Abstract
This paper analyzes and evaluates an efficient n-dimensional global optimization algorithm. It is a natural n-dimensional extension of the algorithm of Casado et al. [1]. This algorithm takes advantage of all available information to estimate better bounds of the function. Numerical comparison made on a wide set of multiextremal test functions has shown that on average the new algorithm works faster than a traditional interval analysis global optimization method.
Similar content being viewed by others
References
L.G. Casado, I. García, J.A. Martínez and Ya.D. Sergeyev, New interval analysis support functions using gradient information in a global minimization algorithm, J. Global Optimization 25(4) (2003) 1–18.
T. Csendes and D. Ratz, Subdivision direction selection in interval methods for global optimization, SIAM J. Numer. Anal. 34 (1997) 922–938.
L.W.C. Dixon and G.P. Szego, eds., Towards Global Optimization (North-Holland, Amsterdam, 1975).
L.W.C. Dixon and G.P. Szego, eds., Towards Global Optimization 2 (North-Holland, Amsterdam, 1978).
R. Hammer, M. Hocks, U. Kulisch and D. Ratz, C++ Toolbox for Verified Computing I: Basic Numerical Problems: Theory, Algorithms, and Programs (Springer, Berlin, 1995).
T. Henriksen and K. Madsen: Use of a depth-first strategy in parallel Global Optimization, Technical Report 92–10, Institute for Numerical Analysis, Technical University of Denmark (1992).
R.B. Kearfott, Rigorous Global Search: Continuous Problems (Kluwer Academic, Dordrecht, 1996).
R. Moore, Interval Analysis (Prentice-Hall, Englewood Cliffs, NJ, 1966).
A. Neumaier, Interval Methods for Systems of Equations (Cambridge Univ. Press, Cambridge, 1990).
H. Ratschek and J. Rokne, New Computer Methods for Global Optimization (Ellis Horwood, Chichester, 1988).
D. Ratz, Automatic Slope Computation and its Application in Nonsmooth Global Optimization (Shaker Verlag, Aachen, 1998).
D. Ratz and T. Csendes, On the selection of subdivision directions in interval branch and bound methods for global optimization, J. Global Optimization 7 (1995), 183–207.
A. Törn and A. Žilinskas, Global Optimization, Lecture Notes in Computer Science, Vol. 350 (Springer, Berlin, 1989).
G. Walster, E. Hansen and S. Sengupta, Test results for global optimization algorithm, in: SIAM Numerical Optimization 1984 (SIAM, Philadelphia, PA) pp. 272–287.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Martínez, J., Casado, L., García, I. et al. On an Efficient Use of Gradient Information for Accelerating Interval Global Optimization Algorithms. Numerical Algorithms 37, 61–69 (2004). https://doi.org/10.1023/B:NUMA.0000049456.81410.fc
Issue Date:
DOI: https://doi.org/10.1023/B:NUMA.0000049456.81410.fc