Skip to main content

Advertisement

Log in

Mechanisms Underlying Sex Differences in Cannabis Use

  • Women and Addictions (CM Mazure and Y Zakiniaeiz, Section Editors)
  • Published:
Current Addiction Reports Aims and scope Submit manuscript

An Author Correction to this article was published on 09 November 2017

This article has been updated

Abstract

Purpose of the Review

Cannabis is the most commonly used illicit substance worldwide. In recent decades, highly concentrated products have flooded the market, and prevalence rates have increased. Gender differences exist in cannabis use, as men have higher prevalence of both cannabis use and cannabis use disorder (CUD), while women progress more rapidly from first use to CUD. This paper reviews findings from preclinical and human studies examining the sex-specific neurobiological underpinnings of cannabis use and CUD and associations with psychiatric symptoms.

Recent Findings

Sex differences exist in the endocannabinoid system, in cannabis exposure effects on brain structure and function, and in the co-occurrence of cannabis use with symptoms of anxiety, depression, and schizophrenia. In female cannabis users, anxiety symptoms correlate with larger amygdala volume, and social anxiety disorder symptoms correlate with CUD symptoms. Female cannabis users are reported to be especially vulnerable to earlier onset of schizophrenia, and mixed trends emerge in the correlation of depressive symptoms with cannabis exposure in females and males.

Summary

As the prevalence of cannabis use may continue to increase given the shifting policy landscape regarding marijuana laws, understanding the neurobiological mechanisms of cannabis exposure in females and males is key. Examining these mechanisms may help inform future research on sex-specific pharmacological and behavioral interventions for women and men with high-risk cannabis use, comorbid psychiatric disease, and CUD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 09 November 2017

    The authors missed to add the below Acknowledgment to the original version of this article.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. World Drug Report 2016. United Nations Office on Drugs and Crime.

  2. Comparison of 2008–2009 and 2014–2015 NSDUH State Prevalence Estimates. In: The NSDUH report. Rockville: U.S. Dept. of Health & Human Services, Substance Abuse and Mental Health Services Administration, Office of Applied Studies; 2015.

  3. Hasin DS. et al. US adult illicit cannabis use, cannabis use disorder, and medical Marijuana Laws: 1991–1992 to 2012–2013. JAMA Psychiat. 2017.

  4. Martins SS, et al. State-level medical marijuana laws, marijuana use and perceived availability of marijuana among the general US population. Drug Alcohol Depend. 2016;169:26–32.

    Article  PubMed  Google Scholar 

  5. Volkow ND, et al. Adverse health effects of marijuana use. N Engl J Med. 2014;370(23):2219–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. ElSohly MA, et al. Changes in cannabis potency over the last 2 decades (1995–2014): analysis of current data in the United States. Biol Psychiatry. 2016;79(7):613–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. National Survey on Drug Use and Health (U.S.), and United States. In: The NSDUH report. Rockville: U.S. Dept. of Health & Human Services, Substance Abuse and Mental Health Services Administration, Office of Applied Studies; 2015.

  8. Hasin DS, et al. Prevalence and correlates of DSM-5 cannabis use disorder, 2012–2013: findings from the National Epidemiologic Survey on Alcohol and Related Conditions–III. Am J Psychiatr. 2016;173(6):588–99.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Khan SS, et al. Gender differences in cannabis use disorders: results from the National Epidemiologic Survey of Alcohol and Related Conditions. Drug Alcohol Depend. 2013;130(1–3):101–8.

    Article  PubMed  Google Scholar 

  10. Hernandez-Avila CA, Rounsaville BJ, Kranzler HR. Opioid-, cannabis- and alcohol-dependent women show more rapid progression to substance abuse treatment. Drug Alcohol Depend. 2004;74(3):265–72.

    Article  CAS  PubMed  Google Scholar 

  11. • Cooper ZD, Haney M. Investigation of sex-dependent effects of cannabis in daily cannabis smokers. Drug Alcohol Depend. 2014;136:85–91. This study importantly examines cannabis abuse-related subjective effects in women and men matched for cannabis use, and reveals greater sensitivity to abuse liability in women compared to men.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Navarro M, Rodriguez de Fonseca F. The neurobiology of cannabinoid transmission: from anandamide signaling to higher cerebral functions and disease. Neurobiol Dis. 1998;5(6 Pt B):379–85.

    Article  CAS  PubMed  Google Scholar 

  13. Onaivi ES, et al. Endocannabinoids and cannabinoid receptor genetics. Prog Neurobiol. 2002;66(5):307–44.

    Article  CAS  PubMed  Google Scholar 

  14. Wegener N, Koch M. Neurobiology and systems physiology of the endocannabinoid system. Pharmacopsychiatry. 2009;42(Suppl 1):S79–86.

    Article  CAS  PubMed  Google Scholar 

  15. Elphick MR. The evolution and comparative neurobiology of endocannabinoid signalling. Philos Trans R Soc Lond Ser B Biol Sci. 2012;367(1607):3201–15.

    Article  CAS  Google Scholar 

  16. Devane WA, et al. Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol. 1988;34(5):605.

    CAS  PubMed  Google Scholar 

  17. Herkenham M, et al. Cannabinoid receptor localization in brain. Proc Natl Acad Sci. 1990;87(5):1932–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature. 1993;365(6441):61–5.

    Article  CAS  PubMed  Google Scholar 

  19. Gong J-P, et al. Cannabinoid CB2 receptors: immunohistochemical localization in rat brain. Brain Res. 2006;1071(1):10–23.

    Article  CAS  PubMed  Google Scholar 

  20. Devane WA, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992;258(5090):1946–9.

    Article  CAS  PubMed  Google Scholar 

  21. Mechoulam R, et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol. 1995;50(1):83–90.

    Article  CAS  PubMed  Google Scholar 

  22. Stella N, Schweitzer P, Piomelli D. A second endogenous cannabinoid that modulates long-term potentiation. Nature. 1997;388(6644):773–8.

    Article  CAS  PubMed  Google Scholar 

  23. Sugiura T, et al. Evidence that the cannabinoid CB1 receptor is a 2-arachidonoylglycerol receptor: structure-activity relationship of 2-arachidonoylglycerol, ether-linked analogues, and related compounds. J Biol Chem. 1999;274(5):2794–801.

    Article  CAS  PubMed  Google Scholar 

  24. Tai S, Fantegrossi WE. Synthetic cannabinoids: pharmacology, behavioral effects, and abuse potential. Curr Addict Rep. 2014;1(2):129–36.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gardner EL. Addictive potential of cannabinoids: the underlying neurobiology. Chem Phys Lipids. 2002;121(1–2):267–90.

    Article  CAS  PubMed  Google Scholar 

  26. Fattore L, et al. Neurobiological mechanisms of cannabinoid addiction. Mol Cell Endocrinol. 2008;286(1–2 Suppl 1):S97–S107.

    Article  CAS  PubMed  Google Scholar 

  27. Di Chiara G, Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A. 1988;85(14):5274–8.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lopez-Moreno JA, et al. The pharmacology of the endocannabinoid system: functional and structural interactions with other neurotransmitter systems and their repercussions in behavioral addiction. Addict Biol. 2008;13(2):160–87.

    Article  CAS  PubMed  Google Scholar 

  29. Maldonado R, et al. Neurochemical basis of cannabis addiction. Neuroscience. 2011;181:1–17.

    Article  CAS  PubMed  Google Scholar 

  30. Parsons LH, Hurd YL. Endocannabinoid signalling in reward and addiction. Nat Rev Neurosci. 2015.

  31. Fattore L, Fratta W. How important are sex differences in cannabinoid action? Br J Pharmacol. 2010;160(3):544–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gorzalka BB, Hill MN, Chang SC. Male-female differences in the effects of cannabinoids on sexual behavior and gonadal hormone function. Horm Behav. 2010;58(1):91–9.

    Article  CAS  PubMed  Google Scholar 

  33. Craft RM, Marusich JA, Wiley JL. Sex differences in cannabinoid pharmacology: a reflection of differences in the endocannabinoid system? Life Sci. 2013;92(8–9):476–81.

    Article  CAS  PubMed  Google Scholar 

  34. Gonzalez S, et al. Sex steroid influence on cannabinoid CB(1) receptor mRNA and endocannabinoid levels in the anterior pituitary gland. Biochem Biophys Res Commun. 2000;270(1):260–6.

    Article  CAS  PubMed  Google Scholar 

  35. Xing G, et al. Cannabinoid receptor expression and phosphorylation are differentially regulated between male and female cerebellum and brain stem after repeated stress: Implication for PTSD and drug abuse. Neurosci Lett. 2011;502(1):5–9.

    Article  CAS  PubMed  Google Scholar 

  36. Xing G, et al. Differential expression of brain cannabinoid receptors between repeatedly stressed males and females may play a role in age and gender-related difference in traumatic brain injury: implications from animal studies. Front Neurol. 2014;5:161.

    PubMed  PubMed Central  Google Scholar 

  37. Rodriguez de Fonseca F, et al. Cannabinoid receptors in rat brain areas: sexual differences, fluctuations during estrous cycle and changes after gonadectomy and sex steroid replacement. Life Sci. 1994;54(3):159–70.

    Article  CAS  PubMed  Google Scholar 

  38. Riebe CJ, et al. Estrogenic regulation of limbic cannabinoid receptor binding. Psychoneuroendocrinology. 2010;35(8):1265–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Reich CG, Taylor ME, McCarthy MM. Differential effects of chronic unpredictable stress on hippocampal CB1 receptors in male and female rats. Behav Brain Res. 2009;203(2):264–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. • Castelli MP, et al. Male and female rats differ in brain cannabinoid CB1 receptor density and function and in behavioural traits predisposing to drug addiction: effect of ovarian hormones. Curr Pharm Des. 2014;20(13):2100–13. The authors importantly investigate the impact of ovarian hormones on CB1-R density and function, and on various behavioral traits.

    Article  CAS  PubMed  Google Scholar 

  41. Zamberletti E, et al. Gender-dependent behavioral and biochemical effects of adolescent delta-9-tetrahydrocannabinol in adult maternally deprived rats. Neuroscience. 2012;204:245–57.

    Article  CAS  PubMed  Google Scholar 

  42. • Normandin MD, et al. Imaging the cannabinoid CB1 receptor in humans with [11C]OMAR: assessment of kinetic analysis methods, test-retest reproducibility, and gender differences. J Cereb Blood Flow Metab. 2015;35(8):1313–22. The authors of this study use PET imaging to measure CB1-R density in healthy women and men, and reveal widespread lower density in men compared to women.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Neumeister A, et al. Elevated brain cannabinoid CB1 receptor availability in post-traumatic stress disorder: a positron emission tomography study. Mol Psychiatry. 2013;18(9):1034–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Van Laere K, et al. Gender-dependent increases with healthy aging of the human cerebral cannabinoid-type 1 receptor binding using [(18)F]MK-9470 PET. NeuroImage. 2008;39(4):1533–41.

    Article  PubMed  Google Scholar 

  45. Lopez-Gallardo M, et al. Maternal deprivation and adolescent cannabinoid exposure impact hippocampal astrocytes, CB1 receptors and brain-derived neurotrophic factor in a sexually dimorphic fashion. Neuroscience. 2012;204:90–103.

    Article  CAS  PubMed  Google Scholar 

  46. • Weed PF, et al. Chronic Delta9-tetrahydrocannabinol during adolescence differentially modulates striatal CB1 receptor expression and the acute and chronic effects on learning in adult rats. J Pharmacol Exp Ther. 2016;356(1):20–31. This study reveals hippocampal enhancement in CB1-R density in adult females, specifically, and in striatum in females and males, after chronic THC exposure during adolescence.

    Article  CAS  PubMed  Google Scholar 

  47. Rubino T, et al. Chronic delta 9-tetrahydrocannabinol during adolescence provokes sex-dependent changes in the emotional profile in adult rats: behavioral and biochemical correlates. Neuropsychopharmacology. 2008;33(11):2760–71.

    Article  CAS  PubMed  Google Scholar 

  48. Winsauer PJ, et al. Long-term behavioral and pharmacodynamic effects of delta-9-tetrahydrocannabinol in female rats depend on ovarian hormone status. Addict Biol. 2011;16(1):64–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Winsauer PJ, et al. Ovarian hormones and chronic administration during adolescence modify the discriminative stimulus effects of delta-9-tetrahydrocannabinol (Δ9-THC) in adult female rats. Pharmacol Biochem Behav. 2012;102(3):442–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. • Silva L, et al. Sex and age specific effects of delta-9-tetrahydrocannabinol during the periadolescent period in the rat: the unique susceptibility of the prepubescent animal. Neurotoxicol Teratol. 2016;58:88–100. This study comprehensively examines effects of THC exposure before and during puberty, in female and male rats, including effects on CB1-R properties and behavior related to anxiety, depression, and psychosis.

    Article  CAS  PubMed  Google Scholar 

  51. Mateos B, et al. Adolescent exposure to nicotine and/or the cannabinoid agonist CP 55,940 induces gender-dependent long-lasting memory impairments and changes in brain nicotinic and CB(1) cannabinoid receptors. J Psychopharmacol. 2011;25(12):1676–90.

    Article  CAS  PubMed  Google Scholar 

  52. Higuera-Matas A, et al. Sex-specific disturbances of the glutamate/GABA balance in the hippocampus of adult rats subjected to adolescent cannabinoid exposure. Neuropharmacology. 2012;62(5–6):1975–84.

    Article  CAS  PubMed  Google Scholar 

  53. • Zamberletti E, et al. Long-term hippocampal glutamate synapse and astrocyte dysfunctions underlying the altered phenotype induced by adolescent THC treatment in male rats. Pharmacol Res. 2016;111:459–70. The authors of this study provide data from male rats comparable to data obtained from their earlier study of adolescent cannabis exposure effects on adult female rats, and show male-specific changes in hippocampus compared to female-specific changes in prefrontal cortex.

    Article  CAS  PubMed  Google Scholar 

  54. Muetzel RL, et al. In vivo 1H magnetic resonance spectroscopy in young-adult daily marijuana users. NeuroImage Clin. 2013;2:581–9.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Higuera-Matas A, et al. Periadolescent exposure to cannabinoids alters the striatal and hippocampal dopaminergic system in the adult rat brain. Eur Neuropsychopharmacol. 2010;20(12):895–906.

    Article  CAS  PubMed  Google Scholar 

  56. Scherma M, et al. Adolescent Delta(9)-tetrahydrocannabinol exposure alters WIN55,212-2 self-administration in adult rats. Neuropsychopharmacology. 2016;41(5):1416–26.

    Article  CAS  PubMed  Google Scholar 

  57. • Chye Y, et al. Orbitofrontal and caudate volumes in cannabis users: a multi-site mega-analysis comparing dependent versus non-dependent users. Psychopharmacology. 2017:1–11. The authors incorporate data from multiple neuroimaging sites to investigate structural brain differences in dependent cannabis users compared to non-dependent users, and additionally demonstrate gender differences in these findings.

  58. Boulos PK, et al. Brain cortical thickness differences in adolescent females with substance use disorders. PLoS One. 2016;11(4):e0152983.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Dalwani MS, et al. Female adolescents with severe substance and conduct problems have substantially less brain gray matter volume. PLoS One. 2015;10(5):e0126368.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Dalwani M, et al. Reduced cortical gray matter volume in male adolescents with substance and conduct problems. Drug Alcohol Depend. 2011;118(2–3):295–305.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Cousijn J, et al. Grey matter alterations associated with cannabis use: results of a VBM study in heavy cannabis users and healthy controls. NeuroImage. 2012;59(4):3845–51.

    Article  PubMed  Google Scholar 

  62. Wetherill RR, et al. Cannabis, cigarettes, and their co-occurring use: disentangling differences in gray matter volume. Int J Neuropsychopharmacol. 2015;18(10):pyv061.

    Article  PubMed  PubMed Central  Google Scholar 

  63. • Wiers CE, et al. Cannabis abusers show hypofrontality and blunted brain responses to a stimulant challenge in females but not in males. Neuropsychopharmacology. 2016;41(10):2596–605. This study investigates baseline and methylphenidate-induced glucose metabolism in cannabis abusers compared to healthy controls and reveals significant gender effects in the findings.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. • Wetherill RR, et al. Sex differences in associations between cannabis craving and neural responses to cannabis cues: implications for treatment. Exp Clin Psychopharmacol. 2015;23(4):238–46. This study shows gender-dependent differences in the correlation between cannabis craving and subliminally presented cannabis cue-induced neural activation, in a population of cannabis-dependent, treatment-seeking adults.

    Article  PubMed  Google Scholar 

  65. Terzian AL, Micale V, Wotjak CT. Cannabinoid receptor type 1 receptors on GABAergic vs. glutamatergic neurons differentially gate sex-dependent social interest in mice. Eur J Neurosci. 2014;40(1):2293–8.

    Article  PubMed  Google Scholar 

  66. McQueeny T, et al. Gender effects on amygdala morphometry in adolescent marijuana users. Behav Brain Res. 2011;224(1):128–34.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lex BW, et al. Effects of acute marijuana smoking on pulse rate and mood states in women. Psychopharmacology. 1984;84(2):178–87.

    Article  CAS  PubMed  Google Scholar 

  68. Penetar DM, et al. Transdermal nicotine alters some of marihuana’s effects in male and female volunteers. Drug Alcohol Depend. 2005;79(2):211–23.

    Article  CAS  PubMed  Google Scholar 

  69. Cocchetto DM, et al. Relationship between plasma delta-9-tetrahydrocannabinol concentration and pharmacologic effects in man. Psychopharmacology. 1981;75(2):158–64.

  70. • Cooper ZD, Haney M. Sex-dependent effects of cannabis-induced analgesia. Drug Alcohol Depend. 2016;167:112–20. The authors demonstrate greater cannabis-induced analgesia in men, compared to women, and show similar subjective drug effects in both groups.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Mathew RJ, Wilson WH, Davis R. Postural syncope after marijuana: a transcranial Doppler study of the hemodynamics. Pharmacol Biochem Behav. 2003;75(2):309–18.

    Article  CAS  PubMed  Google Scholar 

  72. Kaufmann RM, et al. Acute psychotropic effects of oral cannabis extract with a defined content of Delta9-tetrahydrocannabinol (THC) in healthy volunteers. Pharmacopsychiatry. 2010;43(1):24–32.

    Article  CAS  PubMed  Google Scholar 

  73. Narimatsu S, et al. Sex difference in the oxidative metabolism of delta 9-tetrahydrocannabinol in the rat. Biochem Pharmacol. 1991;41(8):1187–94.

    Article  CAS  PubMed  Google Scholar 

  74. Tseng AH, Harding JW, Craft RM. Pharmacokinetic factors in sex differences in Delta 9-tetrahydrocannabinol-induced behavioral effects in rats. Behav Brain Res. 2004;154(1):77–83.

    Article  CAS  PubMed  Google Scholar 

  75. • Wiley JL, Burston JJ. Sex differences in Delta(9)-tetrahydrocannabinol metabolism and in vivo pharmacology following acute and repeated dosing in adolescent rats. Neurosci Lett. 2014;576:51–5. This study importantly demonstrates THC metabolism differences between female and male rats.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Klumpers LE, et al. Manipulating brain connectivity with δ9-tetrahydrocannabinol: a pharmacological resting state FMRI study. NeuroImage. 2012;63(3):1701–11.

    Article  CAS  PubMed  Google Scholar 

  77. Jones AW, Holmgren A, Kugelberg FC. Driving under the influence of cannabis: a 10-year study of age and gender differences in the concentrations of tetrahydrocannabinol in blood. Addiction. 2008;103(3):452–61.

    Article  PubMed  Google Scholar 

  78. • Hurd YL, et al. Trajectory of adolescent cannabis use on addiction vulnerability. Neuropharmacology. 2014;76:416–24. This review details the unique vulnerability to cannabis abuse with cannabis exposure during adolescence, focusing on the endocannabinoid system as well as genetic and behavioral traits that may render individuals more vulnerable to addiction.

    Article  CAS  PubMed  Google Scholar 

  79. Levine A, et al. Evidence for the risks and consequences of adolescent cannabis exposure. J Am Acad Child Adolesc Psychiatry. 2017;56(3):214–25.

    Article  PubMed  Google Scholar 

  80. Viveros MP, et al. The endocannabinoid system in critical neurodevelopmental periods: sex differences and neuropsychiatric implications. J Psychopharmacol. 2012;26(1):164–76.

    Article  CAS  PubMed  Google Scholar 

  81. Viveros MP, et al. Framework for sex differences in adolescent neurobiology: a focus on cannabinoids. Neurosci Biobehav Rev. 2011;35(8):1740–51.

    Article  PubMed  Google Scholar 

  82. • Rubino T, Parolaro D. Sex-dependent vulnerability to cannabis abuse in adolescence. Front Psychiatry. 2015;6:56. The authors of this paper comprehensively review preclinical, and some clinical, studies investigating vulnerability to cannabis abuse during adolescence, and how this differs in females compared to males.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Burston JJ, et al. Regional enhancement of cannabinoid CB1 receptor desensitization in female adolescent rats following repeated Delta-tetrahydrocannabinol exposure. Br J Pharmacol. 2010;161(1):103–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. • Silva L, et al. Sex-specific alterations in hippocampal cannabinoid 1 receptor expression following adolescent delta-9-tetrahydrocannabinol treatment in the rat. Neurosci Lett. 2015;602:89–94. The authors demonstrate sex-specific downregulation of CB1-R expression in rats exposed to THC in adolescence, specifically more persistent downregulation in females compared to males.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Volkow ND, et al. Decreased dopamine brain reactivity in marijuana abusers is associated with negative emotionality and addiction severity. Proc Natl Acad Sci U S A. 2014;111(30):E3149–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Albrecht DS, et al. Striatal D(2)/D(3) receptor availability is inversely correlated with cannabis consumption in chronic marijuana users. Drug Alcohol Depend. 2013;128(1–2):52–7.

    Article  CAS  PubMed  Google Scholar 

  87. • van de Giessen E, et al. Deficits in striatal dopamine release in cannabis dependence. Mol Psychiatry. 2017;22(1):68–75. The authors of this study show lower dopamine release in cannabis-dependent subjects compared to healthy controls, and investigate the correlation between dopamine release and a variety of behavioral and cognitive measures.

    Article  PubMed  CAS  Google Scholar 

  88. Carroll ME, Meisch RA. Acquisition of drug self-administration. In: Olmstead MC, editor. Animal models of drug addiction. Totowa: Humana; 2011. p. 237–65.

    Chapter  Google Scholar 

  89. Justinova Z, et al. Self-administration of cannabinoids by experimental animals and human marijuana smokers. Pharmacol Biochem Behav. 2005;81(2):285–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. • Tanda G. Preclinical studies on the reinforcing effects of cannabinoids. A tribute to the scientific research of Dr. Steve Goldberg. Psychopharmacology. 2016;233(10):1845–66. This review focuses on preclinical literature which examines the reinforcing effects of cannabinoids with techniques such as cannabinoid discrimination, intracranial self-stimulation, conditioned place preference, and self-administration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jacobus J, et al. Functional consequences of marijuana use in adolescents. Pharmacol Biochem Behav. 2009;92(4):559–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Batalla A, et al. Structural and functional imaging studies in chronic cannabis users: a systematic review of adolescent and adult findings. PLoS One. 2013;8(2):e55821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gruber SA, et al. Worth the wait: effects of age of onset of marijuana use on white matter and impulsivity. Psychopharmacology. 2014;231(8):1455–65.

    Article  CAS  PubMed  Google Scholar 

  94. Yucel M, et al. White-matter abnormalities in adolescents with long-term inhalant and cannabis use: a diffusion magnetic resonance imaging study. J Psychiatry Neurosci. 2010;35(6):409–12.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Jacobus J, et al. Cortical thickness in adolescent marijuana and alcohol users: a three-year prospective study from adolescence to young adulthood. Dev Cogn Neurosci. 2015;16:101–9.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Price JS, et al. Effects of marijuana use on prefrontal and parietal volumes and cognition in emerging adults. Psychopharmacology. 2015;232(16):2939–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chumachenko SY, et al. Brain cortical thickness in male adolescents with serious substance use and conduct problems. Am J Drug Alcohol Abuse. 2015;41(5):414–24.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Wilson W, et al. Brain morphological changes and early marijuana use. J Addict Dis. 2000;19(1):1–22.

    Article  CAS  PubMed  Google Scholar 

  99. Wetherill RR, et al. Early versus late onset of cannabis use: differences in striatal response to cannabis cues. Cannabis Cannabinoid Res. 2016;1(1):229–33.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Cheetham A, et al. Orbitofrontal volumes in early adolescence predict initiation of cannabis use: a 4-year longitudinal and prospective study. Biol Psychiatry. 2012;71(8):684–92.

    Article  PubMed  Google Scholar 

  101. Mansbach R, et al. Failure of [Delta] 9-tetrahydrocannabinol and CP 55,940 to maintain intravenous self-administration under a fixed-interval schedule in rhesus monkeys. Behav Pharmacol. 1994;5(2):219.

    Article  CAS  PubMed  Google Scholar 

  102. Lefever TW, et al. Evaluation of WIN 55,212-2 self-administration in rats as a potential cannabinoid abuse liability model. Pharmacol Biochem Behav. 2014;118:30–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. John WS, Martin TJ, Nader MA. Behavioral determinants of cannabinoid self-administration in Old World monkeys. Neuropsychopharmacology. 2017;42(7):1522–30.

    Article  CAS  PubMed  Google Scholar 

  104. Fadda P, et al. Cannabinoid self-administration increases dopamine release in the nucleus accumbens. Neuroreport. 2006;17(15):1629–32.

    Article  CAS  PubMed  Google Scholar 

  105. Lecca D, et al. Monitoring extracellular dopamine in the rat nucleus accumbens shell and core during acquisition and maintenance of intravenous WIN 55,212-2 self-administration. Psychopharmacology. 2006;188(1):63–74.

    Article  CAS  PubMed  Google Scholar 

  106. De Luca MA, et al. Endocannabinoid 2-arachidonoylglycerol self-administration by Sprague-Dawley rats and stimulation of in vivo dopamine transmission in the nucleus accumbens shell. Front Psychiatry. 2014;5:140.

    PubMed  PubMed Central  Google Scholar 

  107. Tanda G, Munzar P, Goldberg SR. Self-administration behavior is maintained by the psychoactive ingredient of marijuana in squirrel monkeys. Nat Neurosci. 2000;3(11):1073–4.

    Article  CAS  PubMed  Google Scholar 

  108. Braida D, et al. Intracerebral self-administration of the cannabinoid receptor agonist CP 55,940 in the rat: interaction with the opioid system. Eur J Pharmacol. 2001;413(2–3):227–34.

    Article  CAS  PubMed  Google Scholar 

  109. Navarro M, et al. Functional interaction between opioid and cannabinoid receptors in drug self-administration. J Neurosci. 2001;21(14):5344–50.

    CAS  PubMed  Google Scholar 

  110. Braida D, et al. Δ9-Tetrahydrocannabinol-induced conditioned place preference and intracerebroventricular self-administration in rats. Eur J Pharmacol. 2004;506(1):63–9.

    Article  CAS  PubMed  Google Scholar 

  111. Justinova Z, et al. The opioid antagonist naltrexone reduces the reinforcing effects of Delta 9 tetrahydrocannabinol (THC) in squirrel monkeys. Psychopharmacology. 2004;173(1–2):186–94.

    CAS  PubMed  Google Scholar 

  112. Mendizabal V, Zimmer A, Maldonado R. Involvement of kappa/dynorphin system in WIN 55,212-2 self-administration in mice. Neuropsychopharmacology. 2006;31(9):1957–66.

    Article  CAS  PubMed  Google Scholar 

  113. Justinova Z, et al. Reinforcing and neurochemical effects of cannabinoid CB1 receptor agonists, but not cocaine, are altered by an adenosine A2A receptor antagonist. Addict Biol. 2011;16(3):405–15.

    Article  CAS  PubMed  Google Scholar 

  114. Justinova Z, et al. Differential effects of presynaptic versus postsynaptic adenosine A2A receptor blockade on Delta9-tetrahydrocannabinol (THC) self-administration in squirrel monkeys. J Neurosci. 2014;34(19):6480–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Struik D, et al. The anabolic steroid nandrolone alters cannabinoid self-administration and brain CB1 receptor density and function. Pharmacol Res. 2017;115:209–17.

    Article  CAS  PubMed  Google Scholar 

  116. Roth ME, Cosgrove KP, Carroll ME. Sex differences in the vulnerability to drug abuse: a review of preclinical studies. Neurosci Biobehav Rev. 2004;28(6):533–46.

    Article  CAS  PubMed  Google Scholar 

  117. Fattore L, et al. Cannabinoid self-administration in rats: sex differences and the influence of ovarian function. Br J Pharmacol. 2007;152(5):795–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hempel BJ, et al. An assessment of sex differences in Δ9-tetrahydrocannabinol (THC) taste and place conditioning. Pharmacol Biochem Behav. 2017;153:69–75.

    Article  CAS  PubMed  Google Scholar 

  119. • Wiley JL, et al. Comparison of the discriminative stimulus and response rate effects of Delta9-tetrahydrocannabinol and synthetic cannabinoids in female and male rats. Drug Alcohol Depend. 2017;172:51–9. This study innovatively compares THC discrimination directly between female and male rats and reveals female-specific enhanced sensitivity to THC effects compared to males.

    Article  CAS  PubMed  Google Scholar 

  120. Haney M. Self-administration of cocaine, cannabis and heroin in the human laboratory: benefits and pitfalls. Addict Biol. 2009;14(1):9–21.

    Article  CAS  PubMed  Google Scholar 

  121. Hart CL, et al. Reinforcing effects of oral Delta9-THC in male marijuana smokers in a laboratory choice procedure. Psychopharmacology. 2005;181(2):237–43.

    Article  CAS  PubMed  Google Scholar 

  122. Cappell H, Pliner P. Regulation of the self-administration of marihuana by psychological and pharmacological variables. Psychopharmacologia. 1974;40(1):65–76.

    Article  CAS  PubMed  Google Scholar 

  123. Kelly TH, et al. Effects of delta 9-tetrahydrocannabinol and social context on marijuana self-administration by humans. Pharmacol Biochem Behav. 1994;49(3):763–8.

    Article  CAS  PubMed  Google Scholar 

  124. Babor TF, et al. Marijuana, affect and tolerance: a study of subchronic self-administration in women. NIDA Res Monogr. 1984;49:199–204.

    CAS  PubMed  Google Scholar 

  125. Mello NK, Mendelson JH. Operant acquisition of marihuana by women. J Pharmacol Exp Ther. 1985;235(1):162–71.

    CAS  PubMed  Google Scholar 

  126. Griffin ML, et al. Marihuana use across the menstrual cycle. Drug Alcohol Depend. 1986;18(2):213–24.

    Article  CAS  PubMed  Google Scholar 

  127. Chait LD, Zacny JP. Reinforcing and subjective effects of oral delta 9-THC and smoked marijuana in humans. Psychopharmacology. 1992;107(2–3):255–62.

    Article  CAS  PubMed  Google Scholar 

  128. Hart CL, et al. Effects of oral THC maintenance on smoked marijuana self-administration. Drug Alcohol Depend. 2002;67(3):301–9.

    Article  CAS  PubMed  Google Scholar 

  129. Haney M, et al. Oral cannabidiol does not alter the subjective, reinforcing or cardiovascular effects of smoked cannabis. Neuropsychopharmacology. 2016;41(8):1974–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. • Haney M, et al. Naltrexone maintenance decreases cannabis self-administration and subjective effects in daily cannabis smokers. Neuropsychopharmacology. 2015;40(11):2489–98. This study highlights the treatment potential of the opioid antagonist naltrexone in reducing cannabis use, in nontreatment-seeking daily cannabis smokers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wardle MC, Marcus BA, de Wit H. A preliminary investigation of individual differences in subjective responses to D-amphetamine, alcohol, and Delta-9-tetrahydrocannabinol using a within-subjects randomized trial. PLoS One. 2015;10(10):e0140501.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Haney M. Opioid antagonism of cannabinoid effects: differences between marijuana smokers and nonmarijuana smokers. Neuropsychopharmacology. 2006;32(6):1391–403.

    Article  PubMed  CAS  Google Scholar 

  133. • Henry EA, et al. Cannabis cue reactivity and craving among never, infrequent and heavy cannabis users. Neuropsychopharmacology. 2014;39(5):1214–21. The authors of this study uniquely record event-related brain potentials from cannabis users exposed to cannabis cues and reveal significant gender differences in the results.

    Article  PubMed  Google Scholar 

  134. Haughey HM, et al. Marijuana withdrawal and craving: influence of the cannabinoid receptor 1 (CNR1) and fatty acid amide hydrolase (FAAH) genes. Addiction. 2008;103(10):1678–86.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Filbey FM, et al. Individual and additive effects of the CNR1 and FAAH genes on brain response to marijuana cues. Neuropsychopharmacology. 2009;35(4):967–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Lundahl LH, Johanson CE. Cue-induced craving for marijuana in cannabis-dependent adults. Exp Clin Psychopharmacol. 2011;19(3):224–30.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Charboneau EJ, et al. Cannabis cue-induced brain activation correlates with drug craving in limbic and visual salience regions: preliminary results. Psychiatry Res. 2013;214(2):122–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. • Lorenzetti V, Solowij N, Yücel M. The role of cannabinoids in neuroanatomic alterations in cannabis users. Biol Psychiatry. 2016;79(7):e17–31. This review highlights structural neuroimaging studies in cannabis use effects on the brain, with a focus on evidence from regions including hippocampus, prefrontal cortex, amygdala, and cerebellum.

    Article  CAS  PubMed  Google Scholar 

  139. • Weinstein A, Livny A, Weizman A. Brain imaging studies on the cognitive, pharmacological and neurobiological effects of cannabis in humans: evidence from studies of adult users. Curr Pharm Des. 2016;22(42):6366–79. The authors comprehensively review brain imaging studies in humans that investigate the cognitive, neurobiological, and pharmacological effects of cannabis exposure.

    Article  CAS  PubMed  Google Scholar 

  140. • Ketcherside A, Baine J, Filbey F. Sex effects of marijuana on brain structure and function. Curr Addict Rep. 2016;3:323–31. This is a comprehensive review of gender differences in the effects of cannabis on brain structure and function, with a focus on human studies.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Block RI, et al. Effects of frequent marijuana use on brain tissue volume and composition. Neuroreport. 2000;11(3):491–6.

    Article  CAS  PubMed  Google Scholar 

  142. Jager G, et al. Effects of frequent cannabis use on hippocampal activity during an associative memory task. Eur Neuropsychopharmacol. 2007;17(4):289–97.

    Article  CAS  PubMed  Google Scholar 

  143. • Tomasi D, Wang GJ, Volkow ND. Balanced modulation of striatal activation from D2/D3 receptors in caudate and ventral striatum: disruption in cannabis abusers. Hum Brain Mapp. 2015;36(8):3154–66. This study utilizes fMRI and PET imaging modalities to investigate modulation of striatal activity from dopamine D2/D3 receptors in cannabis-using subjects.

    Article  PubMed  Google Scholar 

  144. Skosnik PD, et al. The effect of cannabis use and gender on the visual steady state evoked potential. Clin Neurophysiol. 2006;117(1):144–56.

    Article  PubMed  Google Scholar 

  145. Cuttler C, Mischley LK, Sexton M. Sex differences in cannabis use and effects: a cross-sectional survey of cannabis users. Cannabis Cannabinoid Res. 2016;1(1):166–75.

    Article  PubMed  PubMed Central  Google Scholar 

  146. • Foster KT, et al. Gender differences in internalizing symptoms and suicide risk among men and women seeking treatment for cannabis use disorder from late adolescence to middle adulthood. J Subst Abus Treat. 2016;66:16–22. The authors in this study explore the prevalence of internalizing distress and suicide risk in women and men seeking CUD treatment and suggest higher rates in women compared to men.

    Article  Google Scholar 

  147. Buckner JD, et al. Peer influence and gender differences in problematic cannabis use among individuals with social anxiety. J Anxiety Disord. 2006;20(8):1087–102.

    Article  PubMed  Google Scholar 

  148. Buckner JD, Zvolensky MJ, Schmidt NB. Cannabis-related impairment and social anxiety: the roles of gender and cannabis use motives. Addict Behav. 2012;37(11):1294–7.

    Article  PubMed  Google Scholar 

  149. O'Shea M, McGregor IS, Mallet PE. Repeated cannabinoid exposure during perinatal, adolescent or early adult ages produces similar longlasting deficits in object recognition and reduced social interaction in rats. J Psychopharmacol. 2006;20(5):611–21.

    Article  PubMed  Google Scholar 

  150. Harte-Hargrove LC, Dow-Edwards DL. Withdrawal from THC during adolescence: sex differences in locomotor activity and anxiety. Behav Brain Res. 2012;231(1):48–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Biscaia M, et al. Chronic treatment with CP 55,940 during the peri-adolescent period differentially affects the behavioural responses of male and female rats in adulthood. Psychopharmacology. 2003;170(3):301–8.

    Article  CAS  PubMed  Google Scholar 

  152. O'Shea M, et al. Chronic cannabinoid exposure produces lasting memory impairment and increased anxiety in adolescent but not adult rats. J Psychopharmacol. 2004;18(4):502–8.

    Article  PubMed  Google Scholar 

  153. Bowers ME, Ressler KJ. Sex-dependence of anxiety-like behavior in cannabinoid receptor 1 (Cnr1) knockout mice. Behav Brain Res. 2016;300:65–9.

    Article  CAS  PubMed  Google Scholar 

  154. Rey JM, et al. Mental health of teenagers who use cannabis. Br J Psychiatry. 2002;180(3):216.

    Article  PubMed  Google Scholar 

  155. Patton GC, et al. Cannabis use and mental health in young people: cohort study. BMJ. 2002;325(7374):1195.

    Article  PubMed  PubMed Central  Google Scholar 

  156. • Crane NA, Langenecker SA, Mermelstein RJ. Gender differences in the associations among marijuana use, cigarette use, and symptoms of depression during adolescence and young adulthood. Addict Behav. 2015;49:33–9. The authors of this longitudinal study explore symptoms of depression in cannabis and tobacco using subjects and suggest that depressive symptoms are related to cannabis use in males, but not females.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Poulin C, et al. Gender differences in the association between substance use and elevated depressive symptoms in a general adolescent population. Addiction. 2005;100(4):525–35.

    Article  PubMed  Google Scholar 

  158. Harder VS, Stuart EA, Anthony JC. Adolescent cannabis problems and young adult depression: male-female stratified propensity score analyses. Am J Epidemiol. 2008;168(6):592–601.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Patton GC, et al. Adolescent suicidal behaviours: a population-based study of risk. Psychol Med. 1997;27(03):715–24.

    Article  CAS  PubMed  Google Scholar 

  160. • Shalit N, et al. The association between cannabis use and suicidality among men and women: a population-based longitudinal study. J Affect Disord. 2016;205:216–24. This study investigates the correlation of multiple facets of suicidality with cannabis use, in women and men.

    Article  PubMed  Google Scholar 

  161. Zilberman ML, et al. The impact of gender, depression, and personality on cravings. J Addict Dis. 2007;26(1):79–84.

    Article  PubMed  Google Scholar 

  162. • Lundahl LH, Greenwald MK. Effect of oral THC pretreatment on marijuana cue-induced responses in cannabis dependent volunteers. Drug Alcohol Depend. 2015;149:187–93. This study investigates the potential of oral THC to attenuate cannabis craving, and interestingly reveals that males report feeling more “down” after cannabis cue exposure compared to females.

    Article  CAS  PubMed  Google Scholar 

  163. Medina KL, et al. Depressive symptoms in adolescents: associations with white matter volume and marijuana use. J Child Psychol Psychiatry. 2007;48(6):592–600.

    Article  PubMed  PubMed Central  Google Scholar 

  164. • Zamberletti E, et al. Cortical neuroinflammation contributes to long-term cognitive dysfunctions following adolescent delta-9-tetrahydrocannabinol treatment in female rats. Eur Neuropsychopharmacol. 2015;25(12):2404–15. This study comprehensively examines molecular and behavioral effects of THC exposure during adolescence on adult female rats, with a focus on neuroinflammation and affective behavior.

    Article  CAS  PubMed  Google Scholar 

  165. Morrish AC, et al. Protracted cannabinoid administration elicits antidepressant behavioral responses in rats: role of gender and noradrenergic transmission. Physiol Behav. 2009;98(1–2):118–24.

    Article  CAS  PubMed  Google Scholar 

  166. D'Souza DC, et al. The psychotomimetic effects of intravenous delta-9-tetrahydrocannabinol in healthy individuals: implications for psychosis. Neuropsychopharmacology. 2004;29(8):1558.

    Article  PubMed  CAS  Google Scholar 

  167. Decoster J, et al. Age at onset of psychotic disorder: cannabis, BDNF Val66Met, and sex-specific models of gene-environment interaction. Am J Med Genet B Neuropsychiatr Genet. 2011;156B(3):363–9.

    Article  PubMed  Google Scholar 

  168. Dekker N, et al. Age at onset of non-affective psychosis in relation to cannabis use, other drug use and gender. Psychol Med. 2012;42(9):1903–11.

    Article  CAS  PubMed  Google Scholar 

  169. • Donoghue K, et al. Cannabis use, gender and age of onset of schizophrenia: data from the AESOP study. Psychiatry Res. 2014;215(3):528–32. This study contributes to a growing body of literature suggesting that gender influences the relationship between cannabis use and age of onset of schizophrenia.

    Article  PubMed  Google Scholar 

  170. • Nunez C, et al. Differential effects of sex on substance use between first episode psychosis patients and healthy people. Compr Psychiatry. 2016;69:169–78. The authors investigate sex differences in cannabis use among patient with first episode psychosis and demonstrate men smoke cannabis more frequently than women.

    Article  PubMed  Google Scholar 

  171. Allegri F, et al. Current cannabis use and age of psychosis onset: a gender-mediated relationship? Results from an 8-year FEP incidence study in Bologna. Psychiatry Res. 2013;210(1):368–70.

    Article  PubMed  Google Scholar 

  172. • Mané A, et al. Cannabis use, COMT, BDNF and age at first-episode psychosis. Psychiatry Res. 2017;250:38–43. The authors of this study examine the interaction of genetic polymorphisms with cannabis use and the influence of this interaction on age of first episode of psychosis, and additionally examine how gender impacts this relationship.

    Article  PubMed  Google Scholar 

  173. Smith MJ, et al. Cannabis-related working memory deficits and associated subcortical morphological differences in healthy individuals and schizophrenia subjects. Schizophr Bull. 2014;40(2):287–99.

    Article  PubMed  Google Scholar 

  174. Szeszko PR, et al. Anterior cingulate grey-matter deficits and cannabis use in first-episode schizophrenia. Br J Psychiatry. 2007;190(3):230–6.

    Article  PubMed  Google Scholar 

  175. Bangalore SS, et al. Cannabis use and brain structural alterations in first episode schizophrenia—a region of interest, voxel based morphometric study. Schizophr Res. 2008;99(1–3):1–6.

    Article  PubMed  Google Scholar 

  176. Rais M, et al. Excessive brain volume loss over time in cannabis-using first-episode schizophrenia patients. Am J Psychiatr. 2008;165(4):490–6.

    Article  PubMed  Google Scholar 

  177. James A, et al. Greater white and grey matter changes associated with early cannabis use in adolescent-onset schizophrenia (AOS). Schizophr Res. 2011;128(1–3):91–7.

    Article  CAS  PubMed  Google Scholar 

  178. Llorente-Berzal A, et al. Sex-dependent effects of maternal deprivation and adolescent cannabinoid treatment on adult rat behaviour. Addict Biol. 2011;16(4):624–37.

    Article  CAS  PubMed  Google Scholar 

  179. • Marusich JA, et al. Evaluation of sex differences in cannabinoid dependence. Drug Alcohol Depend. 2014;137:20–8. This study innovatively examines THC dependence in female and male adult rats, using CB1-R antagonist rimonabant.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly P. Cosgrove.

Ethics declarations

Conflict of Interest

The authors declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Women and Addictions

A correction to this article is available online at https://doi.org/10.1007/s40429-017-0179-2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calakos, K.C., Bhatt, S., Foster, D.W. et al. Mechanisms Underlying Sex Differences in Cannabis Use. Curr Addict Rep 4, 439–453 (2017). https://doi.org/10.1007/s40429-017-0174-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40429-017-0174-7

Keywords

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy