Skip to main content
Log in

Route generation and description using the notions of object's influence area and spatial conceptual map

  • Published:
Spatial Cognition and Computation

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In the GRAAD Project we aimed at creatinga system which could generate route directions thatare comparable to route directions created by humanparticipants. With this goal in mind, we started froma linguistic and cognitive study of route directionsproduced by people and the study of cognitive modelsof mental maps. We proposed a new qualitative spatialmodel that can support the spatial properties of humanroute directions. This model is based on the notion ofobject's influence area which is used to modelneighborhood, orientation and distance. The proposedapproach relies on the manipulation of spatialentities in a spatial conceptual map (SCM) which isthe computarized analog of a mental map used bypeople. We developped the GRAAD System, software thatgenerates routes in a SCM and describes them innatural language. Finally, we conducted an experimentin order to compare GRAAD's route directions androutes described by human participants in similarexperimental conditions. GRAAD's output was notdistinguishable from route directions created by humanparticipants. In this paper we present the mainresults obtained during all phases of the GRAADProject.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, J.F. (1983). Maintaining Knowledge about Temporal Intervals, Communications of the ACM 26(11): 832–843.

    Google Scholar 

  • Allen, G.L. (1997). From Knowledge to Words to Wayfinding: Issues in the Production and Comprehension of Route Directions. In S.C. Hirtle and A.U. Frank (eds.), Spatial Information Theory: A Theoretical Basis for GIS, Proceedings of the International Conference COSIT'97 (pp. 365–372). Laurel Highlands PN, USA, October.

  • André, E., Bosch, G., Herzog, G. and Rist, T. (1987). Coping with the Intrinsic and Deictic Uses of Spatial Prepositions. Proceedings of the Second International Conference on Artificial Intelligence (pp. 375–382). Varna, Bulgaria.

  • Biederman, I. (1987). Recognition by Components, Psychological Review 94: 115–147.

    Google Scholar 

  • Blocher, A. and Stopp, E. (1995). Time-Dependent Generation of Minimal Sets of Spatial Descriptions. Proceedings of the Workshop on Representation and Processing of Spatial Expressions (pp. 1–7). IJCAI'95, Montreal, Canada.

  • Bloom, P., Peterson, M.A., Nadel, L. and Garrett, M.F. (1996). Language and Space. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Chown, E., Kaplan, S. and Kortenkamp, D. (1995). Prototypes, Location and Associative Networks (PLAN): Towards a Unified Theory of Cognitive Mapping, Cognitive Science 19: 1–51.

    Google Scholar 

  • Couclelis, H. (1996). Verbal Directions for Way - Finding: Space, Cognition and Language. In J. Portugali (ed.), The Construction of Cognitive Maps (pp. 133–153). Kluwer Academic Publishers.

  • Denis, M. (1989). Image et Cognition. Paris: Presses Universitaires de France.

    Google Scholar 

  • Denis, M. (1997). The Description of Routes: A Cognitive Approach to the Production of Spatial Discourse, Cahiers de Psychologie 16: 409–456.

    Google Scholar 

  • Denis, M., Pazzaglia, F., Cornoldi, C. and Bertolo, L. (1999). Spatial Discourse and Navigation: An Analysis of Route Directions in the City of Venice. Applied Cognitive Psychology 13: 145–174.

    Google Scholar 

  • Fontaine, S. and Denis. M. (1999). The Production of Route Instructions in Underground and Urban Environments. In C. Freksa and D.M. Mark (eds.), Spatial Information Theory: Cognitive and Computational Foundations of Geographic Information Science. Proceedings of the International Conference COSIT'99. Stade, Germany, August (pp. 83–94). Berlin: Springer Verlag.

    Google Scholar 

  • Fraczak, L., Lapalme, G. and Zock, M. (1998). Automatic Generation of Subway Directions: Salience Gradation as a Function of Determining Message and Form. In 9th International Workshop on Language Generation (pp. 58–67). Niagara-on-the Lake, Canada.

  • Freksa, C. (1992). Temporal Reasoning Based on Semi-Intervals, Artificial Intelligence 54: 200–227.

    Google Scholar 

  • Gahegan, M. (1995). Proximity Operators for Qualitative Spatial Reasoning. In A.U. Frank and W. Kuhn (eds.), Spatial Information Theory: A Theoretical Basis for GIS. Proceedings of the International Conference COSIT'95 (pp. 31–44). Berlin: Springer Verlag.

    Google Scholar 

  • Gapp, K-P (1995). Object Localization: Selection of Optimal Reference Objects. In A.U. Frank and W. Kuhn (eds.), Spatial Information Theory: A Theoretical Basis for GIS (pp. 519–535). Berlin: Springer Verlag.

    Google Scholar 

  • Golding, J.M., Graesser, A. and Hauselt, J. (1996). The Processing of Answering Direction-Giving Questions When Someone is Lost on a University Campus: The Role of Pragmatics, Applied Cognitive Psychology 10: 23–39.

    Google Scholar 

  • Golledge, R.G. and Zannaras, G. (1973). Cognitive Approaches to the Analysis of Human Spatial Behaviour. In W. Ittelton (ed.), Environmental Cognition (pp. 59–94). New York: Seminar Press.

    Google Scholar 

  • Golledge, R.G. (1992). Do People Understand Spatial Concepts: The Case of First-Order Primitives. In A.U. Frank, I. Campari and U. Formentini (eds.), Theories of Spatio-Temporal Reasoning in Geographic Space (pp. 1–21). Berlin: Springer Verlag.

    Google Scholar 

  • Golledge R.G. (1995). Path Selection and Route Preference in Human Navigation: A Progress Report. In A.U. Frank and W. Kuhn (eds.), Spatial Information Theory: A Theoretical Basis for GIS (pp. 207–222). Berlin: Springer Verlag.

    Google Scholar 

  • Gopal, S., Klatzky, R.L. and Smith, T.R. (1989). Navigator: A Psychologically Based Model of Environmental Learning Through Navigation, Journal of Environmental Psychology 9: 309–331.

    Google Scholar 

  • Gould, P. and White, R. (1974). Mental Maps. Harmondsworth, England: Penguin.

    Google Scholar 

  • Gryl, A. (1995). Analyse et modélisation des processus discursifs mis en oeuvre dans la description d'itinéraires. Thèse de Doctorat d'Université en Sciences Cognitives. LIMSI-CNRS, Université Paris-XI, Orsay, France.

  • Habel, C. (1988). —Prozedurale Aspekte der Wegplannung und Wegbeschreibung. In H. Schnelle and G. Rickheit (eds.), Sprache in Mensch und Computer (pp. 107–133). Berlin: Westdeutscher Verlag.

    Google Scholar 

  • Hernandez, D. (1994). Qualitative Representation of Spatial Knowledge. Berlin: Springer Verlag.

    Google Scholar 

  • Hoeppner, W., Carstensen M. and Rhein, U. (1987). —Wegauskünfte: Die Interdependenz von Such-und Beschreibungprozessen. In C. Freksa and C. Habel (eds.), Repräsentation und Verarbeitung räumlichen Wissens (pp. 221–234). Berlin: Springer Verlag.

    Google Scholar 

  • Johnson-Laird, P.N. (1983). Mental Models. Cambridge University Press.

  • Kettani, D. (1999). Conception et implantation d'un système de simulation qui s'inspire du raisonnement spatial de l'être humain. Ph.D. Thesis. Computer Science Department Laval University, Canada, March.

  • Kettani, D. and Moulin, B. (1998). Modèle computationnel pour la simulation du raisonnement spatial humain, revue Information In Cognito (10): 29–44.

    Google Scholar 

  • Kettani, D. and Moulin, B. (1999). A Spatial Model Based on the Notions of Spatial Conceptual Map and of Object's Influence area. In C. Freksa and D.M. Mark (eds.), Spatial Information Theory: Cognitive and Computational Foundations of Geographic Information Science. Proceedings of the International Conference COSIT'99. Stade, Germany, August (pp. 401–416). Berlin: Springer Verlag.

    Google Scholar 

  • Klein, W. (1982). Local Deixis in Route Directions. In R.J. Jarvella and W. Klein (eds.), Speech, Place and Action (pp. 161–182). Chichester: Wiley.

    Google Scholar 

  • Kuipers, B.J. (1978). Modeling Spatial Knowledge, Cognitive Science 2: 129–153.

    Google Scholar 

  • Kuipers, B.J. (1983). The Cognitive Map: Could It Have Been Any Other Way? In H.L. Pick and L.P. Acredolo (eds.), Spatial Orientation: Theory, Research and Application (pp. 345–359). New York: Plenum Press.

    Google Scholar 

  • Kuipers, B.J. (1993). Reasoning with Qualitative Models, Artificial Intelligence 59: 125–132.

    Google Scholar 

  • Langacker, R.W. (1991). Concept, Image and Symbol, the Cognitive Basis of Grammar. Mouton de Gruyter.

  • Leiser, D. and Zilbershatz, A. (1989). THE TRAVELLER: A Computational Model of Spatial Network Learning. Environment and Behavior 21(4): 435–463.

    Google Scholar 

  • Lovelace, K.L., Hegarty, M. and Montello, D.R. (1999). Elements of Good Route Directions in Familiar and Unfamiliar Environments. In C. Freksa and D.M. Mark (eds.), Spatial Information Theory: Cognitive and Computational Foundations of Geographic Information Science. Proceedings of the International Conference COSIT'99. Stade, Germany, August (pp. 65–82). Berlin: Springer Verlag.

    Google Scholar 

  • Lynch, K. (1960). The Image in the City. Cambridge: MIT Press.

    Google Scholar 

  • Maaß, W. (1995). How spatial information connects Visual Perception and Natural Language Generation in Dynamic Environments: Towards a Computational Model. In A.U. Frank and W. Kuhn (eds.), Spatial Information Theory: A Theoretical Basis for GIS (pp. 223–239). Berlin: Springer Verlag.

    Google Scholar 

  • Mark, D.M. (1987). On Giving and Receiving Directions: Cartographic and Cognitive Issues. In Proceedings of the 8th International Symposium on Computer-Assisted Cartography (pp. 562–571). Baltimore, MD.

  • Moulin, B., Gryl, A. and Kettani D. (1997). Route Descriptions Based on the Notions of Spatial Conceptual Map and of Object's Influence Areas. In Proceedings of the AAAI Workshop on Temporal and Spatial Reasoning (pp. 95–104). Providence, Rhode Island, July.

  • Moulin, B. and Kettani D. (1998). Combining an Analogical and Logical Framework for Route Generation, The Annals of Mathematics and Artificial Intelligence 24: 155–179.

    Google Scholar 

  • Moulin, B., Kettani D., Gauthier B. and Chacker W. (2000). Using Object Influence Areas to Qualitatively Deal with Neighborhood and Perception in Route Descriptions. In H.J. Hamilton (ed.), Advances in Artificial Intelligence, Springer Verlag Lecture Notes in Artificial Intelligence n. 1822, pp. 69–81.

  • Pailhous, J. (1970). La représentation de l'espace urbain. L'exemple du chauffeur du taxi. Paris: Presses Universitaires de France.

    Google Scholar 

  • Randell, D.A, Cui, Z. and Cohn, A.G. (1992). A Spatial Logic Based on Regions and Connection. In Proceedings of the Third Conference on Knowledge Representation and Reasoning (pp. 165–176). San Mateo: Morgan Kaufmann.

    Google Scholar 

  • Reisbeck, C.K. (1980). You Can't Miss It: Judging the Clarity of Directions. Cognitive Science 4: 136–149.

    Google Scholar 

  • Raubal, M., Egenhofer M.J., Pfoser, D. and Tryfona N. (1997). Structuring Space with Image Schemata: Wayfinding in Airports as a Case Study. In S.C. Hirtle and A.U. Frank (eds.), Spatial Information Theory: A Theoretical Basis for GIS, Proceedings of the International Conference COSIT'97 (pp. 85-102). Laurel Highlands PN, USA, October.

  • Shanon, B. (1984). Room Descriptions. Discourse Processes 7: 225–255.

    Google Scholar 

  • Talmy, L. (1983). How Language Structures Space. In H.L. Pick and L.P. Acredolo (eds.), Spatial Orientation: Theory, Research and Application (pp. 283-312). New York: Plenum Press.

    Google Scholar 

  • Timpf, S., Volta, G.S., Pollock, D.W. and Egenhofer, M.J. (1992). A Conceptual Model of Wayfinding Using Multiple Levels of Abstraction. In A.U. Frank, I. Campari and U. Formentini U. (eds.), Theories of Spatio-Temporal Reasoning in Geographic Space (pp. 349–367). Berlin: Springer Verlag.

    Google Scholar 

  • Tolman, E.C. (1948). Cognitive Maps in Rats and Men. Psychological Review 55: 189–208.

    Google Scholar 

  • Tversky, B. (1993). Cognitive Maps, Cognitive Collages and Spatial Mental Models. In A.U. Frank and I. Campari (eds.), Spatial Information Theory: A Theoretical Basis for GIS (pp. 14–24). Berlin: Springer Verlag.

    Google Scholar 

  • Tversky, B. (1995). Cognitive Origins of Graphic Productions. In F.T. Marchese (ed.), Understanding Images: Finding Meaning in Digital Imagery (pp. 29–53). New York: Springer Verlag.

    Google Scholar 

  • Tversky, B. and Lee, P.U. (1999). Pictorial and Verbal Tools for Conveying Routes. In C. Freksa and D.M. Mark (eds.), Spatial Information Theory: Cognitive and Computational Foundations of Geographic Information Science. Proceedings of the International Conference COSIT'99. Stade, Germany, August (pp. 51–64). Berlin: Springer Verlags.

    Google Scholar 

  • Vorwerg, C., Socher, G., Fuhr, T., Sagerer, G. and Rickheit, G. (1997). Projective Relations for 3D Space: Computational Model, Application and Psychological Evaluation. In Proceedings of the AAAI'97 Conference (pp. 159–164). American Association of Artificial Intelligence, Providence (USA).

    Google Scholar 

  • Wright, P., Lickorish, A., Hull, A. and Ummelen, N. (1995). Graphics in Written Directions: Appreciated by Readers But Not Writers. Applied Cognitive Psychology 9: 41–59.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moulin, B., Kettani, D. Route generation and description using the notions of object's influence area and spatial conceptual map. Spatial Cognition and Computation 1, 227–259 (1999). https://doi.org/10.1023/A:1010045617505

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010045617505

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy