The implementation of particle-tracking techniques with deep neural networks is a promising way to determine particle motion within complex flow structures. A graph neural network-enhanced method enables accurate particle tracking by significantly reducing the number of lost trajectories.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout

References
Liang, L., Xu, C. & Cai, S. Nat. Mach. Intell. 5, 505–517 (2023).
Cai, S., Zhou, S., Xu, C. & Gao, Q. Exp. Fluids 60, 73 (2019).
Lagemann, C., Lagemann, K., Mukherjee, S. & Schröder, W. Nat. Mach. Intell. 3, 641 (2021).
Gim, Y., Jang, D. K., Sohn, D. K., Kim, H. & Ko, H. S. Exp. Fluids 61, 26 (2020).
Qi, C. R., Su, H., Mo, K. & Guibas, L. J. in Proc. IEEE Conf. Computer Vision and Pattern Recognition 652–660 (2017).
Liu, X., Qi, C. R. & Guibas, L. J. in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition 529–537 (2019).
Puy, G., Boulch, A. & Marlet, R. in European Conf. Computer Vision 527–544 (Springer, 2020).
Wu, W., Wang, Z. Y., Li, Z., Liu, W. &. Fuxin, L. in Proc. Computer Vision ECCV 2020: 16th European Conference part V 16, 88–107 (2020).
Wei, Y., Wang, Z., Rao, Y., Lu, J. & Zhou, J. in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition 6954–6963 (2021).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Rights and permissions
About this article
Cite this article
Atis, S., Agostini, L. Catching up with missing particles. Nat Mach Intell 6, 13–14 (2024). https://doi.org/10.1038/s42256-023-00770-x
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42256-023-00770-x