Skip to main content
Log in

Estimation of Scaling Factors for Traffic Counts Based on Stationary and Mobile Sources of Data

  • Published:
International Journal of Intelligent Transportation Systems Research Aims and scope Submit manuscript

Abstract

To combine mobile sources and stationary sources, a modeling approach to quantify the variability of the linear projection function using a non-linear regression method is established in this study. Weights that vary spatial-temporally are assigned to neighboring scaling factors. Together with a normalized weighted average function, the subject scaling factor is determined. The framework is applied to a case study in Hong Kong combining Global Positioning System data and the annual traffic counts from 85 fixed stations in Annual Traffic Census database. The performance of the models is assessed based on relative root mean square error and Akaike information criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Herrera J.C., Work D.B., Herring R., Ban X., Jacobson Q., Bayen A.M.: Evaluation of traffic data obtained via GPS-enabled mobile phones: The Mobile Century field experiment. Transp. Res. C Emerg. Techno. 18(4), 568–583 (2010)

    Article  Google Scholar 

  2. Wong W., Wong S.C.: Systematic bias in transport model calibration arising from the variability of linear data projection. Transp. Res. B Methodol. 75, 1–18 (2015)

    Article  Google Scholar 

  3. Bachmann C., Abdulhai B., Roorda M.J., Moshiri B.: A comparative assessment of multi-sensor data fusion techniques for freeway traffic speed estimation using microsimulation modeling. Transp. Res. C Emerg. Technol. 26, 33–48 (2013)

    Article  Google Scholar 

  4. Faouzi N.-E.E., Leung H., Kurian A.: Data fusion in intelligent transportation systems: progress and challenges – A survey. Inf. Fusion. 12(1), 4–10 (2011)

    Article  Google Scholar 

  5. Cao J., Hadiuzzaman M., Qiu T.Z., Hu D.: Real-time queue estimation model development for uninterrupted freeway flow based on shockwave analysis. Can. J. Civ. Eng. 42(3), 153–163 (2015)

    Article  Google Scholar 

  6. Strub I.S., Bayen A.M.: Weak formulation of boundary conditions for scalar conservation laws: an application to highway traffic modelling. Int. J. Robust Nonlinear Control. 16(16), 733–748 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kwong K., Kavaler R., Rajagopal R., Varaiya P.: Arterial travel time estimation based on vehicle re-identification using wireless magnetic sensors. Transp. Res. C Emerg. Technol. 17(6), 586–606 (2009)

    Article  Google Scholar 

  8. Chowdhurya D., Desaib R.C.: Steady-states and kinetics of ordering in bus-route models: connection with the Nagel-Schreckenberg model. Eur. Phys. J. B. 15, 375–384 (2000)

    Article  Google Scholar 

  9. Ma D., Wang D., Bie Y., Jin S., Mei Z.: Identification of spillovers in urban street networks based on upstream fixed traffic data. KSCE J. Civ. Eng. 18(5), 1539–1547 (2014)

    Article  Google Scholar 

  10. Hofleitner A., Herring R., Abbeel P., Bayen A.: Learning the dynamics of arterial traffic from probe data using a dynamic Bayesian network. IEEE Trans. Intell. Transp. Syst. 13(4), 1679–1693 (2012)

    Article  Google Scholar 

  11. Jenelius E., Koutsopoulos H.N.: Travel time estimation for urban road networks using low frequency probe vehicle data. Transp. Res. B Methodol. 53, 64–81 (2013)

    Article  Google Scholar 

  12. Zhan X., Hasan S., Ukkusuri S.V., Kamga C.: Urban link travel time estimation using large-scale taxi data with partial information. Transp. Res. C Emerg. Technol. 33, 37–49 (2013)

    Article  Google Scholar 

  13. Zheng F., Van Zuylen H.: Urban link travel time estimation based on sparse probe vehicle data. Transp. Res. C Emerg. Technol. 31, 145–157 (2013)

    Article  Google Scholar 

  14. Bhaskar A., Chung E.: Fundamental understanding on the use of Bluetooth scanner as a complementary transport data. Transp. Res. C Emerg. Technol. 37, 42–72 (2013)

    Article  Google Scholar 

  15. Caceres N., Romero L.M., Benitez F.G., del J.M.: Traffic Flow Estimation Models Using Cellular Phone Data. IEEE Trans. Intell. Transp. Syst. 13(3), 1430–1441 (2012)

    Article  Google Scholar 

  16. Jie L., van Zuylen H., Chunhua L., Shoufeng L.: Monitoring travel times in an urban network using video, GPS and Bluetooth. Procedia Soc. Behav. Sci. 20, 630–637 (2011)

    Article  Google Scholar 

  17. Nanthawichit, C., T. Nakatsuji, and H. Suzuki.:Application of probe vehicle data for real-time traffic state estimation and short-term travel time prediction on a freeway. TRB 2003 Annual Meeting, 2003

  18. Herrera J.C., Bayen A.M.: Incorporation of Lagrangian measurements in freeway traffic state estimation. Transp. Res. B Methodol. 44(4), 460–481 (2010)

    Article  Google Scholar 

  19. Xie, C., Cheu, R., and Lee, D.: Improving arterial link travel time estimation by data fusion. TRB 2004 Annual Meeting, 2004

  20. Yager R.R.: On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Trans. Syst. Man Cybern. 18(1), 183–190 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Canaud M., Nabavi A., Bécarie C., Villegas D., Faouzi N.E.E.: A realistic case study for comparison of data fusion and assimilation on an urban network – the archipel platform. Trans. Res. Procedia. 6, 28–49 (2015)

    Article  Google Scholar 

  22. Choi K., Chung Y.: A data fusion algorithm for estimating link travel time. ITS J. 7(3–4), 235–260 (2002)

    MATH  Google Scholar 

  23. Bhaskar A., Chung E., Dumont A.-G.: Fusing loop detector and probe vehicle data to estimate travel time statistics on signalized urban networks. Comput.-Aided Civ. Infrastruct. Eng. 26(6), 433–450 (2011)

    Article  Google Scholar 

  24. Geroliminis N., Daganzo C.F.: Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings. Transp. Res. B Methodol. 42(9), 759–770 (2008)

    Article  Google Scholar 

  25. Transport Department, H. K. The annual traffic census 2011. Transport department, Hong Kong, Hong Kong special Adiministrative Region, 2012

  26. Travel Characteristics Survey 2011 Final Report. Hong Kong Special Administrative Region, 2014

  27. Akaike H.: A New Look at the Statistical Model Identification. IEEE Trans. Autom. Control. AC-19(6), 716–723 (1974)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by a Research Postgraduate Studentship from the University of Hong Kong, and grants from the University Research Committee of the University of Hong Kong (201511159015), and Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. 717512, 17208614). We gratefully acknowledge the Transport Department of HKSAR for providing the ATC and TCS traffic information data and Motion Power Media Limited and Concord Pacific Satellite Technologies Limited for offering the GPS data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanyu Meng.

Appendix 1

Appendix 1

Table 7 Trip Destination Categories in TCS 2011

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, F., Wong, S.C., Wong, W. et al. Estimation of Scaling Factors for Traffic Counts Based on Stationary and Mobile Sources of Data. Int. J. ITS Res. 15, 180–191 (2017). https://doi.org/10.1007/s13177-016-0131-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13177-016-0131-1

Keywords

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy