Skip to main content
Log in

A hybrid algorithm for the two-trust-region subproblem

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

Two-trust-region subproblem (TTRS), which is the minimization of a general quadratic function over the intersection of two full-dimensional ellipsoids, has been the subject of several recent research. In this paper, to solve TTRS, a hybrid of efficient algorithms for finding global and local-nonglobal minimizers of trust-region subproblem and the alternating direction method of multipliers (ADMM) is proposed. The convergence of the ADMM steps to the first-order stationary condition is proved under certain conditions. On several test problems, we compare the new algorithm against three competitors: the Snopt software, the algorithm proposed by Sakaue et al. (SIAM J Optim 26:1669–1694, 2016) and the CADMM algorithm proposed by Huang and Sidiropoulos (IEEE Trans Signal Process 64:5297–5310, 2016). The numerical results show that the new algorithm is competitive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adachi S, Iwata S, Nakatsukasa Y, Takeda A (2017) Solving the trust region subproblem by a generalized eigenvalue problem. SIAM J Optim 27(1):269–291

    Article  MathSciNet  MATH  Google Scholar 

  • Ai W, Zhang S (2008) Strong duality for the CDT subproblem: a necessary and sufficient condition. SIAM J Optim 19(4):1735–1756

    Article  MathSciNet  MATH  Google Scholar 

  • Bai X, Scheinberg K (2015) Alternating direction methods for non convex optimization with applications to second-order least-squares and risk parity portfolio selection. Optim Online

  • Beck A, Eldar YC (2006) Strong duality in nonconvex quadratic optimization with two quadratic constraints. SIAM J Optim 17(3):844–860

    Article  MathSciNet  MATH  Google Scholar 

  • Bertsekas D (2014) Constrained optimization and Lagrange multiplier methods. Academic press, New York

    MATH  Google Scholar 

  • Bienstock D (2016) A note on polynomial solvability of the CDT problem. SIAM J Optim 26(1):488–498

    Article  MathSciNet  MATH  Google Scholar 

  • Bomze Im, Overton Ml (2015) Narrowing the difficulty gap for the Celis-Dennis-Tapia problem. Math Program 151(2):459–476

    Article  MathSciNet  MATH  Google Scholar 

  • Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn 3(1):1–122

    Article  MATH  Google Scholar 

  • Burer S, Anstreicher KM (2013) Second-order-cone constraints for extended trust-region subproblems. SIAM J Optim 23(1):432–451

    Article  MathSciNet  MATH  Google Scholar 

  • Burer S, Yang B (2015) The trust region subproblem with non-intersecting linear constraints. Math Program 149(1–2):253–264

    Article  MathSciNet  MATH  Google Scholar 

  • Celis MR, Dennis JE, Tapia RA (1984) A trust region algorithm for nonlinear equality constrained optimization. Numer Optim 1984:71–82

    Google Scholar 

  • Chen X, Yuan Y (2001) On maxima of dual function of the CDT subproblem. J Comput Math 19(1):113–124

    MathSciNet  MATH  Google Scholar 

  • Conn AR, Gould NI, Toint PL (2000) Trust region methods. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Grant M, Boyd S (2013) CVX: Matlab software for disciplined convex programming, version 2.0 beta. http://cvxr.com/cvx

  • Hajinezhad D, Shi Q (2018) Alternating direction method of multipliers for a class of nonconvex bilinear optimization: convergence analysis and applications. J Glob Optim 70(1):261–288

    Article  MathSciNet  MATH  Google Scholar 

  • Heinkenschloss M (1994) On the solution of a two ball trust region subproblem. Math Program 64(1–3):249–276

    Article  MathSciNet  MATH  Google Scholar 

  • Hong M, Luo ZQ, Razaviyan M (2016) Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems. SIAM J Optim 26(1):337–364

    Article  MathSciNet  MATH  Google Scholar 

  • Huang K, Sidiropoulos ND (2016) Consensus-ADMM for general quadratically constrained quadratic programming. IEEE Trans Signal Process 64(20):5297–5310

    Article  MathSciNet  MATH  Google Scholar 

  • Li GD, Yuan Y (2005) Compute a Celis–Dennis–Tapia step. J Comput Math 23(1):463–478

    MathSciNet  MATH  Google Scholar 

  • Lobo MS, Vandenberghe L, Boyd S, Lebret H (1998) Applications of second-order cone programming. Linear Algebra Appl 284(1–3):193–228

    Article  MathSciNet  MATH  Google Scholar 

  • Luo H, Sun X, Wu H (2008) Convergence properties of augmented Lagrangian methods for constrained global optimization. Optim Methods Softw 23(5):763–778

    Article  MathSciNet  MATH  Google Scholar 

  • Luo HZ, Sun XL, Li D (2007) On the convergence of augmented Lagrangian methods for constrained global optimization. SIAM J Optim 18(4):1209–1230

    Article  MathSciNet  MATH  Google Scholar 

  • Martínez JM (1994) Local minimizers of quadratic functions on Euclidean balls and spheres. SIAM J Optim 4(1):159–176

    Article  MathSciNet  MATH  Google Scholar 

  • Nesterov Y, Wolkowicz H, Ye Y (2000) Semidefinite programming relaxations of nonconvex quadratic optimization, handbook of semidefinite programming. Springer, Boston, pp 361–419

    MATH  Google Scholar 

  • Peng J-M, Yuan Y (1997) Optimality conditions for the minimization of a quadratic with two quadratic constraints. SIAM J Optim 7(3):579–594

    Article  MathSciNet  MATH  Google Scholar 

  • Sakaue S, Nakatsukasa Y, Takeda A, Iwata S (2016) Solving generalized CDT problems via two-parameter eigenvalues. SIAM J Optim 26(3):1669–1694

    Article  MathSciNet  MATH  Google Scholar 

  • Salahi M, Taati A (2017) Alternating direction method of multipliers for the extended trust region subproblem. Iran J Numer Anal Optim 7(1):107–117

    MATH  Google Scholar 

  • Salahi M, Taati A, Wolkowicz H (2016) Local nonglobal minima for solving large scale extended trust region subproblems. Comput Optim Appl 66(2):223–244

    Article  MathSciNet  MATH  Google Scholar 

  • Shen Y, Wen Z, Zhang Y (2014) Augmented Lagrangian alternating direction method for matrix separation based on low-rank factorization. Optim Methods Softw 29(2):239–263

    Article  MathSciNet  MATH  Google Scholar 

  • Xu L, Yu B, Zhang Y (2017) An alternating direction and projection algorithm for structure-enforced matrix factorization. Comput Optim Appl 68(2):33–362

    Article  MathSciNet  MATH  Google Scholar 

  • Yang B, Burer S (2016) A two-variable approach to the two-trust-region subproblem. SIAM J Optim 26(1):661–680

    Article  MathSciNet  MATH  Google Scholar 

  • Yuan Y (1991) A dual algorithm for minimizing a quadratic function with two quadratic constraints. J Comput Math 9(4):348–359

    MathSciNet  MATH  Google Scholar 

  • Yuan Y (1990) On a subproblem of trust region algorithms for constrained optimization. Math Program 47(1–3):53–63

    Article  MathSciNet  MATH  Google Scholar 

  • Ye Y, Zhang S (2003) New results on quadratic minimization. SIAM J Optim 14(1):245–267

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang Y (1992) Computing a Celis–Dennis–Tapia trust-region step for equality constrained optimization. Math Program 55(1–3):109–124

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank both reviewers for their useful comments and questions which improved the paper and University of Guilan for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maziar Salahi.

Additional information

Communicated by Orizon Pereira Ferreira.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansary Karbasy, S., Salahi, M. A hybrid algorithm for the two-trust-region subproblem. Comp. Appl. Math. 38, 115 (2019). https://doi.org/10.1007/s40314-019-0864-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-019-0864-y

Keywords

Mathematics Subject Classification

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy