Abstract
Smooth motion generation is an important issue in the computer animation and virtual reality areas. The motion of a rigid body consists of translation and orientation. The former is described by a space curve in 3-dimensional Euclidean space, while the latter is represented by a curve in the unit quaternion space. Although there exist well-known techniques for smoothing the translation data, smoothing the orientation data is yet to be explored due to the nonlinearity of the unit quaternion space. This paper presents a wavelet-based algorithm for smoothing noise-embedded motion data and the experiment shows the effectiveness of the proposed algorithm.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ainsleigh, P. L. and Chui, C. K.: 1996, A B-wavelet-based noise-reduction algorithm, IEEE Trans. Signal Processing 14(5), 1279–1284.
Azuma, R. and Bishop, C.: 1995, A frequency-domain analysis of head-motion prediction, in: Proc. of SIGGRAPH' 95, pp. 401–408.
Choi, B.: 1991, Geometric Modeling for CAD/CAM, Elsevier Science, New York.
Chui, C. K.: 1992, An Introduction to Wavelets, Academic Press, Boston.
Curtis, M.: 1972, Matrix Groups, Springer, Berlin.
Daubechies, I.: 1992, Ten Lectures on Wavelets, SIAM, Philadelphia, PA.
Daubechies, I.: 1993, Orthonormal bases of compactly supported wavelets II: Variations on a theme, SIAM J. Math. Anal. 24(2), 499–519.
Donoho, D. L. and Johnstone, I. M.: 1994, Ideal spatial adptation via wavelet shrinkage, Biometrika 81(3), 425–455.
Donoho, D. L. and Johnstone, I. M.: 1995, Adapting to unknown smoothness via wavelet shrinkage, J. Amer. Stat. Assoc. 90(432), 1200–1224.
Eck, M. and Jaspert, R.: 1994, Automatic fairing of point sets, in: N. Sapidis (ed.), Designing Fair Curves and Surfaces, SIAM, Philadelphia, PA, pp. 45–60.
Fang, Y. C., Hsieh, C. C., Kim, M. J., Chang, J. J., and Woo, T. C.: 1998, Real time motion fairing with unit quaternions, Comput.-Aided Design 30(3), 191–198.
Farin, G.: 1990, Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide, 2nd ed., Academic Press, New York.
Farin, G., Rein, G., Sapidis, N., and Worsey, A.: 1987, Fairing cubic B-spline curves, Comput. Aided Geom. Design 4, 91–103.
Hamilton, W. R.: 1969, Elements of Quaternions, Vol. I, II, Chelsea, New York.
Hsieh, C. C., Fang, Y. C., Wang, M. E., Wang, C. K., Kim, M. J., Shin, S. Y., and Woo, T. C.: 1998, Noise smoothing for VR equipment in quaternions, IIE Transactions 30, 581–587.
Junkins, J. L. and Turner, J. D.: 1980, Optional continous torque attitude maneuvers, J. Guidance Control 3(3), 210–217.
Juttler, B.: 1994, Visualization of moving objects using dual quaternion curves, Comput. Graphics 18(3), 315–326.
Kane, T. R., Levinson, D. A., and Likins, P. W.: 1983, Spacecraft Dynamics, McGraw-Hill, New York.
Kim, M. J., Kim, M. S., and Shin, S. Y.: 1995, A C 2-continuous B-spline quaternion curve interpolating a given sequence of solid orientations, in: Proc. of Computer Animation' 95, Geneva, Switzerland, pp. 72–81.
Kim, M. J., Kim, M. S., and Shin, S. Y.: 1996, A compact differential formula for the first derivative of a unit quaternion curve, J. Visualization Comput. Animation 7(1), 43–57.
Kim, M. S. and Nam, K.W.: 1993, Interpolating solid orientations with circular blending quaternion curves, in: Proc. of the Communicating with VirtualWorlds, Lausanne, Switzerland, pp. 258–269.
Lake, R. and Green, M.: 1991, Dynamic motion control of an articulated figure using quaternion curves, in: Proc. of the 2nd Internat. Conf. on Computer-Aided Design and Computer Graphics, Hangzhou, China, pp. 37–44.
Lee, J. and Shin, S. Y.: 1996, Motion fairing, in: Proc. of Computer Animation, Geneva, Switzerland, pp. 136–143.
Nielson, G. M. and Heiland, R. W.: 1992, Animated rotations using quaternion and splines on a 4D sphere, Programming Comput. Software 18, 145–154.
Shoemake, K.: 1985, Animating rotation with quaternion curves, in: Proc. SIGGRAPH' 85, Vol. 19, pp. 245–254.
Strang, G. and Ngugen, T.: 1996, Wavelets and Filter Banks, Wellesley–Cambridge Press.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Hsieh, CC. Motion Smoothing Using Wavelets. Journal of Intelligent and Robotic Systems 35, 157–169 (2002). https://doi.org/10.1023/A:1021161132760
Issue Date:
DOI: https://doi.org/10.1023/A:1021161132760