Skip to main content

Advertisement

Log in

A Multivariate Convertible Group Signature Scheme

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Post-quantum digital signatures are going to play a vital role in data integrity and data authentication in the coming years. Multivariate cryptography is one of the main alternatives to construct efficient and small-size signatures among all the post-quantum signature schemes. Group signature schemes play an important role in e-commerce, e-cash, and e-voting. We propose the first convertible group signature scheme in multivariate public key cryptography. The signer can convert his group signature into an ordinary signature by releasing some secret information using the convertibility. Our proposed scheme satisfies all the group signature properties, viz., correctness, unforgeability, signer anonymity, unlinkability, and tracing soundness. A toy example has been given to depict the mathematical functioning of the our scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abdulraheem M, Awotunde JB, Jimoh RG, Oladipo ID. An efficient lightweight cryptographic algorithm for IoT security. In the proceedings of ICTA,. Springer. Cham. 2020;2021(1350):444–56.

  2. Aboud S J. Group signature system using multivariate asymmetric cryptography. Advanced Methodologies and Technologies in System Security, Information Privacy, and Forensics Copyright. IGI Global. 2017; pages 15.

  3. Ajagbe SA, Adesina AO. Design and development of an access control based electronic medical record (EMR). Centerpoint Journal, University of llorin (Nigeria). 2020;2020008; pp. 26108.

  4. Ajagbe SA, Florez H, Awotunde JB (2022). AESRSA: a new cryptography key for electronic health record security. Applied Informatics: 5th International Conference, ICAI. Springer. Cham. 2022;2022(1643):237–51.

  5. Ajagbe SA, Adesina A, Oladosu J. Empirical evaluation of efficient asymmetric encryption algorithms for the protection of electronic medical records (emr) on web application. Int J Sci Eng Res. 2019;10(5):848–71.

    Google Scholar 

  6. Ajagbe A, Adesina A, Odule TJ, Aiyeniko O. Evaluation of computing resources consumption of selected symmetric-key algorithms. J Comput Sci Appl. 2019;26(2):64–76 (Nigeria Computer Society).

    Google Scholar 

  7. Bernstein DJ, Buchmann J, Dahmen E. Post-quantum cryptography. Proceedings of PQCrypto 2008 Cincinnati, OH, USA. Springer Science and Business Media. 2008;5299.

  8. Beullens W. Breaking rainbow takes a weekend on a laptop. Cryptology ePrint Archive. 214/2022.

  9. Boneh D, Boyen X, Shacham H. Short group signatures. In: Franklin M (eds) Advances in cryptology - CRYPTO 2004, LNCS. Springer, Berlin, Heidelberg. 2004;3152;41-55.

  10. Camenisch J. Efficient and generalized group signature. In EUROCRYPT’97, LNCS. Springer, Verlag. 1997;1233;465–79.

  11. Camenisch J, Groth J. Group signatures: better efficiency and new theoretical aspects. In: Blundo C, Cimato S (eds) Security in Communication Networks, SCN 2004. LNCS. Springer, Berlin, Heidelberg. 2005;3352;120–33.

  12. Camenisch J, Michels M. A group signature scheme with improved efficiency (extended abstract). In: Ohta K, Pei D (eds) Advances in cryptology - ASIACRYPT’98, LNCS. Springer, Berlin, Heidelberg. 1998;1514;160–74.

  13. Camenisch J, Stadler M. Efficient group signatures schemes for large groups. In: Kaliski B (ed.) CRYPTO’97, LNCS. Springer-Verlag. 1997;1294;410–24.

  14. Cham D, Heyst EV. Group signatures. Advances in Cryptology- EUROCRYPT ’91. LNCS. Springer. 1991;547;257–65.

  15. Chaum D. Blind signatures for untraceable payments. Adv Cryptol Springer. 1983;1983:199–203.

    Article  MATH  Google Scholar 

  16. Chen MS, Hülsing A, Rijneveld J, Samardjiska S, Schwabe P. From 5-pass MQ-based identification to MQ-based signatures. In Advances in Cryptology - ASIACRYPT 2016, LNCS. Springer, Berlin, Heidelberg. 2016;10032; 135–65.

  17. Chen L, Pedersen TP. New group signature schemes. In: DeSantis A (ed) EUROCRYPT’94, LNCS. Springer, Verlag;1994;950;171–81.

  18. Courtois NT, Goubin L, Patarin J. SFLASHv3, a fast asymmetric signature scheme. IACR Cryptology ePrint archive, report 2003/211.

  19. Courtois NT. The security of hidden field equations (HFE). In: Naccache C (ed) Progress in cryptology, CT-RSA, LNCS. Springer, Berlin, Heidelberg. 2001;2020;266–81.

  20. Debnath SK, Chaudhary T, Stanica P, Dey K, Kundu N. Delegating signing rights in a multivariate proxy signature scheme. American Institute of Mathematical Sciences: Advances in Mathematics of Communications; 2021.

  21. Ding J, Petzoldt A, Schmidt DS. Multivariate public key cryptosystems. Springer; 2020.

    Book  MATH  Google Scholar 

  22. Ding J, Schmidt DS. Rainbow, a new multivariate polynomial signature scheme. ACNS 2005, LNCS. Springer, Berlin, Heidelberg. 2005;3531;164–75.

  23. Faugère CJ. A new efficient algorithm for computing gröbner bases without reduction to zero(f5). In: Proceedings of the 2002 international symposium on symbolic and algebraic computation. ACM. 2002;75–83.

  24. Fiat A, Shamir A. How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko AM (eds) Advances in Cryptology - CRYPTO’ 86, LNCS. Springer, Berlin, Heidelberg. 1987;263;186–94.

  25. Garey MR, Johnson DS. Computers and intractability, a Guide to the theory of NP-completeness. New york: W.H. Freeman and Company; 1991.

    MATH  Google Scholar 

  26. Goldreich O. Foundations of cryptography volume 1, basic tools, vol. 1. Cambridge University Press; 2001.

    Book  MATH  Google Scholar 

  27. Kawachi A, Tanaka K, Xagawa K. Concurrently secure identification schemes based on the worst-case hardness of lattice problems. In: Pieprzyk J (eds) Advances in Cryptology - ASIACRYPT 2008, LNCS. Springer, Berlin, Heidelberg. 2008;5350;372–89.

  28. Kiayias A, Yung M. Secure scalable group signature with dynamic joins and separable authorities. Int J Secur Netw. 2006;1(1–2):24–45 (Inderscience).

    Article  Google Scholar 

  29. Kim SJ, Park SJ, Won DH. Convertible group signatures. In: Kim K, Matsumoto T (eds) Advances in Cryptology - ASIACRYPT ’96, LNCS. Springer, Berlin, Heidelberg. 1996;1163;311–21.

  30. Kipnis A, Patarin J, Goubin L. Unbalanced oil and vinegar schemes. EUROCRYPT 1999, LNCS. Springer, Berlin, Heidelberg. 1999;1592;206–22.

  31. Kundu N, Debnath SK, Mishra D. A secure and efficient group signature scheme based on multivariate public key cryptography. J Inf Secur Appl. 2021;58(102776):1–10 (Elsevier).

    Google Scholar 

  32. Libert B, Peters T, Yung M. Group Signatures with Almost-for-Free Revocation. In: Safavi-Naini R, Canetti R (eds) Advances in Cryptology - CRYPTO 2012, LNCS. Springer, Berlin, Heidelberg. 2012;7417;571–89.

  33. Libert B, Peters T, Yung M. Scalable Group Signatures with Revocation. In: Pointcheval D, Johansson T (eds) Advances in Cryptology - EUROCRYPT 2012, LNCS. Springer, Berlin, Heidelberg. 2012;7237;609–27.

  34. Mohamed MSE, Petzoldt A. RingRainbow—an efficient multivariate ring signature scheme. In: Joye M, Nitaj A (eds) Progress in Cryptology- AFRICACRYPT 2017, LNCS. Springer, Cham. 2017;10239;3–20.

  35. Nakanishi T, Fujii H, Hira Y, Funabiki N. Revocable group signature schemes with constant costs for signing and verifying. In: Jarecki S, Tsudik G (eds) Public Key Cryptography - PKC 2009, LNCS. Springer, Berlin, Heidelberg. 2009;5443;463–80.

  36. Omar S, Padhye S. Multivariate linkable group signature scheme. In: Maji AK, Saha G, Das S, Basu S, Tavares JMRS (eds) Proceedings of the international conference on computing and communication systems, LNNS. Springer, Singapore. 2021;170;623–32.

  37. Patarin J. Hidden fields equations (HFE) and isomorphisms of polynomials (IP): two new families of asymmetric algorithms. In: International Conference on the Theory and Applications of Cryptographic Techniques. Springer, Berlin, Heidelberg. 1996;1070;33–48.

  38. Patarin J. The oil and vinegar signature scheme. Dagstuhl Workshop on Cryptography September, 1997.

  39. Petersen H. How to convert any digital signature scheme into a group signature scheme. In: Proceedings of Security Protocols Workshop. Springer, Berlin, Heidelberg. 1997;1361;177–90.

  40. Petzoldt A, Chen MS, Yang BY, Tao C, Design Ding J. Principles for HFEv-based signature schemes. ASIACRYPT,. Part 1, LNCS. Springer, Berlin, Heidelberg. 2015;2015(9452):311–34.

  41. Sakai Y, Schuldt J C N, Emura K, Hanaoka G, Ohta K. On the security of dynamic group signatures: preventing signature Hijacking. In: Public Key Cryptography - PKC 2012, LNCS. Springer, Berlin, Heidelberg. 2012;7293;715–32.

  42. Sakumoto K, Shirai T, Hiwatari H. Public-key identification schemes based on multivariate quadratic polynomials. In: Rogaway P (ed.) Advances in Cryptology - CRYPTO 2011, LNCS. Springer, Berlin, Heidelberg. 2011;6841;706–23.

  43. Shor P. Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th annual symposium on foundations of computer science. IEEE. 1994;124–34.

  44. Sun Y, Liu Y, Wu B. An efficient full dynamic group signature scheme over ring. Cybersecurity. 2019;2(21):1–15 (Springer).

    Google Scholar 

  45. Tang S, Xu L. Proxy signature scheme based on isomorphisms of polynomials. International Conference on Network and System Security. Springer, Berlin, Heidelberg. 2012;7645;113–25.

  46. Tone D S. On the differential security of multivariate public key cryptosystems. In: Yang BY (ed.) Post-quantum cryptography. PQCrypto 2011. LNCS. Springer, Berlin, Heidelberg. 2011;7071;130–42.

  47. Wang S, Ma R, Zhang Y, Wang X. Ring signature scheme based on multivariate public key cryptosystems. Comput Math Appl. 2011;62:3973–9 (Elsevier).

    MathSciNet  MATH  Google Scholar 

  48. Yang B Y, Chen J M, Chen Y H. TTS: high-speed signatures on a low-cost smart card. In: Joye M, Quisquater JJ (eds) Cryptographic hardware and embedded systems - CHES 2004, LNCS. Springer, Berlin, Heidelberg. 2004;3156;371–85.

  49. Yang G, Tang S, Yang L. A novel group signature scheme based on MPKC. In: Bao F, Weng J (eds) Information security practice and experience. ISPEC 2011. LNCS. Springer, Berlin, Heidelberg. 2011;6672;181–95.

Download references

Acknowledgements

This research work has been supported by UGC NET-JRF scheme-2019, India (UGC JRF Award No. 417226, dated 24-07-2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahadeo Padhye.

Ethics declarations

Conflict of interest

The authors report there are no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Research Trends in Communication and Network Technologies” guest edited by Anshul Verma, Pradeepika Verma, and Kiran Kumar Pattanaik.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omar, S., Padhye, S. & Dey, D. A Multivariate Convertible Group Signature Scheme. SN COMPUT. SCI. 4, 735 (2023). https://doi.org/10.1007/s42979-023-02112-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-023-02112-5

Keywords

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy