Abstract
In this paper, we derive gradient recovery type a posteriori error estimate for the finite element approximation of elliptic equations. We show that a posteriori error estimate provide both upper and lower bounds for the discretization error on the non-uniform meshes. Moreover, it is proved that a posteriori error estimate is also asymptotically exact on the uniform meshes if the solution is smooth enough. The numerical results demonstrating the theoretical results are also presented in this paper.
Similar content being viewed by others
References
M. Ainsworth and J.T. Oden, A posteriori error estimators in finite element analysis, Comput.Methods Appl. Mech. Engrg. 142 (1997) 1-88.
I. Babuska and A.D. Miller, A feedback finite element method with a posteriori error estimation Part 1, Comput. Methods Appl. Mech. Engrg. 61 (1987) 1-40.
I. Babuska, O.C. Zienkiewicz, J. Gago and E.R. de A. Oliveira (eds.), Accuracy Estimates and Adaptive Refinements in Finite Element Computations(Wiley, New York, 1986).
R.E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations, Math. Comp. 44 (1985) 283-301.
T. Blacker and T. Belychko, Superconvergent path recovery with equilibrium and conjoint interpolant enhancernents, Internat. J. Numer. Methods Engrg. 37 (1994) 517-536.
C. Carstensen, Weighted Clément-type interpolation and a posteriori analysis for FEM, Technical Report 97-19, Universität Kiel (1997); Modél Math. Anal. Numér. (to appear).
C. Carstensen and S.A. Funken, A posteriori error control in low-order finite element discretizations of incompressible stationary flow problem, Technical Report 99-5, Universität Kiel (1999).
C. Chen and Y. Huang, High Accuracy Theory of Finite Element Methods(Hunan Science Press, Hunan, China, 1995) (in Chinese).
P.G. Ciarlet, The Finite Element Method for Elliptic Problems(North-Holland, Amsterdam, 1978).
P. Clément, Approximation by finite element functions using local regularization, RAIRO Anal. Numér 9 (1975) 77-84.
K. Eriksson, D. Estep, P. Hansbo and C. Johnson, Introduction to adaptive methods for differential equations, Acta Numerica 4 (1995) 105-158.
C. Johnson, Adaptive finite element methods for diffusion and convection problems, Comput. Methods Appl. Mech. Engrg. 82 (1990) 301-322.
M. Krizek and P. Neitaanmaki, On superconvergence techniques, Acta Appl. Math. 9 (1987) 175-198.
M. Krizek, P. Neitaanmaki and R. Stenberg (eds.), Finite Element Methods: Superconvergence, Postprocessing, and A Posteriori Estimates, Lectures Notes in Pure and Applied Mathematics, Vol. 196 (Marcel Dekker, New York, 1998).
B. Li and Z. Zhang, Analysis of a class of superconvergence patch recovery techniques for linear and bilinear finite elements, Numer. Methods Partial Differential Equations 15 (1997) 151-167.
Q. Lin and N. Yan, Construction and Analysis of High Efficient Finite Element(Hebei Univ. Press, 1996) (in Chinese).
Q. Lin and A. Zhou, Some arguments for recovering the finite element error of hyperbolic problems, Acta Math. Sci. 11 (1991) 471-476.
Q. Lin and A. Zhou, Notes on superconvergence and its related topics, J. Comput. Math. 11 (1993) 211-214.
R.H. Nochetto, Pointwise a posteriori error estimates for elliptic problems on highly graded meshes, Math. Comp. 38 (1995) 437-442.
L.A. Oganesyan and L.A. Rukhovetz, Study of the rate of convergence of variational diffrence scheme for second order elliptic equation in two-dimensional field with a smooth boundary, U.S.S.R. Comput. Math. Math. Phys. 9 (1969) 158-183.
R. Verfürth, A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques(Wiley/Teubner, New York/Leipzig, 1996).
L.B. Wahlbin, Superconvergence in Galerkin Finite Element Methods, Lecture Notes in Mathematics, Vol. 1605 (Springer, Berlin, 1995).
M.F. Wheeler and J.R. Whiteman, Superconvergence recovery of gradients on subdomains from piecewise linear finite element approximations, Numer. Methods Partial Differential Equations 3 (1987) 65-82.
J. Xu and A. Zhou, Local and parallel finite element algorithms based on two-grid discretizations, Math. Comp., in press. L. Du, N. Yan / Gradient recovery type a posteriori error193
Z. Zhang and J.Z. Zhu, Analysis of the superconvergent patch recovery technique and a posteriori error estimator in the finite element method (I), Comput. Methods Appl. Mech. Engrg. 123 (1995) 173-187.
Z. Zhang and H.D. Victory Jr., Mathematical analysis of Zienkiewicz-Zhu's derivative patch recovery technique for quadrilateral finite elements, Numer. Methods Partial Differential Equations 12 (1996) 507-524.
Q. Zhu and Q. Lin, Superconvergence Theory of the Finite Element Method(Hunan Science Press, Hunan, China, 1989) (in Chinese).
O.C. Zienkiewicz and J.Z. Zhu, The supercovergent patch recovery and a posteriori error estimates, Internat. J. Numer. Methods Engrg. 33 (1992) 1331-1382.
O.C. Zienkiewicz and J.Z. Zhu, The superconvergence patch recovery (SPR) and adaptive finite element refinement, Comput. Methods Appl. Mech. Engrg. 101 (1992) 207-224.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Du, L., Yan, N. Gradient recovery type a posteriori error estimate for finite element approximation on non-uniform meshes. Advances in Computational Mathematics 14, 175–193 (2001). https://doi.org/10.1023/A:1016676917360
Issue Date:
DOI: https://doi.org/10.1023/A:1016676917360