Skip to main content
Log in

A Linguistic Neutrosophic Multi-criteria Group Decision-Making Approach with EDAS Method

  • Research Article - Systems Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study develops an approach that incorporates power aggregation operators with the evaluation based on distance from average solution (EDAS) method under linguistic neutrosophic situations to solve fuzzy multi-criteria group decision-making problems. Firstly, the existing operational laws and comparison methods of linguistic neutrosophic numbers (LNNs) are analysed. Secondly, the distance measurement between two LNNs is defined. Thirdly, the power-weighted averaging operator and the power-weighted geometric operator with LNNs are developed to support the decision makers’ evaluation information. The models to derive the criteria weights are also constructed based on the proposed distance measurements. Finally, the EDAS method is extended to resolve group decision-making problems in the linguistic neutrosophic environment. An illustrative example of the property management company selection is given to verify the effectiveness and practicality of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yan, H.; Ma, T.; Huynh, V.N.: On qualitative multi-attribute group decision making and its consensus measure: a probability based perspective. Omega 70, 94–117 (2017)

    Article  Google Scholar 

  2. Bordogna, G.; Fedrizzi, M.; Pasi, G.: A linguistic modeling of consensus in group decision making based on OWA operators. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 27(1), 126–133 (1997)

    Article  Google Scholar 

  3. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. Inf. Sci. 8(3), 199–249 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  4. Tian, Z.; Wang, J.; Wang, J.: An improved MULTIMOORA approach for multi-criteria decision-making based on interdependent inputs of simplified neutrosophic linguistic information. Neural Comput. Appl. 28(Suppl 1), S585–S597 (2017)

    Article  Google Scholar 

  5. Wang, J.Q.; Peng, J.J.; Zhang, H.Y.; et al.: An uncertain linguistic multi-criteria group decision-making method based on a cloud model. Group Decis. Negot. 24(1), 171–192 (2015)

    Article  Google Scholar 

  6. Smarandache, F.: A Unifying Field in Logics: Neutrosophy, Neutrosophic Probability, Set and Logic. American Research Press, Rehoboth (1999)

    MATH  Google Scholar 

  7. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wang, H.; Smarandache, F.; Zhang, Y.; et al.: Single valued neutrosophic sets. Rev. Air Force Acad. 10, 10–14 (2009)

    MATH  Google Scholar 

  9. Ye, J.: Multicriteria decision-making method using the correlation coefficient under single-valued neutrosophic environment. Int. J. Gen. Syst. 42(4), 386–394 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Tian, Z.P.; Wang, J.; Wang, J.Q.; et al.: Simplified neutrosophic linguistic multi-criteria group decision-making approach to green product development. Group Decis. Negot. 26(3), 597–627 (2017)

    Article  Google Scholar 

  11. Wang, Y.; Wang, J.Q.: Fuzzy stochastic multi-criteria decision-making methods with interval neutrosophic probability based on regret theory. J. Intell. Fuzzy Syst. (2018). https://doi.org/10.3233/JIFS-17622

  12. Wu, X.H.; Wang, J.Q.; Peng, J.J.: A novel group decision-making method with probability hesitant interval neutrosophic set and its application in middle level manager’s selection. Int. J. Uncertain. Quant. 8(4), 291–319 (2018)

    Article  Google Scholar 

  13. Liang, R.X.; Wang, J.Q.; Zhang, H.Y.: A multi-criteria decision-making method based on single-valued trapezoidal neutrosophic preference relations with complete weight information. Neural Comput. Appl. (2017). https://doi.org/10.1007/s00521-017-2925-8

  14. Biswas, P.; Pramanik, S.; Giri, B.C.: TOPSIS method for multi-attribute group decision-making under single-valued neutrosophic environment. Neural Comput. Appl. 27(3), 727–737 (2016)

    Article  Google Scholar 

  15. Huang, H.: New distance measure of single—neutrosophic sets and its application. Int. J. Intell. Syst. 31(10), 1021–1032 (2016)

    Article  Google Scholar 

  16. Ye, J.: Single-valued neutrosophic similarity measures based on cotangent function and their application in the fault diagnosis of steam turbine. Soft Comput. 21(3), 817–825 (2017)

    Article  MATH  Google Scholar 

  17. Ye, J.: Improved cosine similarity measures of simplified neutrosophic sets for medical diagnoses. Artif. Intell. Med. 63(3), 171–179 (2015)

    Article  Google Scholar 

  18. Zhang, H.; Ji, P.; Wang, J.; et al.: An improved weighted correlation coefficient based on integrated weight for interval neutrosophic sets and its application in multi-criteria decision-making problems. Int. J. Comput. Intell. Syst. 8(6), 1027–1043 (2015)

    Article  Google Scholar 

  19. Tian, Z.; Zhang, H.; Wang, J.; et al.: Multi-criteria decision-making method based on a cross-entropy with interval neutrosophic sets. Int. J. Syst. Sci. 47(15), 3598–3608 (2015)

    Article  MATH  Google Scholar 

  20. Wu, X.; Wang, J.; Peng, J.; et al.: Cross-entropy and prioritized aggregation operator with simplified neutrosophic sets and their application in multi-criteria decision-making problems. Int. J. Fuzzy Syst. 18(6), 1104–1116 (2017)

    Article  Google Scholar 

  21. Li, Y.Y.; Zhang, H.Y.; Wang, J.Q.: Linguistic neutrosophic sets and their application in multicriteria decision-making problems. Int. J. Uncertain. Quant. 7(2), 135–154 (2017)

    Article  Google Scholar 

  22. Fang, Z.; Ye, J.: Multiple attribute group decision-making method based on linguistic neutrosophic numbers. Symmetry 9(7), 1–12 (2017)

    Article  MathSciNet  Google Scholar 

  23. Sudharsan, S.; Ezhilmaran, D.: Weighted arithmetic average operator based on interval-valued intuitionistic fuzzy values and their application to multi criteria decision making for investment. J. Inf. Optim. Sci. 37(2), 247–260 (2016)

    MathSciNet  Google Scholar 

  24. Wang, J.Q.; Han, Z.Q.; Zhang, H.Y.: Multi-criteria group decision-making method based on intuitionistic interval fuzzy information. Group Decis. Negot. 23(4), 715–733 (2014)

    Article  Google Scholar 

  25. Yager, R.R.: On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Trans. Syst. Man Cybern. 18(1), 183–190 (1988)

    Article  MATH  Google Scholar 

  26. Kacprzyk, J.; Zadrożny, S.: Linguistic summarization of the contents of Web server logs via the Ordered Weighted Averaging (OWA) operators. Fuzzy Sets Syst. 285(9), 182–198 (2016)

    Article  MathSciNet  Google Scholar 

  27. Zhou, L.G.; Chen, H.Y.: Continuous generalized OWA operator and its application to decision making. Fuzzy Sets Syst. 168(1), 18–34 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, P.; Teng, F.: Multiple criteria decision making method based on normal interval—intuitionistic fuzzy generalized aggregation operator. Complexity 21(5), 277–290 (2016)

    Article  MathSciNet  Google Scholar 

  29. Ji, P.; Wang, J.; Zhang, H.Y.: Frank prioritized Bonferroni mean operator with single-valued neutrosophic sets and its application in selecting third party logistics. Neural Comput. Appl. 30(3), 799–823 (2018)

    Article  Google Scholar 

  30. Tian, Z.P.; Wang, J.; Wang, J.Q.; et al.: Multicriteria decision—approach based on gray linguistic weighted Bonferroni mean operator. Int. Trans. Oper. Res. 25(5), 1635–1658 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yager, R.R.: The power average operator. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 31(6), 724–731 (2001)

    Article  Google Scholar 

  32. Peng, J.; Wang, J.; Wu, X.; et al.: Multi-valued neutrosophic sets and power aggregation operators with their applications in multi-criteria group decision-making problems. Int. J. Comput. Intell. Syst. 8(2), 345–363 (2015)

    Article  Google Scholar 

  33. Yu, D.J.: Intuitionistic fuzzy geometric Heronian mean aggregation operators. Appl. Soft Comput. 13(2), 1235–1246 (2013)

