Abstract
First-order difference equations arise in many contexts in the biological, economic and social sciences. Such equations, even though simple and deterministic, can exhibit a surprising array of dynamical behaviour, from stable points, to a bifurcating hierarchy of stable cycles, to apparently random fluctuations. There are consequently many fascinating problems, some concerned with delicate mathematical aspects of the fine structure of the trajectories, and some concerned with the practical implications and applications. This is an interpretive review of them.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
May, R. M., and Oster, G. F., Am. Nat., 110 (in the press).
Varley, G. C., Gradwell, G. R., and Hassell, M. P., Insect Population Ecology (Blackwell, Oxford, 1973).
May, R. M., (ed.), Theoretical Ecology: Principles and Applications (Blackwell, Oxford, 1976).
Guckenheimer, J., Oster, G. F., and Ipaktchi, A., Theor. Pop. Biol. (in the press).
Oster, G. F., Ipaktchi, A., and Rocklin, I., Theor. Pop. Biol. (in the press).
Asmussen, M. A., and Feldman, M. W., J. theor. Biol. (in the press).
Hoppensteadt, F. C., Mathematical Theories of Populations: Demographics, Genetics and Epidemics (SIAM, Philadelphia, 1975).
Samuelson, P. A., Foundations of Economic Analysis (Harvard University Press, Cambridge, Massachusetts, 1947).
Goodwin, R. E., Econometrica, 19, 1–17 (1951).
Baumol, W. J., Economic Dynamics, 3rd ed. (Macmillan, New York, 1970).
See, for example, Kemeny, J., and Snell, J. L., Mathematical Models in the Social Sciences (MIT Press, Cambridge, Massachusetts, 1972).
Chaundy, T. W., and Phillips, E., Q. Jl Math. Oxford, 7, 74–80 (1936).
Myrberg, P. J., Ann. Akad. Sc. Fennicae, A, I, No. 336/3 (1963).
Myrberg, P. J., Ann. Akad. Sc. Fennicae, A, I, No. 259 (1958).
Lorenz, E. N., J. Atmos. Sci., 20, 130–141 (1963); Tellus, 16, 1–11 (1964).
Metropolis, N., Stein, M. L., and Stein, P. R., J. Combinatorial Theory, 15(A), 25–44 (1973).
Maynard Smith, J., Mathematical Ideas in Biology (Cambridge University Press, Cambridge, 1968).
Krebs, C. J., Ecology (Harper and Row, New York, 1972).
May, R. M., Am. Nat., 107, 46–57 (1972).
Li, T.-Y., and Yorke, J. A., Am. Math. Monthly, 82, 985–992 (1975).
Hoppensteadt, F. C., and Hyman, J. M., (Courant Institute, New York University: preprint, 1975).
Smale, S., and Williams, R.,(Department of Mathematics, Berkeley: preprint, 1976).
May, R. M., Science, 186, 645–647 (1974).
Moran, P. A. P., Biometrics, 6, 250–258 (1950).
Ricker, W. E., J. Fish. Res. Bd. Can., 11, 559–623 (1954).
Cook, L. M., Nature, 207, 316 (1965).
Macfadyen, A., Animal Ecology: Aims and Methods (Pitman, London, 1963).
May, R. M., J. theor. Biol., 51, 511–524 (1975).
Guckenheimer, J., Proc. AMS Symposia in Pure Math., XIV, 95–124 (1970).
Gilbert, E. N., and Riordan, J., Illinois J. Math., 5, 657–667 (1961).
Preston, C. J., (King's College, Cambridge: preprint, 1976).
Gumowski, I., and Mira, C., C. r. hebd. Séanc. Acad. Sci., Paris, 281a, 45–48 (1975); 282a, 219–222 (1976).
Layzer, D., Sci. Am., 233(6), 56–69 (1975).
Ulam, S. M., Proc. Int. Congr. Math. 1950, Cambridge, Mass. ; Vol. II, pp. 264–273 (AMS, Providence R. I., 1950).
Ulam, S. M., and von Neumann, J., Bull. Am. math. Soc. (abstr.), 53, 1120 (1947).
Kac, M., Ann. Math., 47, 33–49 (1946).
May, R. M., Science, 181, 1074 (1973).
Hassell, M. P., J. Anim. Ecol., 44, 283–296 (1974).
Hassell, M. P., Lawton, J. H., and May, R. M., J. Anim. Ecol. (in the press).
Ruelle, D., and Takens, F., Comm. math. Phys., 20, 167–192 (1971).
Landau, L. D., and Lifshitz, E. M., Fluid Mechanics (Pergamon, London, 1959).
Martin, P. C., Proc. Int. Conf. on Statistical Physics, 1975, Budapest (Hungarian Acad. Sci., Budapest, in the press).
Southwood, T. R. E., in Insects, Science and Society (edit. by Pimentel, D.), 151–199 (Academic, New York, 1975).
Metropolis, N., Stein, M. L., and Stein, P. R., Numer. Math., 10, 1–19 (1967).
Gumowski, I., and Mira, C., Automatica, 5, 303–317 (1969).
Stein, P. R., and Ulam, S. M., Rosprawy Mat., 39, 1–66 (1964).
Beddington, J. R., Free, C. A., and Lawton, J. H., Nature, 255, 58–60 (1975).
Hirsch, M. W., and Smale, S., Differential Equations, Dynamical Systems and Linear Algebra (Academic, New York, 1974).
Kolata, G. B., Science, 189, 984–985 (1975).
Smale, S., (Department of Mathematics, Berkeley: preprint, 1976).
May, R. M., and Leonard, W. J., SIAM J. Appl. Math., 29, 243–253 (1975).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
May, R. Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976). https://doi.org/10.1038/261459a0
Issue Date:
DOI: https://doi.org/10.1038/261459a0
This article is cited by
-
How population size shapes the evolution of guppy fish
Nature (2024)
-
Highly-integrable analogue reservoir circuits based on a simple cycle architecture
Scientific Reports (2024)
-
Stochastic SIV in-host model of dengue virus transmission
International Journal of Dynamics and Control (2024)
-
Unified multi-cavity hyperchaotic map based on open-loop coupling
Nonlinear Dynamics (2024)
-
Hyperchaotic bilateral random low-rank approximation random sequence generation method and its application on compressive ghost imaging
Nonlinear Dynamics (2024)