Skip to main content
Log in

Weak Galerkin finite element method for the parabolic integro-differential equation with weakly singular kernel

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

A weak Galerkin finite element/backward Euler scheme for the parabolic integro-differential equation with weakly singular kernel is considered. The stability and optimal convergence order estimate of the weak Galerkin finite element scheme in \(L^2\) norm are derived. Numerical experiment verifies our theory finding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aimin Y, Yang H, Jie L et al (2016) On steady heat flow problem involving Yang-Srivastava-Machado fractional derivative without singular kernel. Therm Sci 20:717–S721

    Google Scholar 

  • Chen H, Xu D (2006) A second-order fully discrete difference scheme for a partial integro-differential equation (in Chinese). Math Numer Sin 28:141–154

    MathSciNet  Google Scholar 

  • Chen H, Xu D (2012) A compact difference scheme for an evolution equation with a weakly singular kernel. Numer Math Theory Methods Appl 5:559–572

    Article  MathSciNet  Google Scholar 

  • Chen C, Thomee V, Wahlbin LB (1992) Finite element approximation of a parabolic integro-differential equation with a weakly singular kernel. Math Comp 58:587–602

    Article  MathSciNet  Google Scholar 

  • Chen Y, Zhang T (2016) A weak Galerkin finite element method for Burgers’ equation. arXiv:1607.05622

  • Gao F, Mu L (2014) On \(L^2\) error estimate for weak Galerkin finte element for parabolic problems. J Comp Math 32:195–204

    Article  Google Scholar 

  • Li H, Jiang W (2018) A space-time spectral collocation method for the two-dimensional nonlinear Riesz space fractional diffusion equations. Math Methods Appl Sci 41:6130–6144

    Article  MathSciNet  Google Scholar 

  • Li Q, Wang J (2013) Weak Galerkin finite element methods for parabolic equations. Numer Methods PDEs 29:2004–2024

    MathSciNet  MATH  Google Scholar 

  • Li C, Zhao Z, Chen Y (2011) Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comp Math Appl 62:855–875

    Article  MathSciNet  Google Scholar 

  • Lin Y, Xu C (2009) A space-time spectral method for the time fractional diffusion equation. SIAM J Numer Anal 47:2108–2131

    Article  MathSciNet  Google Scholar 

  • Lopez-Marcos JC (1990) A difference scheme for a nonlinear partial integro-differential equation. SIAM J Numer Anal 27:20–31

    Article  MathSciNet  Google Scholar 

  • Mclean W, Thomee V (1993) Numerical solution of an evolution equation with a positive type memory term. J Aust Math Soc Ser B 35:23–70

    Article  MathSciNet  Google Scholar 

  • Podlubny I (1999) Fractional differential equations. Academic Press, San Diego

    MATH  Google Scholar 

  • Tang T (1993) A finite difference scheme for partial integro-differential equations with a weakly singular kernel. Appl Numer Math 11:309–319

    Article  MathSciNet  Google Scholar 

  • Wang J, Ye X (2013) A weak Galerkin finite element method for second-order elliptic problems. J Comput Appl Math 241:103–115

    Article  MathSciNet  Google Scholar 

  • Wheeler MF (1973) A priori \(L^2\) error estimates for Galerkin approximations to parabolic partial differential equations. SIMA J Numer Anal 10:723–759

    Article  Google Scholar 

  • Yang X (2017) Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heat-transfer problems. Therm Sci 21:1161–1171

    Article  Google Scholar 

  • Yang X (2018) New rheological problems involving general fractional derivatives with nonsingular power-law kernels. Proc Rom Acad Ser A Math Phys Tech Sci Inf Sci 19:45–52

    MathSciNet  Google Scholar 

  • Yang X, Machado J (2017) A new fractional operator of variable order: application in the description of anomalous diffusion. Phys A Stat Mech Appl 481:276–283

    Article  MathSciNet  Google Scholar 

  • Yang X, Zhang H, Xu D (2014) Orthogonal spline collocation method for the two-dimensional fractional sub-diffusion equation. J Comp Phys 256:824–837

    Article  MathSciNet  Google Scholar 

  • Yang X, Srivastava H, Tenreiro Machado J (2016) A new fractional derivative without singular kernel: application to the modelling of the steady heat flow. Therm Sci 20:753–756

    Article  Google Scholar 

  • Yang X, Gao F, Machado J et al (2017) A new fractional derivative involving the normalized sinc function without singular kernel. Eur Phys J Spec Top 226:3567–3575

    Article  Google Scholar 

  • Yang X, Gao F, Srivastava H (2018) A new computational approach for solving nonlinear local fractional PDEs. J Comp Appl Math 339:285–296

    Article  MathSciNet  Google Scholar 

  • Zhang T, Tang L (2016) A weak finite element method for elliptic problem in one space dimension. Appl Math Comp 280:1–10

    Article  MathSciNet  Google Scholar 

  • Zhang H, Yang X (2018) The BDF orthogonal spline collocation method for the two dimensional evolution equation with memory. Int J Comp Math 95:2011–2025

    Article  MathSciNet  Google Scholar 

  • Zhang H, Yang X, Han X (2014) Discrete-time orthogonal spline collocation method with application to two-dimensional fractional cable equation. Comp Math Appl 68:1710–1722

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (contract Grant number 11671131) and Scientific Research Fund of Hunan Provincial Education Department (No. 15A110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da Xu.

Additional information

Communicated by Abimael Loula.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Xu, D. & Dai, X. Weak Galerkin finite element method for the parabolic integro-differential equation with weakly singular kernel. Comp. Appl. Math. 38, 38 (2019). https://doi.org/10.1007/s40314-019-0807-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-019-0807-7

Keywords

Mathematics Subject Classification

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy