Skip to main content
Log in

Partial sums of binomials, intersecting numbers, and the excess bound in Rosenbloom–Tsfasman space

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this work, the sphere-covering bound on covering codes in Rosenbloom–Tsfasman spaces (RT spaces) is improved by generalizing the excess counting method. The approach focuses on studying the parity of a Rosenbloom–Tsfasman sphere (RT sphere) and the parity of the intersection of two RT spheres. We connect the parity of an RT sphere with partial sums of binomial coefficients and p-adic valuation of binomial coefficients. The intersection number of RT spaces is introduced and we determinate its parity under some conditions. Numerical applications of the method are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Alves MMS (2011) A standard form for generator matrices with respect to the Niederreiter–Rosenbloom–Tsfasman metric. In: Information theory workshop (ITW), 2011 IEEE. IEEE, pp 486–489

  • Brouwer AE, Haemers WH (2012) Distance-regular graphs. In: Spectra of graphs. Springer, pp 177–185

  • Brualdi RA, Graves JS, Lawrence KM (1995) Codes with a poset metric. Discrete Math. 147(1–3):57–72

    Article  MathSciNet  Google Scholar 

  • Carnielli WA (1985) On covering and coloring problems for rook domains. Discrete Math. 57(1–2):9–16

    Article  MathSciNet  Google Scholar 

  • Castoldi AG, Monte Carmelo EL (2015) The covering problem in Rosenbloom–Tsfasman spaces. Electron J Combin 22(3):3–30

    MathSciNet  MATH  Google Scholar 

  • Chen W, Honkala IS (1990) Lower bounds for q-ary covering codes. IEEE Trans Inf Theory 36(3):664–671

    Article  MathSciNet  Google Scholar 

  • Cohen G, Honkala I, Litsyn S, Lobstein A (1997) Covering codes, vol 54. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Dougherty ST, Skriganov MM (2002) Maximum distance separable codes in the \(\rho \) metric over arbitrary alphabets. J Algebraic Combin 16(1):71–81

    Article  MathSciNet  Google Scholar 

  • Gallier J (2010) Discrete mathematics. Springer, Berlin

    MATH  Google Scholar 

  • Giambalvo V, Pengelley DJ, Mines R (1992) p-adic congruences between binomial coefficients. Fibonacci Q 29:114–119

    MathSciNet  MATH  Google Scholar 

  • Haas W (2007) Lower bounds for binary codes of covering radius one. IEEE Trans Inf Theory 53(8):2880–2881

    Article  MathSciNet  Google Scholar 

  • Haas W (2013) On the general excess bound for binary codes with covering radius one. Discrete Math 313(23):2751–2762

    Article  MathSciNet  Google Scholar 

  • Habsieger L (1997) Binary codes with covering radius one: some new lower bounds. Discrete Math 176(1–3):115–130

    Article  MathSciNet  Google Scholar 

  • Hämäläinen HO, Honkala IS, Kaikkonen MK, Litsyn SN (1993) Bounds for binary multiple covering codes. Des Codes Cryptogr 3(3):251–275

    Article  MathSciNet  Google Scholar 

  • Honkala IS (1991) Modified bounds for covering codes. IEEE Trans Inf Theory 37(2):351–365

    Article  MathSciNet  Google Scholar 

  • Johnson S (1972) A new lower bound for coverings by rook domains. Util Math 1:121–140

    MathSciNet  MATH  Google Scholar 

  • Kummer EE (1852) Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen. Journal für die reine und angewandte Mathematik 44:93–146

    Article  MathSciNet  Google Scholar 

  • MacWilliams FJ, Sloane NJA (1977) The theory of error-correcting codes. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Niederreiter H (1987) Point sets and sequences with small discrepancy. Monatshefte für Mathematik 104(4):273–337

    Article  MathSciNet  Google Scholar 

  • Orlik P, Terao H (2013) Arrangements of hyperplanes, vol 300. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  • Panek L, Firer M, Alves MMS (2009) Symmetry groups of Rosenbloom–Tsfasman spaces. Discrete Math 309(4):763–771

    Article  MathSciNet  Google Scholar 

  • Phongpattanacharoen T, Siemons J (2013) Metric intersection problems in Cayley graphs and the Stirling recursion. Aequ Math 85(3):387–408

    Article  MathSciNet  Google Scholar 

  • Quistorff J (2007) On Rosenbloom and Tsfasman’s generalization of the Hamming space. Discrete Math 307(21):2514–2524

    Article  MathSciNet  Google Scholar 

  • Rosenbloom MY, Tsfasman MA (1997) Codes for the m-metric. Probl Peredachi Inf 33(1):55–63

    MathSciNet  Google Scholar 

  • Schläfli L (1901) Theorie der vielfachen Kontinuität. Denkschriften der Schweizerischen Akademie der Naturwisschenschaften, vol 38

    Chapter  Google Scholar 

  • Straub A, Amdeberhan T, Moll VH (2009) The p-adic valuation of k-central binomial coefficients. Acta Arith 140:31–42

    Article  MathSciNet  Google Scholar 

  • Sun Z-W (2008) On sums of binomial coefficients and their applications. Discrete Math 308(18):4231–4245

    Article  MathSciNet  Google Scholar 

  • Sun Z-W, Tauraso R (2007) Congruences for sums of binomial coefficients. J Number Theory 126:287–296

    Article  MathSciNet  Google Scholar 

  • Taussky O, Todd J (1948) Covering theorems for groups. Annales de la Société Polonaise de Mathématique 21:303–305

    MathSciNet  MATH  Google Scholar 

  • van Wee GJ (1988) Improved sphere bounds on the covering radius of codes. IEEE Trans Inf Theory 34(2):237–245

    Article  MathSciNet  Google Scholar 

  • van Wee GJ (1991) Bounds on packings and coverings by spheres in q-ary and mixed Hamming spaces. J Combin Theory Ser A 57(1):117–129

    Article  MathSciNet  Google Scholar 

  • Yildiz B, Siap I, Bilgin T, Yesilot G (2010) The covering problem for finite rings with respect to the RT-metric. Appl Math Lett 23(9):988–992

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their suggestions that greatly improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robson da Silva.

Additional information

Communicated by Masaaki Harada.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A. G. Castoldi was partially supported by Capes and Fundação Araucária; E. L. Monte Carmelo was supported by CNPq Grant: 311793/2016-0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castoldi, A.G., Carmelo, E.L.d.M. & da Silva, R. Partial sums of binomials, intersecting numbers, and the excess bound in Rosenbloom–Tsfasman space. Comp. Appl. Math. 38, 55 (2019). https://doi.org/10.1007/s40314-019-0828-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-019-0828-2

Keywords

Mathematics Subject Classification

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy