Abstract
Superconducting circuits based on Josephson junctions exhibit macroscopic quantum coherence and can behave like artificial atoms. Recent technological advances have made it possible to implement atomic-physics and quantum-optics experiments on a chip using these artificial atoms. This Review presents a brief overview of the progress achieved so far in this rapidly advancing field. We not only discuss phenomena analogous to those in atomic physics and quantum optics with natural atoms, but also highlight those not occurring in natural atoms. In addition, we summarize several prospective directions in this emerging interdisciplinary field.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Makhlin, Y., Schön, G. & Shnirman, A. Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357–400 (2001)
You, J. Q. & Nori, F. Superconducting circuits and quantum information. Phys. Today 58, 42–47 (2005)
Clarke, J. & Wilhelm, F. K. Superconducting quantum bits. Nature 453, 1031–1042 (2008)A review of superconducting circuits as qubits.
Schoelkopf, R. J. & Girvin, S. M. Wiring up quantum systems. Nature 451, 664–669 (2008)
Nakamura, Y., Pashkin & Tsai, J. S. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 786–788 (1999)
van der Wal, C. H. et al. Quantum superposition of macroscopic persistent-current states. Science 290, 773–777 (2000)
Vion, D. et al. Manipulating the quantum state of an electrical circuit. Science 296, 886–889 (2002)
Yu, Y., Han, S. Y., Chu, X., Chu, S. I. & Wang, Z. Coherent temporal oscillations of macroscopic quantum states in a Josephson junction. Science 296, 889–892 (2002)
Martinis, J. M., Nam, S., Aumentado, J. & Urbina, C. Rabi oscillations in a large Josephson-junction qubit. Phys. Rev. Lett. 89, 117901 (2002)
You, J. Q., Hu, X., Ashhab, S. & Nori, F. Low-decoherence flux qubit. Phys. Rev. B 75, 140515 (2007)
Steffen, M. et al. High-coherence hybrid superconducting qubit. Phys. Rev. Lett. 105, 100502 (2010)Report of a low-decoherence flux qubit experiment.
Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007)
You, J. Q. & Nori, F. Quantum information processing with superconducting qubits in a microwave field. Phys. Rev. B 68, 064509 (2003)
Blais, A., Huang, R.-S., Wallraff, A., Girvin, S. M. & Schoelkopf, R. J. Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004)
Chiorescu, I. et al. Coherent dynamics of a flux qubit coupled to a harmonic oscillator. Nature 431, 159–162 (2004)Report of the strong-coupling regime between a superconducting flux qubit and a resonator composed of an inductance and a capacitance.
Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004)Report of the strong-coupling regime between a superconducting charge qubit and a coplanar waveguide resonator composed of a transmission line.
Fragner, A. et al. Resolving vacuum fluctuations in an electrical circuit by measuring the Lamb shift. Science 322, 1357–1360 (2008)
Devoret, M. H., Girvin, S. & Schoelkopf, R. Circuit-QED: how strong can the coupling between a Josephson junction atom and a transmission line resonator be? Ann. Phys. (Leipz.) 16, 767–779 (2007)
Zueco, D., Reuther, G. M., Kohler, S. & Hänggi, P. Qubit-oscillator dynamics in the dispersive regime: analytical theory beyond the rotating-wave approximation. Phys. Rev. A 80, 033846 (2009)
Ashhab, S. & Nori, F. Qubit-oscillator systems in the ultrastrong-coupling regime and their potential for preparing nonclassical states. Phys. Rev. A 81, 042311 (2010)
Nataf, P. & Ciuti, C. Vacuum degeneracy of a circuit QED system in the ultrastrong coupling regime. Phys. Rev. Lett. 104, 023601 (2010)
Niemczyk, T. et al. Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nature Phys. 6, 772–776 (2010)
Forn-Díaz, P. et al. Observation of the Bloch-Siegert shift in a qubit-oscillator system in the ultrastrong coupling regime. Phys. Rev. Lett. 105, 237001 (2010)
Wilson, C. M. et al. Coherence times of dressed states of a superconducting qubit under extreme driving. Phys. Rev. Lett. 98, 257003 (2007)Report of dressed states of a superconducting charge qubit and an intense microwave field.
Liu, Y. X., You, J. Q., Wei, L. F., Sun, C. P. & Nori, F. Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit. Phys. Rev. Lett. 95, 087001 (2005)Analysis of parity symmetry and selection rules in flux qubit circuits.
Deppe, F. et al. Two-photon probe of the Jaynes-Cummings model and controlled symmetry breaking in circuit QED. Nature Phys. 4, 686–691 (2008)
de Groot, P. C. et al. Selective darkening of degenerate transitions demonstrated with two superconducting quantum bits. Nature Phys. 6, 763–766 (2010)
Harris, S. E. Electromagnetically induced transparency. Phys. Today 50, 36–42 (1997)
Scully, M. O. & Zubairy, M. S. Quantum Optics (Cambridge Univ. Press, 1997)
You, J. Q., Liu, Y. X., Sun, C. P. & Nori, F. Persistent single-photon production by tunable on-chip micromaser with a superconducting quantum circuit. Phys. Rev. B 75, 104516 (2007)
Murali, K. V. R. M., Dutton, Z., Oliver, W. D., Crankshaw, D. S. & Orlando, T. P. Probing decoherence with electromagnetically induced transparency in superconductive quantum circuits. Phys. Rev. Lett. 93, 087003 (2004)
Dutton, Z., Murali, K. V. R. M., Oliver, W. D. & Orlando, T. P. Electromagnetically induced transparency in superconducting quantum circuits: effects of decoherence, tunneling, and multilevel crosstalk. Phys. Rev. B 73, 104516 (2006)
Ian, H., Liu, Y. X. & Nori, F. Tunable electromagnetically induced transparency and absorption with dressed superconducting qubits. Phys. Rev. A 81, 063823 (2010)
Sillanpää, M. A. et al. Autler-Townes effect in a superconducting three-level system. Phys. Rev. Lett. 103, 193601 (2009)
Abdumalikov, A. A., Jr et al. Electromagnetically induced transparency on a single artificial atom. Phys. Rev. Lett. 104, 193601 (2010)
Rodrigues, D. A., Imbers, J. & Armour, A. D. Quantum dynamics of a resonator driven by a superconducting single-electron transistor: a solid-state analogue of the micromaser. Phys. Rev. Lett. 98, 067204 (2007)
Hauss, J., Fedorov, A., Hutter, C., Shnirman, A. & Schön, G. Single-qubit lasing and cooling at the Rabi frequency. Phys. Rev. Lett. 100, 037003 (2008)
Ashhab, S., Johansson, J. R., Zagoskin, A. M. & Nori, F. Single-artificial-atom lasing using a voltage-biased superconducting charge qubit. N. J. Phys. 11, 023030 (2009)
Astafiev, O. et al. Single artificial-atom lasing. Nature 449, 588–590 (2007)
Grajcar, M. et al. Sisyphus cooling and amplification by a superconducting qubit. Nature Phys. 4, 612–616 (2008)
Meystre, P. Atom Optics (Springer, 2001)
Valenzuela, S. O. et al. Microwave-induced cooling of a superconducting qubit. Science 314, 1589–1592 (2006)Report of cooling for a flux qubit using an inverse process of state population inversion.
You, J. Q., Liu, Y. X. & Nori, N. Simultaneous cooling of an artificial atom and its neighboring quantum system. Phys. Rev. Lett. 100, 047001 (2008)
Huang, X. M. H., Zorman, C. A., Mehregany, M. & Roukes, M. L. Nanodevice motion at microwave frequencies. Nature 421, 496 (2003)
Martin, I., Shnirman, A., Tian, L. & Zoller, P. Ground-state cooling of mechanical resonators. Phys. Rev. B 69, 125339 (2004)
Zhang, P., Wang, Y. D. & Sun, C. P. Cooling mechanism for a nonmechanical resonator by periodic coupling to a Cooper pair box. Phys. Rev. Lett. 95, 097204 (2005)
Marquardt, F., Chen, J. P., Clerk, A. A. & Girvin, S. M. Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007)
Grajcar, M., Ashhab, S., Johansson, J. R. & Nori, F. Lower limit on the achievable temperature in resonator-based sideband cooling. Phys. Rev. B 78, 035406 (2008)
Naik, A. et al. Cooling a nanomechanical resonator with quantum back-action. Nature 443, 193–196 (2006)
Rocheleau, T. et al. Preparation and detection of a mechanical resonator near the ground state of motion. Nature 463, 72–75 (2010); published online 9 December 2009.
O'Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010)
Sillanpää, M. A., Park, J. I. & Simmonds, R. W. Coherent quantum state storage and transfer between two phase qubits via a resonant cavity. Nature 449, 438–442 (2007)Report of quantum-information transfer between two superconducting qubits using single photons generated in a cavity as a quantum bus.
Houck, A. A. et al. Generating single microwave photons in a circuit. Nature 449, 328–331 (2007)
Hofheinz, M. et al. Generation of Fock states in a superconducting quantum circuit. Nature 454, 310–314 (2008)
Hofheinz, M. et al. Synthesizing arbitrary quantum states in a superconducting resonator. Nature 459, 546–549 (2009)Report of the controllable and deterministic generation of complex superpositions of states with different number of photons by using superconducting circuits.
Law, C. K. & Eberly, J. H. Arbitrary control of a quantum electromagnetic field. Phys. Rev. Lett. 76, 1055–1058 (1996)
Liu, Y. X., Wei, L. F. & Nori, F. Generation of nonclassical photon states using a superconducting qubit in a microcavity. Europhys. Lett. 67, 941–947 (2004)
Wang, H. et al. Measurement of the decay of Fock states in a superconducting quantum circuit. Phys. Rev. Lett. 101, 240401 (2008)
Wang, H. et al. Deterministic entanglement of photons in two superconducting microwave resonators. Phys. Rev. Lett. 106, 060401 (2011)
Liu, Y. X., Wei, L. F. & Nori, F. Tomographic measurements on superconducting qubit states. Phys. Rev. B 72, 014547 (2005)
Steffen, M. et al. State tomography of capacitively shunted phase qubits with high fidelity. Phys. Rev. Lett. 97, 050502 (2006)
Katz, N. et al. Coherent state evolution in a superconducting qubit from partial-collapse measurement. Science 312, 1498–1500 (2006)
Steffen, M. et al. Measurement of the entanglement of two superconducting qubits via state tomography. Science 313, 1423–1425 (2006)
Filipp, S. et al. Two-qubit state tomography using a joint dispersive readout. Phys. Rev. Lett. 102, 200402 (2009)
Neeley, M. et al. Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state. Nature Phys. 4, 523–526 (2008)
Bialczak, R. C. et al. Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits. Nature Phys. 6, 409–413 (2010)
Johansson, J. R., Johansson, G., Wilson, C. M. & Nori, F. Dynamical Casimir effect in a superconducting coplanar waveguide. Phys. Rev. Lett. 103, 147003 (2009)
Wei, L. F., Johansson, J. R., Cen, L. X., Ashhab, S. & Nori, F. Controllable coherent population transfers in superconducting qubits for quantum computing. Phys. Rev. Lett. 100, 113601 (2008)
Rangelov, A. A. et al. Stark-shift-chirped rapid-adiabatic-passage technique among three states. Phys. Rev. A 72, 053403 (2005)
Johnson, B. R. et al. Quantum non-demolition detection of single microwave photons in a circuit. Nature Phys. 6, 663–667 (2010)
Shevchenko, S. N., Ashhab, S. & Nori, F. Landau-Zener-Strückelberg interferometry. Phys. Rep. 492, 1–30 (2010)
Zhou, L., Gong, Z. R., Liu, Y. X., Sun, C. P. & Nori, F. Controllable scattering of a single photon inside a one-dimensional resonator waveguide. Phys. Rev. Lett. 101, 100501 (2008)
Zhou, L., Dong, H., Liu, Y. X., Sun, C. P. & Nori, F. Quantum supercavity with atomic mirrors. Phys. Rev. A 78, 063827 (2008)
Shen, J. T. & Fan, S. Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits. Phys. Rev. Lett. 95, 213001 (2005)
Astafiev, O. et al. Resonance fluorescence of a single artificial atom. Science 327, 840–843 (2010)
Wallraff, A. et al. Approaching unit visibility for control of a superconducting qubit with dispersive readout. Phys. Rev. Lett. 95, 060501 (2005)
Lupas¸cu, A. et al. Quantum non-demolition measurement of a superconducting two-level system. Nature Phys. 3, 119–125 (2007)
Boulant, N. et al. Quantum nondemolition readout using a Josephson bifurcation amplifier. Phys. Rev. B 76, 014525 (2007)
Siddiqi, I. et al. RF-driven Josephson bifurcation amplifier for quantum measurement. Phys. Rev. Lett. 93, 207002 (2004)
Picot, T., Schouten, R., Harmans, C. J. P. M. & Mooij, J. E. Quantum nondemolition measurement of a superconducting qubit in the weakly projective regime. Phys. Rev. Lett. 105, 040506 (2010)
Il'ichev, E. et al. Continuous monitoring of Rabi oscillations in a Josephson flux qubit. Phys. Rev. Lett. 91, 097906 (2003)
Zagoskin, A. M., Il'ichev, E., McCutcheon, M. W., Young, J. F. & Nori, F. Controlled generation of squeezed states of microwave radiation in a superconducting resonant circuit. Phys. Rev. Lett. 101, 253602 (2008)
Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008)
Ioffe, L. B. et al. Topologically protected quantum bits using Josephson junction arrays. Nature 415, 503–506 (2002)
Gladchenko, S. et al. Superconducting nanocircuits for topologically protected qubits. Nature Phys. 5, 48–53 (2009); published online 30 November 2008.
You, J. Q., Shi, X. F., Hu, X. & Nori, F. Quantum emulation of a spin system with topologically protected ground states using superconducting quantum circuits. Phys. Rev. B 81, 014505 (2010)
Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006)
Nation, P. D., Blencowe, M. P., Rimberg, A. J. & Buks, E. Analogue Hawking radiation in a dc-SQUID array transmission line. Phys. Rev. Lett. 103, 087004 (2009)
Friedman, J. R., Patel, V., Chen, W., Tolpygo, S. K. & Lukens, J. E. Quantum superposition of distinct macroscopic states. Nature 406, 43–46 (2000)
Bertet, P. et al. Dephasing of a superconducting qubit induced by photon noise. Phys. Rev. Lett. 95, 257002 (2005)
Simmonds, R. W. et al. Decoherence in Josephson phase qubits from junction resonators. Phys. Rev. Lett. 93, 077003 (2004)
Genovese, M. Research on hidden variable theories: a review of recent progresses. Phys. Rep. 413, 319–396 (2005)
Wei, L. F., Liu, Y. X. & Nori, F. Testing Bell's inequality in a constantly coupled Josephson circuit by effective single-qubit operations. Phys. Rev. B 72, 104516 (2005)
Kofman, A. G. & Korotkov, A. N. Analysis of Bell inequality violation in superconducting phase qubits. Phys. Rev. A 77, 104502 (2008)
Ansmann, M. et al. Violation of Bell's inequality in Josephson phase qubits. Nature 461, 504–506 (2009)
Neeley, M. et al. Generation of three-qubit entangled states using superconducting phase qubits. Nature 467, 570–573 (2010)
DiCarlo, L. et al. Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature 467, 574–578 (2010)
Leggett, A. J. & Garg, A. Quantum mechanics versus macroscopic realism: is the flux there when nobody looks? Phys. Rev. Lett. 54, 857–860 (1985)
Palacios-Laloy, A. et al. Experimental violation of a Bell's inequality in time with weak measurement. Nature Phys. 6, 442–447 (2010)
Wei, L. F., Maruyama, K., Wang, X. B., You, J. Q. & Nori, F. Testing quantum contextuality with macroscopic superconducting circuits. Phys. Rev. B 81, 174513 (2010)
Acknowledgements
We thank S. Ashhab for comments on the manuscript. J.Q.Y. acknowledges partial support from the National Basic Research Program of China (grant no. 2009CB929300), the National Natural Science Foundation of China (grant no.10625416), the ISTCP (grant no. 2008DFA01930) and the MOE of China (grant no. B06011). F.N. acknowledges partial support from the Laboratory of Physical Sciences, National Security Agency, Army Research Office, DARPA, AFOSR, the National Science Foundation (grant no. 0726909), JSPS-RFBR (contract no. 09-02-92114), a Grant-in-Aid for Scientific Research (S), MEXT Kakenhi on Quantum Cybernetics, and the JSPS through its FIRST programme.
Author information
Authors and Affiliations
Contributions
Both authors developed the framework for the Review, participated in literature review and discussions, and contributed to the writing.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
You, J., Nori, F. Atomic physics and quantum optics using superconducting circuits. Nature 474, 589–597 (2011). https://doi.org/10.1038/nature10122
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature10122