    Article  Google Scholar 

  34. Wang, J.; Wang, J.Q.; Tian, Z.P.; et al.: A multi-hesitant fuzzy linguistic multi-criteria decision-making approach for logistics outsourcing with incomplete weight information. Int. Trans. Oper. Res. 25(3), 831–856 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yager, R.R.: Prioritized aggregation operators. Int. J. Approx. Reason. 48(48), 263–274 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tian, Z.P.; Wang, J.; Zhang, H.Y.; et al.: Multi-criteria decision-making based on generalized prioritized aggregation operators under simplified neutrosophic uncertain linguistic environment. Int. J. Mach. Learn. Cybern. 9(3), 523–539 (2018)

    Article  Google Scholar 

  37. Gomes, L.; Lima, M.: Todim: Basic and application to multicriteria ranking of projects with environmental impacts. Found. Comput. Decis. Sci. 16, 113–127 (1992)

    MATH  Google Scholar 

  38. Yu, S.M.; Wang, J.; Wang, J.Q.: An extended TODIM approach with intuitionistic linguistic numbers. Int. Trans. Oper. Res. 25(3), 781–805 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Hwang, C.L.; Yoon, K.P.: Multiple Attribute Decision Making. Springer, Berlin (1981)

    Book  MATH  Google Scholar 

  40. Goumas, M.; Lygerou, V.: An extension of the PROMETHEE method for decision making in fuzzy environment: ranking of alternative energy exploitation projects. Eur. J. Oper. Res. 123(3), 606–613 (2000)

    Article  MATH  Google Scholar 

  41. Govindan, K.; Jepsen, M.B.: ELECTRE: a comprehensive literature review on methodologies and applications. Eur. J. Oper. Res. 250(1), 1–29 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Shen, K.W.; Wang, J.Q.: Z-VIKOR method based on a new weighted comprehensive distance measure of Z-number and its application. IEEE Trans. Fuzzy Syst. (2018). https://doi.org/10.1109/TFUZZ.2018.2816581

  43. Zhou, H.; Wang, J.; Zhang, H.: Stochastic multicriteria decision—approach based on SMAA-ELECTRE with extended gray numbers. Int. Trans. Oper. Res. (2016). https://doi.org/10.1111/itor.12380

  44. Ji, P.; Wang, J.Q.; Zhang, H.Y.: Selecting an outsourcing provider based on the combined MABAC-ELECTRE method using single-valued neutrosophic linguistic sets. Comput. Ind. Eng. 120, 429–441 (2018)

    Article  Google Scholar 

  45. Hu, J.; Yang, Y.; Zhang, X.; et al.: Similarity and entropy measures for hesitant fuzzy sets. Int. Trans. Oper. Res. 25(3), 857–886 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  46. Keshavarz Ghorabaee, M.; Zavadskas, E.K.; Olfat, L.; et al.: Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (edas). Informatica 26(3), 435–451 (2015)

    Article  Google Scholar 

  47. Ghorabaee, M.K.; Zavadskas, E.K.; Amiri, M.; et al.: Extended EDAS method for fuzzy multi-criteria decision-making: an application to supplier selection. Int. J. Comput. Commun. Control 11(3), 358–371 (2016)

    Article  Google Scholar 

  48. Opricovic, S.; Tzeng, G.H.: Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 156(2), 445–455 (2004)

    Article  MATH  Google Scholar 

  49. Xu, Z.: A method based on linguistic aggregation operators for group decision making with linguistic preference relations. Inf. Sci. 166(1–4), 19–30 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  50. Wu, J.; Wang, J.; Wang, J.; et al.: Multi-criteria decision-making methods based on the Hausdorff distance of hesitant fuzzy linguistic numbers. Soft Comput. 20(4), 1621–1633 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the editor in chief and the anonymous referees for their insightful and constructive comments and suggestions, which have significantly improved this paper. This work is supported by the National Natural Science Foundation of China (No. 71571193).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-qiang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Yy., Wang, Jq. & Wang, Tl. A Linguistic Neutrosophic Multi-criteria Group Decision-Making Approach with EDAS Method. Arab J Sci Eng 44, 2737–2749 (2019). https://doi.org/10.1007/s13369-018-3487-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3487-5

Keywords

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy