Skip to main content
Log in

Rayleigh quotient minimization method for symmetric eigenvalue problems

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we present a new method, which is referred to as the Rayleigh quotient minimization method, for computing one extreme eigenpair of symmetric matrices. This method converges globally and attains cubic convergence rate locally. In addition, inexact implementations and its numerical stability of the Rayleigh quotient minimization method are explored. Finally, we use numerical experiments to demonstrate the convergence properties and show the competitiveness of the new method for solving symmetric eigenvalue problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bai Z-Z, Miao C-Q (2017) On local quadratic convergence of inexact simplified Jacobi–Davidson method. Linear Algebra Appl 520:215–241

    Article  MathSciNet  Google Scholar 

  • Bai Z-Z, Miao C-Q (2017) On local quadratic convergence of inexact simplified Jacobi–Davidson method for interior eigenpairs of Hermitian eigenproblems. Appl Math Lett 72:23–28

    Article  MathSciNet  Google Scholar 

  • Bai Z-Z, Miao C-Q, Jian S (2019) On multistep Rayleigh quotient iterations for Hermitian eigenvalue problems. Comput Math Appl 77:2396–2406

    Article  MathSciNet  Google Scholar 

  • Crouzeix M, Philippe B, Sadkane M (1994) The Davidson method. SIAM J Sci Comput 15:62–76

    Article  MathSciNet  Google Scholar 

  • Genseberger M, Sleijpen GLG (1999) Alternative correction equations in the Jacobi–Davidson method. Numer Linear Algebra Appl 6:235–253

    Article  MathSciNet  Google Scholar 

  • Goldstein AA, Price JF (1967) An effective algorithm for minimization. Numer Math 10:184–189

    Article  MathSciNet  Google Scholar 

  • Golub GH, Ye Q (1999) An inverse free preconditioned Krylov subspace method for symmetric generalized eigenvalue problems. SIAM J Sci Comput 24:312–334

    Article  MathSciNet  Google Scholar 

  • Grimes RG, Lewis JG, Simon HD (1994) A shifted block Lanczos algorithm for solving sparse symmetric generalized eigenproblems. SIAM J Matrix Anal Appl 15:228–272

    Article  MathSciNet  Google Scholar 

  • Hestenes MR, Karush W (1951) A method of gradients for the calculation of the characteristic roots and vectors of a real symmetric matrix. J Res Nat Bur Stand 47:45–61

    Article  MathSciNet  Google Scholar 

  • Jian S (2013) A block preconditioned steepest descent method for symmetric eigenvalue problems. Appl Math Comput 219:10198–10217

    MathSciNet  MATH  Google Scholar 

  • Jiang W, Wu G (2010) A thick-restarted block Arnoldi algorithm with modified Ritz vectors for large eigenproblems. Comput Math Appl 60:873–889

    Article  MathSciNet  Google Scholar 

  • Knyazev AV (2001) Toward the optimal preconditioned eigensolver: locally optimal block preconditioned conjugate gradient method. SIAM J Sci Comput 23:517–541

    Article  MathSciNet  Google Scholar 

  • Miao C-Q (2017) A filtered-Davidson method for large symmetric eigenvalue problems. East Asian J Appl Math 7:21–34

    Article  MathSciNet  Google Scholar 

  • Miao C-Q (2018a) Computing eigenpairs in augmented Krylov subspace produced by Jacobi–Davidson correction equation. J Comput Appl Math 343:363–372

    Article  MathSciNet  Google Scholar 

  • Miao C-Q (2018b) Filtered Krylov-like sequence method for symmetric eigenvalue problems. Numer Algorithms. https://doi.org/10.1007/s11075-018-0627-7

    Article  Google Scholar 

  • Morgan RB, Scott DS (1993) Preconditioning the Lanczos algorithm for sparse symmetric eigenvalue problems. SIAM J Sci Comput 14:585–593

    Article  MathSciNet  Google Scholar 

  • Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Ovtchinnikov E (2006a) Cluster robustness of preconditioned gradient subspace iteration eigensolvers. Linear Algebra Appl 415:140–166

    Article  MathSciNet  Google Scholar 

  • Ovtchinnikov EE (2006b) Sharp convergence estimates for the preconditioned steepest descent method for Hermitian eigenvalue problems. SIAM J Numer Anal 43:2668–2689

    Article  MathSciNet  Google Scholar 

  • Parlett BN (1998) The symmetric eigenvalue problems. SIAM, Philadelphia

    Book  Google Scholar 

  • Saad Y (1980) On the rates of convergence of the Lanczos and the block-Lanczos methods. SIAM J Numer Anal 17:687–706

    Article  MathSciNet  Google Scholar 

  • Saad Y (1984) Chebyshev acceleration techniques for solving nonsymmetric eigenvalue problems. Math Comput 42:567–588

    Article  MathSciNet  Google Scholar 

  • Saad Y (2003) Iterative methods for sparse linear systems, 2nd edn. SIAM, Philadelphia

    Book  Google Scholar 

  • Saad Y (2011) Numerical methods for large eigenvalue problems, 2nd edn. SIAM, Philadelphia

    Book  Google Scholar 

  • Samokish BA (1958) The steepest descent method for an eigenvalue problem with semi-bounded operators. Izv Vyssh Uchebn Zaved Mat 5:105–114

    Google Scholar 

  • Sleijpen GLG, Van der Vorst HA (1996) A Jacobi–Davidson iteration method for linear eigenvalue problems. SIAM J Matrix Anal Appl 17:401–425

    Article  MathSciNet  Google Scholar 

  • Stathopoulos A, Saad Y (1998) Restarting techniques for the (Jacobi-) Davidson symmetric eigenvalue methods. Electron Trans Numer Anal 7:163–181

    MathSciNet  MATH  Google Scholar 

  • Zhou Y-K (2006) Studies on Jacobi–Davidson, Rayleigh quotient iteration, inverse iteration generalized Davidson and Newton updates. Numer Linear Algebra Appl 13:621–642

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very much indebted to the referees for their constructive comments and valuable suggestions, which greatly improved the original manuscript of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cun-Qiang Miao.

Additional information

Communicated by Jinyun Yuan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Cun-Qiang Miao is supported by The National Natural Science Foundation of China (No. 11901361) and The Natural Science Foundation of Shandong Province (No. ZR2018BG002). Hao Liu is supported by The National Natural Science Foundation of China (No. 11401305 and No. 61573181).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, CQ., Liu, H. Rayleigh quotient minimization method for symmetric eigenvalue problems. Comp. Appl. Math. 38, 155 (2019). https://doi.org/10.1007/s40314-019-0962-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-019-0962-x

Keywords

Mathematics Subject Classifications

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy