Skip to main content
Log in

Original and restored materials revealed by contactless and micro-invasive methods of the Lady and the Unicorn tapestry “Mon seul désir

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The Lady and the Unicorn tapestry, supposedly manufactured at the end of the fifteenth century, was acquired in 1882 by the National Museum of Middle Ages, Musée de Cluny, in Paris (France). Since their acquisition, these six tapestries have undergone over a dozen restoration campaigns. The invasive action of some of these restoration treatments has contributed to the degradation, which is still visible today. This study focused on Mon seul désir tapestry. The aim was to understand better the restorations, particularly the materials used (fibres and dyes), and to discriminate them from the original medieval ones. The analyses were performed using contactless methods (optical microscopy, hyperspectral imaging [VNIR (400 to 1000 nm) and SWIR (1000 to 2500 nm)] and fluorimetry). A database of reference materials was built to interpret the spectra obtained on the old tapestry. The Myrobolan workshop made a colour chart according to the recipes described in ancient books to facilitate the identification of the dyes. Natural and synthetic dyes were fixed on wool to measure reflectance and fluorescence spectra to constitute a specific database. The restoration zones were mapped in the tapestry thanks to the chemical difference in the materials. The analyses showed wool in the restoration areas and the presence of silk thread to fix the lining. For the red dyes, madder was detected in both medieval and 1889’s restored areas, but cochineal and weld were only found in the latter. A mixture of weld and indigotin was identified in both green areas (medieval and 1889’s restoration) but in a different state of degradation. HPLC–UV–VIS analyses validated the identification of the dyes in both zones. If the same molecules seemed to have been used in both areas, their combination and the weaving were revealed to be different. A chiné technique was employed to approach the colour of the medieval area. Moreover, a different red dye (alizarin) was detected in a more recent restoration area of the tapestry. These new results contributed to further knowledge of this precious tapestry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting with the corresponding author.]

References

  1. J. Zhou, L. Yu, Q. Ding, R. Wang, Textile fiber identification using near-infrared spectroscopy and pattern recognition. Autex Res. J. 19, 201–209 (2019). https://doi.org/10.1515/aut-2018-0055

    Article  Google Scholar 

  2. J.K. Delaney, P. Ricciardi, L. Glinsman, M. Palmer, J. Burke, Use of near infrared reflectance imaging spectroscopy to map wool and silk fibres in historic tapestries. Anal. Methods 8, 7886–7890 (2016). https://doi.org/10.1039/C6AY02066F

    Article  Google Scholar 

  3. A.-M., Hacke, C.M. Carr, A. Brown, Characterisation of metal threads in Renaissance tapestries. Proc Met 415–426 (2004)

  4. M.A. Maynez-Rojas, E. Casanova-González, J.L. Ruvalcaba-Sil, Identification of natural red and purple dyes on textiles by fiber-optics reflectance spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 178, 239–250 (2017). https://doi.org/10.1016/j.saa.2017.02.019

    Article  ADS  Google Scholar 

  5. A. Baroni, V. Comite, V. Guglielmi, M. Casanova, P. Redegalli, P. Fermo, Identification of natural dyes in historical tapestries, a LC-MS/MS approach. J. Phys. Conf. Ser. 2204, 012065 (2022). https://doi.org/10.1088/1742-6596/2204/1/012065

    Article  Google Scholar 

  6. I. Degano, J.J. Łucejko, M.P. Colombini, The unprecedented identification of Safflower dyestuff in a 16th century tapestry through the application of a new reliable diagnostic procedure. J. Cult. Herit. 12, 295–299 (2011). https://doi.org/10.1016/j.culher.2011.02.003

    Article  Google Scholar 

  7. D. Tamburini, J. Dyer, Fibre optic reflectance spectroscopy and multispectral imaging for the non-invasive investigation of Asian colourants in Chinese textiles from Dunhuang (7th-10th century AD). Dyes Pigments 162, 494–511 (2019). https://doi.org/10.1016/j.dyepig.2018.10.054

    Article  Google Scholar 

  8. L. Troalen, A. Hulme, Analysis of historical dyes in heritage objects. Anal. Methods 13, 558–562 (2021). https://doi.org/10.1039/D0AY90167A

    Article  Google Scholar 

  9. A. Vasileiadou, I. Karapanagiotis, A. Zotou, UV-induced degradation of wool and silk dyed with shellfish purple. Dyes Pigments 168, 317–326 (2019). https://doi.org/10.1016/j.dyepig.2019.04.068

    Article  Google Scholar 

  10. H. de La Codre, C. Aupetit, R. Chapoulie, L. Servant, A. Mounier, Lightfastness of Blue Indigo in 18th-century French Tapestries, in Dyes in History and Archaeology 37/40. (Archetype Publications, London, 2023), pp.131–142

    Google Scholar 

  11. M.-Y. Li, Y. Zhao, T. Tong, X.-H. Hou, B.-S. Fang, S.-Q. Wu, X.-Y. Shen, H. Tong, Study of the degradation mechanism of Chinese historic silk (Bombyx mori) for the purpose of conservation. Polym. Degrad. Stab. 98, 727–735 (2013). https://doi.org/10.1016/j.polymdegradstab.2012.12.021

    Article  Google Scholar 

  12. C. Chavanne, Les couleurs de la Tapisserie de Bayeux. Ph.D. in Chemistry, Sorbonne University (2022)

  13. H. de La Codre, Textiles et colorants des tapisseries : développement d’une méthodologie d’analyses sans-contact. Le cas des tapisseries fines dites “Verdures” d’Aubusson. PhD in the physics of archaeomaterials, University of Bordeaux Montaigne [in press] (2023)

  14. M. Hacke, Investigation into the Nature and Ageing of Tapestry Materials (University of Manchester, Doctor of philosophy, 2006)

    Google Scholar 

  15. F. Pozzi, G. Poldi, S. Bruni, E. De Luca, V. Guglielmi, Multi-technique characterization of dyes in ancient Kaitag textiles from Caucasus. Archaeol. Anthropol. Sci. 4, 185–197 (2012). https://doi.org/10.1007/s12520-012-0092-5

    Article  Google Scholar 

  16. F. Sabatini, M. Bacigalupo, I. Degano, A. Javér, M. Hacke, Revealing the organic dye and mordant composition of paracas textiles by a combined analytical approach. Herit. Sci. (2020). https://doi.org/10.21203/rs.3.rs-50791/v1

    Article  Google Scholar 

  17. T. Ferreira, H. Moreiras, A. Manhita, P. Tomaz, J. Mirão, C.B. Dias, A.T. Caldeira, The liturgical cope of D. Teotónio of Braganza: material characterization of a 16th century pluviale. Microsc. Microanal. 21, 2–14 (2015). https://doi.org/10.1017/S1431927614013440

    Article  ADS  Google Scholar 

  18. D. Tamburini, J. Dyer, C. Cartwright, First evidence and characterisation of rare chrome-based colourants used on 19th-century textiles from Myanmar. Dyes Pigments 218, 111472 (2023). https://doi.org/10.1016/j.dyepig.2023.111472

    Article  Google Scholar 

  19. D. Tamburini, A. Davit, B. Turina, G. Vandenbeusch, Compositional and micro-morphological characterisation of red colourants in archaeological textiles from Pharaonic Egypt. Molecules 24, 3761 (2019). https://doi.org/10.3390/molecules24203761

    Article  Google Scholar 

  20. A. Enas Abo El Enen, Technical investigation and conservation of a tapestry textile from the Egytian textile museum. Cairo (2018). https://doi.org/10.5281/zenodo.1409804

  21. N. Fahim, Conservation of a Coptic Tapestry Fragment from Red Monastery Excavation, in Handbook of Museum Textiles, 1st edn., ed. by S. Jose, S. Thomas, P. Pandit, R. Pandey (Wiley, 2022), pp.303–318

    Google Scholar 

  22. F. Joubert, La tenture de la Dame à la Licorne. In: La tapisserie médiévale au Musée de Cluny. Ministère de la culture et de la communication, Editions de la Réunion des musées nationaux, pp 66–92 (1987)

  23. Musée de Cluny - Musée national du Moyen Âge (2013) La Dame à la Licorne comme vous ne l’avez jamais vue. Les six tapisseries restaurées, présentées dans leur nouvel écrin

  24. E. Taburet-Delahaye, La dame à la licorne. Réunion des musées nationaux, Paris (France) (2007)

  25. J. Guiffrey, Histoire de la tapisserie : depuis le moyen âge jusqu’à nos jours. Alfred Mame et fils (1886)

  26. M. Pastoureau, DU BLEU AU NOIR : Éthiques et pratiques de la couleur à la fin du Moyen Âge. pp 9–21 (1988)

  27. M. Harsch, La teinture et les matières tinctoriales à la fin du Moyen Âge - Florence, Toscane (PhD in History and Civilisation, Medieval History, University of Paris, Méditerranée, 2020)

    Google Scholar 

  28. A. Varichon, Couleurs: pigments et teintures dans les mains des peuples. Seuil (2005)

  29. D. Cardon, Le monde des teintures naturelles. Belin (2014)

  30. D. Tamburini, C.M. Shimada, B. McCarthy, The molecular characterization of early synthetic dyes in E. Knecht et al’s textile sample book “A Manual of Dyeing” by high performance liquid chromatography–Diode array detector—Mass spectrometry (HPLC–DAD–MS). Dyes Pigments 190, 109286 (2021). https://doi.org/10.1016/j.dyepig.2021.109286

    Article  Google Scholar 

  31. L. Lalonger, La transition des colorants naturels aux colorants synthétiques et ses répercussions. Mater. Cult. Rev. 40, 19–28 (1994)

    Google Scholar 

  32. R.M. Baker, Nineteenth Century Synthetic Textile Dyes (Doctor of philosophy, University of Southampton, Their History and Identification on Fabric, 2011)

    Google Scholar 

  33. F. Fol, Guide du teinturier: manuel complet des connaissances chimiques indispensables à la pratique de la teinture (Lacroix, Paris, 1872)

    Google Scholar 

  34. C. Vlachou-Mogire, J. