Abstract
We study conditions on the matrix mask of a vector subdivision scheme ensuring that certain polynomial input vectors yield polynomial output again. The conditions are in terms of a recurrence formula for the vectors which determine the structure of polynomial input with this property. From this recurrence, we obtain an algorithm to determine polynomial input of maximal degree. The algorithm can be used in the design of masks to achieve a high order of polynomial reproduction.
Similar content being viewed by others
References
C. Cabrelli, C. Heil and U. Molter, Accuracy of lattice translates of several multidimensional refinable functions, J. Approx. Theory 95 (1998) 5–52.
D.R. Chen, R.Q. Jia and S.D. Riemenschneider, Convergence of vector subdivision schemes in Sobolev spaces, Appl. Comput. Harmon. Anal. 12 (2002) 128–149.
C. Conti and K. Jetter, A new subdivision method for bivariate splines on the four-direction mesh, J. Comput. Appl. Math. 119 (2000) 81–96.
W. Dahmen, B. Han, R.-Q. Jia and A. Kunoth, Biorthogonal multiwavelets on the interval: Cubic Hermite splines, Constr. Approx. 16 (2000) 221–259.
S. Dubuc, Interpolation through an iterative scheme, J. Math. Anal. Appl. 114 (1986) 185–204.
N. Dyn, Subdivision schemes in CAGD, in: Advances in Numerical Analysis, Vol. II: Wavelets, Subdivision Algorithms and Radial Basis Functions, ed. W.A. Light (Oxford Univ. Press, Oxford, 1992) pp. 36–104.
N. Dyn, J.A. Gregory and D. Levin, A four-point interpolatory subdivision scheme for curve design, Comput. Aided Geom. Design 4 (1987) 257–268.
T. Goodman, Pairs of refinable functions, in: Advanced Topics in Multivariate Approximation, eds. F. Fontanella, K. Jetter and P.-J. Laurent (World Scientific, Singapore, 1996) pp. 125–138.
B. Han, Approximation properties and construction of Hermite interpolants and biorthogonal multiwavelets, J. Approx. Theory 110 (2001) 18–53.
C. Heil, G. Strang and V. Strela, Approximation by translates of refinable functions, Numer. Math. 73 (1996) 75–94.
K. Jetter and G. Plonka, A survey on L 2-approximation orders from shift-invariant spaces, in: Multivariate Approximation and Applications, eds. N. Dyn, D. Leviatan, D. Levin and A. Pinkus (Cambridge Univ. Press, Cambridge, 2001) pp. 73–111.
R.Q. Jia, Refinable shift-invariant spaces: From splines to wavelets, in: Approximation Theory VIII, Vol. 2: Wavelets and Multilevel Approximation, eds. C.K. Chui and L.L. Schumaker (World Scientific, Singapore, 1995) pp. 179–208.
R.Q. Jia, The subdivision and transition operators associated with a refinement equation, in: Advanced Topics in Multivariate Approximation, eds. F. Fontanella, K. Jetter and J.-P. Laurent (World Scientific, Singapore, 1996) pp. 139–154.
R.Q. Jia, Approximation properties of multivariate wavelets, Math. Comp. 67 (1998) 647–665.
R.Q. Jia, S.D. Riemenschneider and D.X. Zhou, Approximation by multiple refinable functions, Canad. J. Math. 49 (1997) 944–962.
R.Q. Jia, S.D. Riemenschneider and D.X. Zhou, Vector subdivision schemes and multiple wavelets, Math. Comp. 67 (1998) 1533–1563.
Q.T. Jiang, Multivariate matrix refinable functions with arbitrary matrix dilation, Trans. Amer. Math. Soc. 351 (1999) 2407–2438.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Jetter, K., Zimmermann, G. Polynomial Reproduction in Subdivision. Advances in Computational Mathematics 20, 67–86 (2004). https://doi.org/10.1023/A:1025859224071
Issue Date:
DOI: https://doi.org/10.1023/A:1025859224071