2011) Face spoofing detection from single images using micro-texture analysis. Int Jt Conf Biom (IJCB). https://doi.org/10.1109/IJCB.2011.6117510
Mancini M, Porzi L, Bulo SR, Caputo B, Ricci E (2018) Boosting domain adaptation by discovering latent domains. IEEE/CVF Conf Comput Vis Pattern Recogn. https://doi.org/10.1109/CVPR.2018.00397
Mirza M, Osindero S (2014) Conditional generative adversarial nets. arXiv:1411.1784
Pérez-Cabo D, Jiménez-Cabello D, Costa-Pazo A, López-Sastre RJ (2019) Deep anomaly detection for generalized face anti-spoofing. IEEE/CVF Conf Comput Vis Pattern Recogn Worksh (CVPRW). https://doi.org/10.1109/CVPRW.2019.00201
Pinheiro PO (2018) Unsupervised domain adaptation with similarity learning. IEEE/CVF Conf Comput Vis Pattern Recogn. https://doi.org/10.1109/CVPR.2018.00835
Ranjan R, Castillo CD, Chellappa R (2017) L2-constrained softmax loss for discriminative face verification. arXiv:1703.09507
Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2017) Grad-cam: visual explanations from deep networks via gradient-based localization. IEEE Int Conf Comput Vis (ICCV). https://doi.org/10.1109/ICCV.2017.74
Shao R, Lan X, Yuen PC (2017) Deep convolutional dynamic texture learning with adaptive channel-discriminability for 3D mask face anti-spoofing. IEEE Int Jt Conf Biom (IJCB). https://doi.org/10.1109/BTAS.2017.8272765
Shao R, Lan X, Li J, Yuen PC (2019) Multi-adversarial discriminative deep domain generalization for face presentation attack detection. IEEE/CVF Conf Comput Vis Pattern Recogn (CVPR). https://doi.org/10.1109/CVPR.2019.01026
Shao R, Lan X, Yuen PC (2020) Regularized fine-grained meta face anti-spoofing. Proc AAAI Conf Artif Intell 34:11974–11981. https://doi.org/10.1609/aaai.v34i07.6873
Smiatacz M (2012) Liveness measurements using optical flow for biometric person authentication. Metrol Meas Syst 19(2):257–268. https://doi.org/10.2478/v10178-012-0022-y
Suykens JA, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300. https://doi.org/10.1023/A:1018628609742
Van der Maaten L, Hinton G (2008) Visualizing data using t-sne. J Mach Learn Res 9(11):2579–2605
Volpi R, Morerio P, Savarese S, Murino V (2018) Adversarial feature augmentation for unsupervised domain adaptation. IEEE/CVF Conf Comput Vis Pattern Recogn. https://doi.org/10.1109/CVPR.2018.00576
Wang Z, Zhao C, Qin Y, Zhou Q, Lei Z (2018) Exploiting temporal and depth information for multi-frame face anti-spoofing. arXiv:1811.05118
Wang Z, Yu Z, Zhao C, Zhu X, Qin Y, Zhou Q, Zhou F, Lei Z (2020) Deep spatial gradient and temporal depth learning for face anti-spoofing. IEEE/CVF Conf Comput Vis Pattern Recogn (CVPR). https://doi.org/10.1109/CVPR42600.2020.00509
Wen D, Han H, Jain AK (2015) Face spoof detection with image distortion analysis. IEEE Trans Inf Forensics Secur 10(4):746–761. https://doi.org/10.1109/TIFS.2015.2400395
Xu Z, Li S, Deng W (2015) Learning temporal features using lstm-cnn architecture for face anti-spoofing. IAPR Asian Conf Pattern Recogn (ACPR). https://doi.org/10.1109/ACPR.2015.7486482
Yang J, Lei Z, Li SZ (2014) Learn convolutional neural network for face anti-spoofing. arXiv:1408.5601
Yu Z, Li X, Niu X, Shi J, Zhao G (2020) Face anti-spoofing with human material perception. European conference on computer vision. Springer, Berlin, pp 557–575. https://doi.org/10.1007/978-3-030-58571-6_33
Zhang Z, Yan J, Liu S, Lei Z, Yi D, Li SZ (2012) A face antispoofing database with diverse attacks. IAPR Int Conf Biom (ICB). https://doi.org/10.1109/ICB.2012.6199754
Zhang K, Zhang Z, Li Z, Qiao Y (2016) Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process Lett 23(10):1499–1503. https://doi.org/10.1109/LSP.2016.2603342
Zhao A, Ding M, Liu Z, Xiang T, Niu Y, Guan J, Wen J (2021) Domain-adaptive few-short learning. IEEE Winter Conf Appl Comput Vis (WACV). https://doi.org/10.1109/WACV48630.2021.00143
Zhou L, Luo J, Gao X, Li W, Lei B, Leng J (2021) Selective domain-invariant feature alignment network for face anti-spoofing. IEEE Trans Inf Forensics Secur 16:5352–5365. https://doi.org/10.1109/TIFS.2021.3125603
Acknowledgements
This work is supported by Key Research and Development Program of Jiangxi Province (Grant no. 20203BBE53029 and Grant no. 20202BBEL53004). We would also like to thank our team of Deep Data Science for the valuable contributions.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that there is no conflict of interests in the paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Cai, T., Chen, F., Liu, W. et al. Face anti-spoofing via conditional adversarial domain generalization. J Ambient Intell Human Comput 14, 16499–16512 (2023). https://doi.org/10.1007/s12652-022-03884-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12652-022-03884-z