Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Exploring mechanisms of psychedelic action using neuroimaging

Abstract

Modern psychedelic research and clinical development is at a crucial inflection point, with great potential for the treatment of many mental illnesses demonstrated but significant questions that remain unresolved. Neuroimaging has been pivotal in the modern era of psychedelic research, providing crucial insights into the acute effects of these drugs that revealed translational, clinical potential. Here we review this evidence from functional magnetic resonance imaging, positron emission tomography and magnetoencephalography/electroencephalography studies and describe how these findings inform computational models of both the acute action of psychedelics and their longer-term therapeutic effects. This approach, based on multi-modal neuroimaging, provides a solid evidence base for these therapies as they move forwards, as well as a fuller understanding of the powerful effects of psychedelics on the phenomenology of human consciousness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of fMRI implementation, analysis methods and key findings relating to psychedelic drug administration.
Fig. 2: Overview of MEG/EEG implementation, analysis methods and key findings relating to acute psychedelic administration.
Fig. 3: Overview of PET method, examples of application in pharmacology research and key findings relating to psychedelic drug use.
Fig. 4: Model of the action of psychedelic therapy in the treatment of depression.

Similar content being viewed by others

References

  1. Ko, K., Knight, G., Rucker, J. J. & Cleare, A. J. Psychedelics, mystical experience, and therapeutic efficacy: a systematic review. Front. Psychiatry 13, 917199 (2022).

    PubMed  PubMed Central  Google Scholar 

  2. Johnson, M. W. in Disruptive Psychopharmacology Vol. 56 (eds Barrett, F. S. & Preller, K. H.) 213–227 (Springer, 2022).

  3. Holze, F., Gasser, P., Müller, F., Dolder, P. C. & Liechti, M. E. Lysergic acid diethylamide-assisted therapy in patients with anxiety with and without a life-threatening illness: a randomized, double-blind, placebo-controlled phase II study. Biol. Psychiatry 93, 215–223 (2023).

    CAS  PubMed  Google Scholar 

  4. Moreno, F. A., Wiegand, C. B., Taitano, E. K. & Delgado, P. L. Safety, tolerability, and efficacy of psilocybin in 9 patients with obsessive–compulsive disorder. J. Clin. Psychiatry 67, 1735–1740 (2006).

    CAS  PubMed  Google Scholar 

  5. COMPASS Pathways to launchphase 2 trial of COMP360 psilocybin therapy for post-traumatic stress disorder. COMPASS News Archive https://compasspathways.com/trial-comp360-psilocybin-therapy-post-traumatic-stress-disorder/ (2021).

  6. Spriggs, M. J. et al. Study protocol for ‘psilocybin as a treatment for anorexia nervosa: a pilot study’. Front. Psychiatry 12, 735523 (2021).

    PubMed  PubMed Central  Google Scholar 

  7. Mitchell, J. M. et al. MDMA-assisted therapy for severe PTSD: a randomized, double-blind, placebo-controlled phase 3 study. Nat. Med. 27, 1025–1033 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Tupper, K. & Labate, B. Ayahuasca, psychedelic studies and health sciences: the politics of knowledge and inquiry into an Amazonian plant brew. Curr. Drug Abuse Rev. 7, 71–80 (2014).

    PubMed  Google Scholar 

  9. Samorini, G. The oldest archeological data evidencing the relationship of Homo sapiens with psychoactive plants: a worldwide overview. J. Psychedelic Stud. 3, 63–80 (2019).

    Google Scholar 

  10. Schultes, R. E. & Hofmann, A. Plants of the Gods: Their Sacred, Healing, and Hallucinogenic Powers (Inner Traditions, 1992).

  11. Grinspoon, L. & Bakalar, J. B. The psychedelic drug therapies. Curr. Psychiatr. Ther. 20, 275–283 (1981).

    CAS  PubMed  Google Scholar 

  12. Sessa, B. in Handbuch Psychoaktive Substanzen (eds von Heyden, M. et al.) 1–26 (Springer, 2016).

  13. Oram, M. Efficacy and enlightenment: LSD psychotherapy and the drug amendments of 1962. J. Hist. Med. Allied Sci. 69, 221–250 (2014).

    PubMed  Google Scholar 

  14. Nutt, D. J., King, L. A. & Nichols, D. E. Effects of Schedule I drug laws on neuroscience research and treatment innovation. Nat. Rev. Neurosci. 14, 577–585 (2013).

    CAS  PubMed  Google Scholar 

  15. Fink, M. EEG and human psychopharmacology. Annu. Rev. Pharmacol. 9, 241–258 (1969).

    CAS  PubMed  Google Scholar 

  16. Schwarz, B. E., Sem-Jacobsen, C. W. & Petersen, M. C. Effects of mescaline, LSD-25, and adrenochrome on depth electrograms in man. AMA Arch. Neurol. Psychiatry 75, 579–587 (1956).

    CAS  PubMed  Google Scholar 

  17. Sessa, B. Can psychedelics have a role in psychiatry once again? Br. J. Psychiatry 186, 457–458 (2005).

    PubMed  Google Scholar 

  18. Vollenweider, F. X., Vollenweider-Scherpenhuyzen, M. F., Bäbler, A., Vogel, H. & Hell, D. Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. Neuroreport 9, 3897–3902 (1998).

    CAS  PubMed  Google Scholar 

  19. Madsen, M. K. et al. Psychedelic effects of psilocybin correlate with serotonin 2A receptor occupancy and plasma psilocin levels. Neuropsychopharmacology 44, 1328–1334 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Quednow, B. B., Kometer, M., Geyer, M. A. & Vollenweider, F. X. Psilocybin-induced deficits in automatic and controlled inhibition are attenuated by ketanserin in healthy human volunteers. Neuropsychopharmacology 37, 630–640 (2012).

    CAS  PubMed  Google Scholar 

  21. Preller, K. H. et al. The fabric of meaning and subjective effects in LSD-induced states depend on serotonin 2A receptor activation. Curr. Biol. 27, 451–457 (2017).

    CAS  PubMed  Google Scholar 

  22. Logothetis, N. K. What we can do and what we cannot do with fMRI. Nature 453, 869–878 (2008).

    CAS  PubMed  ADS  Google Scholar 

  23. Jones, T. The role of positron emission tomography within the spectrum of medical imaging. Eur. J. Nucl. Med. 23, 207–211 (1996).

    CAS  PubMed  Google Scholar 

  24. Carhart-Harris, R. et al. Neural correlates of the LSD experience revealed by multimodal neuroimaging. Proc. Natl Acad. Sci. USA 113, 4853–4858 (2016).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  25. Carhart-Harris, R. et al. Implications for psychedelic-assisted psychotherapy: functional magnetic resonance imaging study with psilocybin. Br. J. Psychiatry 200, 238–244 (2012).

    CAS  PubMed  Google Scholar 

  26. Mason, N. et al. Spontaneous and deliberate creative cognition during and after psilocybin exposure. Transl. Psychiatry 11, 209 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Müller, F., Dolder, P. C., Schmidt, A., Liechti, M. E. & Borgwardt, S. Altered network hub connectivity after acute LSD administration. Neuroimage Clin. 18, 694–701 (2018).

    PubMed  PubMed Central  Google Scholar 

  28. Timmermann, C. et al. Human brain effects of DMT assessed via EEG-fMRI. Proc. Natl Acad. Sci. USA 120, e2218949120 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Friston, K. J. Functional and effective connectivity in neuroimaging: a synthesis. Hum. Brain Mapp. 2, 56–78 (1994).

    Google Scholar 

  30. Wolters, A. F. et al. Resting-state fMRI in Parkinson’s disease patients with cognitive impairment: a meta-analysis. Parkinsonism Relat. Disord. 62, 16–27 (2019).

    PubMed  Google Scholar 

  31. Khalili‐Mahani, N. et al. Biomarkers, designs, and interpretations of resting‐state fMRI in translational pharmacological research: a review of state‐of‐the‐art, challenges, and opportunities for studying brain chemistry. Hum. Brain Mapp. 38, 2276–2325 (2017).

    PubMed  PubMed Central  Google Scholar 

  32. Fox, M. D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl Acad. Sci. USA 102, 9673–9678 (2005).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  33. Sridharan, D., Levitin, D. J. & Menon, V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc. Natl Acad. Sci. USA 105, 12569–12574 (2008).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  34. Roseman, L. et al. The effects of psilocybin and MDMA on between-network resting state functional connectivity in healthy volunteers. Front. Hum. Neurosci. 8, 204 (2014).

    PubMed  PubMed Central  Google Scholar 

  35. Petri, G. et al. Homological scaffolds of brain functional networks. J. R. Soc. Interface 11, 20140873 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. McCullough, D. E.-W. et al. Psychedelic resting-state neuroimaging: a review and perspective on balancing replication and novel analyses. Neurosci. Biobehav. Rev. 138, 104689 (2022).

    Google Scholar 

  37. Madsen, M. K. et al. Psilocybin-induced changes in brain network integrity and segregation correlate with plasma psilocin level and psychedelic experience. Eur. Neuropsychopharmacol. 50, 121–132 (2021).

    CAS  PubMed  Google Scholar 

  38. Palhano-Fontes, F. et al. The psychedelic state induced by ayahuasca modulates the activity and connectivity of the default mode network. PLoS ONE 10, e0118143 (2015).

    PubMed  PubMed Central  Google Scholar 

  39. Klaassens, B. L. et al. Single-dose serotonergic stimulation shows widespread effects on functional brain connectivity. Neuroimage 122, 440–450 (2015).

    PubMed  Google Scholar 

  40. Müller, F. et al. MDMA-induced changes in within-network connectivity contradict the specificity of these alterations for the effects of serotonergic hallucinogens. Neuropsychopharmacology 46, 545–553 (2021).

    PubMed  Google Scholar 

  41. Bonhomme, V. et al. Resting-state network-specific breakdown of functional connectivity during ketamine alteration of consciousness in volunteers. Anesthesiology 125, 873–888 (2016).

    PubMed  Google Scholar 

  42. Forsyth, A. et al. Modulation of simultaneously collected hemodynamic and electrophysiological functional connectivity by ketamine and midazolam. Hum. Brain Mapp. 41, 1472–1494 (2020).

    PubMed  Google Scholar 

  43. Preller, K. H. et al. Psilocybin induces time-dependent changes in global functional connectivity. Biol. Psychiatry 88, 197–207 (2020).

    CAS  PubMed  Google Scholar 

  44. Tagliazucchi, E. et al. Increased global functional connectivity correlates with LSD-induced ego dissolution. Curr. Biol. 26, 1043–1050 (2016).

    CAS  PubMed  Google Scholar 

  45. Margulies, D. S. et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl Acad. Sci. USA 113, 12574–12579 (2016).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  46. Girn, M. et al. A complex systems perspective on psychedelic brain action. Trends Cogn. Sci. 27, 433–445 (2023).

    PubMed  Google Scholar 

  47. Lord, L.-D. et al. Dynamical exploration of the repertoire of brain networks at rest is modulated by psilocybin. Neuroimage 199, 127–142 (2019).

    CAS  PubMed  Google Scholar 

  48. Tagliazucchi, E., Carhart‐Harris, R., Leech, R., Nutt, D. & Chialvo, D. R. Enhanced repertoire of brain dynamical states during the psychedelic experience. Hum. Brain Mapp. 35, 5442–5456 (2014).

    PubMed  PubMed Central  Google Scholar 

  49. Atasoy, S., Vohryzek, J., Deco, G., Carhart-Harris, R. L. & Kringelbach, M. L. Common neural signatures of psychedelics: frequency-specific energy changes and repertoire expansion revealed using connectome-harmonic decomposition. Prog. Brain Res. 242, 97–120 (2018).

    PubMed  Google Scholar 

  50. Carhart-Harris, R. L. The entropic brain – revisited. Neuropharmacology 142, 167–178 (2018).

    CAS  PubMed  Google Scholar 

  51. Carhart-Harris, R. L. et al. The entropic brain: a theory of conscious states informed by neuroimaging research with psychedelic drugs. Front. Hum. Neurosci. 8, 20 (2014).

    PubMed  PubMed Central  Google Scholar 

  52. Luppi, A. I. et al. LSD alters dynamic integration and segregation in the human brain. Neuroimage 227, 117653 (2021).

    PubMed  Google Scholar 

  53. Viol, A., Palhano-Fontes, F., Onias, H., de Araujo, D. B. & Viswanathan, G. Shannon entropy of brain functional complex networks under the influence of the psychedelic Ayahuasca. Sci. Rep. 7, 7388 (2017).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  54. Kaelen, M. et al. Effects of LSD on music-evoked brain activity. Preprint at bioRxiv https://doi.org/10.1101/153031 (2017).

  55. Kaelen, M. et al. LSD modulates music-induced imagery via changes in parahippocampal connectivity. Eur. Neuropsychopharmacol. 26, 1099–1109 (2016).

    CAS  PubMed  Google Scholar 

  56. Preller, K. H. et al. Effects of serotonin 2A/1A receptor stimulation on social exclusion processing. Proc. Natl Acad. Sci. USA 113, 5119–5124 (2016).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  57. Preller, K. H. & Vollenweider, F. X. in Behavioral Neurobiology of Psychedelic Drugs Vol. 36 (eds Halberstadt, A. L. et al.) 221–256 (Springer, 2018).

  58. Kraehenmann, R. et al. Psilocybin-induced decrease in amygdala reactivity correlates with enhanced positive mood in healthy volunteers. Biol. Psychiatry 78, 572–581 (2015).

    CAS  PubMed  Google Scholar 

  59. Scheidegger, M. et al. Ketamine administration reduces amygdalo‐hippocampal reactivity to emotional stimulation. Hum. Brain Mapp. 37, 1941–1952 (2016).

    PubMed  PubMed Central  Google Scholar 

  60. Carhart-Harris, R. L. et al. The effect of acutely administered MDMA on subjective and BOLD-fMRI responses to favourite and worst autobiographical memories. Int. J. Neuropsychopharmacol. 17, 527–540 (2014).

    CAS  PubMed  Google Scholar 

  61. Li, N., Jin, D., Wei, J., Huang, Y. & Xu, J. Functional brain abnormalities in major depressive disorder using a multiscale community detection approach. Neuroscience 501, 1–10 (2022).

    CAS  PubMed  Google Scholar 

  62. Ye, M. et al. Changes of functional brain networks in major depressive disorder: a graph theoretical analysis of resting-state fMRI. PLoS ONE 10, e0133775 (2015).

    PubMed  PubMed Central  Google Scholar 

  63. Liang, X. et al. Interactions between the salience and default-mode networks are disrupted in cocaine addiction. J. Neurosci. 35, 8081–8090 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Reggente, N. et al. Multivariate resting-state functional connectivity predicts response to cognitive behavioral therapy in obsessive–compulsive disorder. Proc. Natl Acad. Sci. USA 115, 2222–2227 (2018).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  65. Doucet, G. E., Moser, D. A., Luber, M. J., Leibu, E. & Frangou, S. Baseline brain structural and functional predictors of clinical outcome in the early course of schizophrenia. Mol. Psychiatry 25, 863–872 (2020).

    PubMed  Google Scholar 

  66. Gallen, C. L. & D’Esposito, M. Brain modularity: a biomarker of intervention-related plasticity. Trends Cogn. Sci. 23, 293–304 (2019).

    PubMed  PubMed Central  Google Scholar 

  67. Daws, R. E. et al. Increased global integration in the brain after psilocybin therapy for depression. Nat. Med. 28, 844–851 (2022).

    CAS  PubMed  Google Scholar 

  68. Carhart-Harris, R. L. et al. Psilocybin with psychological support for treatment-resistant depression: an open-label feasibility study. Lancet Psychiatry 3, 619–627 (2016).

    PubMed  Google Scholar 

  69. Carhart-Harris, R. et al. Trial of psilocybin versus escitalopram for depression. N. Engl. J. Med. 384, 1402–1411 (2021).

    CAS  PubMed  Google Scholar 

  70. Doss, M. K., Barrett, F. S. & Corlett, P. R. Skepticism about recent evidence that psilocybin ‘liberates’ depressed minds. ACS Chem. Neurosci. 13, 2540–2543 (2022).

    CAS  PubMed  Google Scholar 

  71. Huang, H. et al. Increased resting-state global functional connectivity density of default mode network in schizophrenia subjects treated with electroconvulsive therapy. Schizophr. Res. 197, 192–199 (2018).

    PubMed  Google Scholar 

  72. Xu, J. et al. Electroconvulsive therapy modulates functional interactions between submodules of the emotion regulation network in major depressive disorder. Transl. Psychiatry 10, 271 (2020).

    PubMed  PubMed Central  Google Scholar 

  73. Carhart-Harris, R. L. et al. Psilocybin for treatment-resistant depression: fMRI-measured brain mechanisms. Sci. Rep. 7, 13187 (2017).

    PubMed  PubMed Central  ADS  Google Scholar 

  74. Doss, M. K. et al. Psilocybin therapy increases cognitive and neural flexibility in patients with major depressive disorder. Transl. Psychiatry 11, 574 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Roseman, L., Demetriou, L., Wall, M. B., Nutt, D. J. & Carhart-Harris, R. L. Increased amygdala responses to emotional faces after psilocybin for treatment-resistant depression. Neuropharmacology 142, 263–269 (2018).

    CAS  PubMed  Google Scholar 

  76. Mertens, L. J. et al. Therapeutic mechanisms of psilocybin: changes in amygdala and prefrontal functional connectivity during emotional processing after psilocybin for treatment-resistant depression. J. Psychopharmacol. 34, 167–180 (2020).

    CAS  PubMed  Google Scholar 

  77. Wall, M. B. et al. Increased low-frequency brain responses to music after psilocybin therapy for depression. J. Affect. Disord. 333, 321–330 (2023).

    CAS  PubMed  Google Scholar 

  78. Barrett, F. S., Doss, M. K., Sepeda, N. D., Pekar, J. J. & Griffiths, R. R. Emotions and brain function are altered up to one month after a single high dose of psilocybin. Sci. Rep. 10, 2214 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  79. Pasquini, L., Palhano-Fontes, F. & Araujo, D. B. Subacute effects of the psychedelic ayahuasca on the salience and default mode networks. J. Psychopharmacol. 34, 623–635 (2020).

    PubMed  Google Scholar 

  80. Murray, C. H. et al. Low doses of LSD reduce broadband oscillatory power and modulate event-related potentials in healthy adults. Psychopharmacology 239, 1735–1747 (2022).

    CAS  PubMed  Google Scholar 

  81. Muthukumaraswamy, S. D. et al. Broadband cortical desynchronization underlies the human psychedelic state. J. Neurosci. 33, 15171–15183 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Riba, J. et al. Topographic pharmaco‐EEG mapping of the effects of the South American psychoactive beverage ayahuasca in healthy volunteers. Br. J. Clin. Pharmacol. 53, 613–628 (2002).

    PubMed  PubMed Central  Google Scholar 

  83. Timmermann, C. et al. Neural correlates of the DMT experience assessed with multivariate EEG. Sci. Rep. 9, 16324 (2019).

    PubMed  PubMed Central  ADS  Google Scholar 

  84. Kometer, M., Pokorny, T., Seifritz, E. & Volleinweider, F. X. Psilocybin-induced spiritual experiences and insightfulness are associated with synchronization of neuronal oscillations. Psychopharmacology 232, 3663–3676 (2015).

    CAS  PubMed  Google Scholar 

  85. Pallavicini, C. et al. Neural and subjective effects of inhaled N,N-dimethyltryptamine in natural settings. J. Psychopharmacol. 35, 406–420 (2021).

    CAS  PubMed  Google Scholar 

  86. Schenberg, E. E. et al. Acute biphasic effects of ayahuasca. PLoS ONE 10, e0137202 (2015).

    PubMed  PubMed Central  Google Scholar 

  87. Muthukumaraswamy, S. D. The use of magnetoencephalography in the study of psychopharmacology (pharmaco-MEG). J. Psychopharmacol. 28, 815–829 (2014).

    CAS  PubMed  Google Scholar 

  88. Kometer, M., Schmidt, A., Jäncke, L. & Vollenweider, F. X. Activation of serotonin 2A receptors underlies the psilocybin-induced effects on α oscillations, N170 visual-evoked potentials, and visual hallucinations. J. Neurosci. 33, 10544–10551 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Valle, M. et al. Inhibition of alpha oscillations through serotonin-2A receptor activation underlies the visual effects of ayahuasca in humans. Eur. Neuropsychopharmacol. 26, 1161–1175 (2016).

    CAS  PubMed  Google Scholar 

  90. Pfurtscheller, G., Stancak, A. Jr & Neuper, C. Event-related synchronization (ERS) in the alpha band—an electrophysiological correlate of cortical idling: a review. Int. J. Psychophysiol. 24, 39–46 (1996).

    CAS  PubMed  Google Scholar 

  91. Buzsáki, G. Rhythms of the Brain (Oxford Univ. Press, 2006).

  92. Laufs, H. Endogenous brain oscillations and related networks detected by surface EEG‐combined fMRI. Hum. Brain Mapp. 29, 762–769 (2008).

    PubMed  PubMed Central  Google Scholar 

  93. Friston, K. A theory of cortical responses. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 815–836 (2005).

    PubMed  PubMed Central  Google Scholar 

  94. Hohwy, J. The Predictive Mind (Oxford Univ. Press, 2013).

  95. Carhart-Harris, R. L. & Friston, K. REBUS and the anarchic brain: toward a unified model of the brain action of psychedelics. Pharmacol. Rev. 71, 316–344 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Bastos, A. M., Lundqvist, M., Waite, A. S., Kopell, N. & Miller, E. K. Layer and rhythm specificity for predictive routing. Proc. Natl Acad. Sci. USA 117, 31459–31469 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  97. Bastos, A. M. et al. Canonical microcircuits for predictive coding. Neuron 76, 695–711 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Timmermann, C. et al. LSD modulates effective connectivity and neural adaptation mechanisms in an auditory oddball paradigm. Neuropharmacology 142, 251–262 (2018).

    CAS  PubMed  Google Scholar 

  99. Alonso, J. F., Romero, S., Mañanas, M. À. & Riba, J. Serotonergic psychedelics temporarily modify information transfer in humans. Int. J. Neuropsychopharmacol. 18, pyv039 (2015).

    PubMed  PubMed Central  Google Scholar 

  100. Alamia, A., Timmermann, C., Nutt, D. J., VanRullen, R. & Carhart-Harris, R. L. DMT alters cortical travelling waves. eLife 9, e59784 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Schartner, M. M., Carhart-Harris, R. L., Barrett, A. B., Seth, A. K. & Muthukumaraswamy, S. D. Increased spontaneous MEG signal diversity for psychoactive doses of ketamine, LSD and psilocybin. Sci. Rep. 7, 46421 (2017).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  102. Schartner, M. et al. Complexity of multi-dimensional spontaneous EEG decreases during propofol induced general anaesthesia. PLoS ONE 10, e0133532 (2015).

    PubMed  PubMed Central  Google Scholar 

  103. Schartner, M. M. et al. Global and local complexity of intracranial EEG decreases during NREM sleep. Neurosci. Conscious. 2017, niw022 (2017).

    PubMed  PubMed Central  Google Scholar 

  104. Scott, G. & Carhart-Harris, R. L. Psychedelics as a treatment for disorders of consciousness. Neurosci. Conscious. 2019, niz003 (2019).

    PubMed  PubMed Central  Google Scholar 

  105. Mediano, P. A. M. et al. Spectrally and temporally resolved estimation of neural signal diversity. Preprint at bioRxiv https://doi.org/10.1101/2023.03.30.534922 (2023).

  106. Timmermann, C. et al. A neurophenomenological approach to non-ordinary states of consciousness: hypnosis, meditation, and psychedelics. Trends Cogn. Sci. 27, 139–159 (2023).

    PubMed  Google Scholar 

  107. Garrido, M. I. et al. The functional anatomy of the MMN: a DCM study of the roving paradigm. Neuroimage 42, 936–944 (2008).

    PubMed  Google Scholar 

  108. Heekeren, K. et al. Mismatch negativity generation in the human 5HT2A agonist and NMDA antagonist model of psychosis. Psychopharmacology 199, 77–88 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Timmermann Slater, C. B. The Effects of DMT and Associated Psychedelics on the Human Mind and Brain. PhD thesis, Imperial College London (2020).

  110. Bravermanová, A. et al. Psilocybin disrupts sensory and higher order cognitive processing but not pre-attentive cognitive processing—study on P300 and mismatch negativity in healthy volunteers. Psychopharmacology 235, 491–503 (2018).

    PubMed  Google Scholar 

  111. Cavanna, F. et al. Microdosing with psilocybin mushrooms: a double-blind placebo-controlled study. Transl. Psychiatry 12, 307 (2022).

    PubMed  PubMed Central  Google Scholar 

  112. Kometer, M., Cahn, B. R., Andel, D., Carter, O. L. & Vollenweider, F. X. The 5-HT2A/1A agonist psilocybin disrupts modal object completion associated with visual hallucinations. Biol. Psychiatry 69, 399–406 (2011).

    CAS  PubMed  Google Scholar 

  113. Kometer, M. et al. Psilocybin biases facial recognition, goal-directed behavior, and mood state toward positive relative to negative emotions through different serotonergic subreceptors. Biol. Psychiatry 72, 898–906 (2012).

    CAS  PubMed  Google Scholar 

  114. Ettrup, A. et al. Serotonin 2A receptor agonist binding in the human brain with [11C]Cimbi-36. J. Cerebr. Blood Flow Metab. 34, 1188–1196 (2014).

    CAS  Google Scholar 

  115. Ettrup, A. et al. Preclinical safety assessment of the 5-HT2A receptor agonist PET radioligand [11C]Cimbi-36. Mol. Imaging Biol. 15, 376–383 (2013).

    PubMed  Google Scholar 

  116. Finnema, S. J. et al. Characterization of [11C]Cimbi-36 as an agonist PET radioligand for the 5-HT2A and 5-HT2C receptors in the nonhuman primate brain. Neuroimage 84, 342–353 (2014).

    CAS  PubMed  Google Scholar 

  117. Cumming, P. et al. Molecular and functional imaging studies of psychedelic drug action in animals and humans. Molecules 26, 2451 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Paterson, L. M., Kornum, B. R., Nutt, D. J., Pike, V. W. & Knudsen, G. M. 5‐HT radioligands for human brain imaging with PET and SPECT. Med. Res. Rev. 33, 54–111 (2013).

    CAS  PubMed  Google Scholar 

  119. Erritzoe, D. et al. Serotonin release measured in the human brain: a PET study with [11C]CIMBI-36 and d-amphetamine challenge. Neuropsychopharmacology 45, 804–810 (2020).

    CAS  PubMed  Google Scholar 

  120. Erritzoe, D. et al. Brain serotonin release is reduced in patients with depression: a [11C]Cimbi-36 positron emission tomography study with a d-amphetamine challenge. Biol. Psychiatry 93, 1089–1098 (2023).

    CAS  PubMed  Google Scholar 

  121. Deco, G. et al. Whole-brain multimodal neuroimaging model using serotonin receptor maps explains non-linear functional effects of LSD. Curr. Biol. 28, 3065–3074 (2018).

    CAS  PubMed  Google Scholar 

  122. Lawn, T. et al. Differential contributions of serotonergic and dopaminergic functional connectivity to the phenomenology of LSD. Psychopharmacology 239, 1797–1808 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Singleton, S. P. et al. Receptor-informed network control theory links LSD and psilocybin to a flattening of the brain’s control energy landscape. Nat. Commun. 13, 5812 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  124. Raval, N. R. et al. A single dose of psilocybin increases synaptic density and decreases 5-HT2A receptor density in the pig brain. Int. J. Mol. Sci. 22, 835 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Friston, K. & Kiebel, S. Predictive coding under the free-energy principle. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 1211–1221 (2009).

    PubMed  PubMed Central  Google Scholar 

  126. Hohwy, J. & Seth, A. Predictive processing as a systematic basis for identifying the neural correlates of consciousness. Philos. Mind Sci. https://doi.org/10.33735/phimisci.2020.II.64 (2020).

  127. Clark, A. Surfing Uncertainty: Prediction, Action, and the Embodied Mind (Oxford Univ. Press, 2015).

  128. Clark, A. Attention alters predictive processing. Behav. Brain Sci. 39, e234 (2016).

    PubMed  Google Scholar 

  129. Caucheteux, C., Gramfort, A. & King, J.-R. Evidence of a predictive coding hierarchy in the human brain listening to speech. Nat. Hum. Behav. 7, 430–441 (2023).

    PubMed  PubMed Central  Google Scholar 

  130. Carhart-Harris, R. L. et al. Canalization and plasticity in psychopathology. Neuropharmacology 226, 109398 (2023).

    CAS  PubMed  Google Scholar 

  131. Mayer, A., Schwiedrzik, C. M., Wibral, M., Singer, W. & Melloni, L. Expecting to see a letter: alpha oscillations as carriers of top-down sensory predictions. Cereb. Cortex 26, 3146–3160 (2015).

    PubMed  Google Scholar 

  132. Haegens, S. et al. Laminar profile and physiology of the α rhythm in primary visual, auditory, and somatosensory regions of neocortex. J. Neurosci. 35, 14341–14352 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Friston, K. J. Waves of prediction. PLoS Biol. 17, e3000426 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Carhart-Harris, R. L. & Friston, K. J. The default-mode, ego-functions and free-energy: a neurobiological account of Freudian ideas. Brain 133, 1265–1283 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Erritzoe, D. et al. Effects of psilocybin therapy on personality structure. Acta Psychiatr. Scand. 138, 368–378 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. MacLean, K. A., Johnson, M. W. & Griffiths, R. R. Mystical experiences occasioned by the hallucinogen psilocybin lead to increases in the personality domain of openness. J. Psychopharmacol. 25, 1453–1461 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Marstrand-Joergensen, M. R. et al. Default mode network functional connectivity negatively associated with trait openness to experience. Soc. Cogn. Affect. Neurosci. 16, 950–961 (2021).

    PubMed  PubMed Central  Google Scholar 

  138. Erritzoe, D. et al. Recreational use of psychedelics is associated with elevated personality trait openness: exploration of associations with brain serotonin markers. J. Psychopharmacol. 33, 1068–1075 (2019).

    CAS  PubMed  Google Scholar 

  139. Timmermann, C. et al. Psychedelics alter metaphysical beliefs. Sci. Rep. 11, 22166 (2021).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  140. Nayak, S. M., Singh, M., Yaden, D. B. & Griffiths, R. R. Belief changes associated with psychedelic use. J. Psychopharmacol. https://doi.org/10.1177/02698811221131989 (2023).

  141. Beliveau, V. et al. A high-resolution in vivo atlas of the human brain’s serotonin system. J. Neurosci. 37, 120–128 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Wall, M. B. et al. Neuroimaging in psychedelic drug development: past, present, and future. Mol. Psychiatry https://doi.org/10.1038/s41380-023-02271-0 (2023).

  143. Sarparast, A., Thomas, K., Malcolm, B. & Stauffer, C. S. Drug–drug interactions between psychiatric medications and MDMA or psilocybin: a systematic review. Psychopharmacology 239, 1945–1976 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Moujaes, F. et al. Toward mapping neurobehavioral heterogeneity of psychedelic neurobiology in humans. Biol. Psychiatry 93, 1061–1070 (2023).

    CAS  PubMed  Google Scholar 

  145. Gukasyan, N. & Nayak, S. M. Psychedelics, placebo effects, and set and setting: insights from common factors theory of psychotherapy. Transcult. Psychiatry 59, 652–664 (2022).

    PubMed  Google Scholar 

  146. Lydon-Staley, D. et al. Repetitive negative thinking in daily life and functional connectivity among default mode, fronto-parietal, and salience networks. Transl. Psychiatry 9, 234 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Murphy, R. et al. Therapeutic alliance and rapport modulate responses to psilocybin assisted therapy for depression. Front. Pharmacol. 31, 788155 (2022).

    Google Scholar 

  148. Kurtzman, L. Psilocybin rewires the brain for people with depression: study suggests new mechanism for how psychedelics affect the brain. UCSF (11 April 2022); https://www.ucsf.edu/news/2022/04/422606/psilocybin-rewires-brain-people-depression

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors jointly conceived, wrote and edited this Review.

Corresponding author

Correspondence to David Erritzoe.

Ethics declarations

Competing interests

Within the past two years D.E. has received fees for scientific advisory work from the following (novel psychedelic) companies: Mydecine, Field Trip Health, Entheon, SmallPharma Ltd, Aya Biosciences, Clerkenwell Health and Mindstate Design Lab; D.E. has also received an honorarium fee from each of COMPASS Pathways and H. Lundbeck for a talk about psychedelic science. The primary employer of M.B.W. is Invicro LLC, a contract research organization that provides research services to the pharmaceutical and biotechnology industries; M.B.W. has also benefitted from travel expenses provided by COMPASS Pathways. D.J.N. has received consulting fees from Algernon, H. Lundbeck and Beckley Psytech, advisory board fees from COMPASS Pathways and lecture fees from Takeda, and Otsuka and Janssen; D.J.N. also owns stock in Alcarelle, Awakn and Psyched Wellness. R.C.-H. is a scientific advisor to Usona Institute, Journey Colab, Osmind, Maya Health, Beckley Psytech, Anuma, MindState and Entheos Labs.

Peer review

Peer review information

Nature Mental Health thanks Felix Betzler, Gregor Hasler and the other, anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erritzoe, D., Timmermann, C., Godfrey, K. et al. Exploring mechanisms of psychedelic action using neuroimaging. Nat. Mental Health 2, 141–153 (2024). https://doi.org/10.1038/s44220-023-00172-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44220-023-00172-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy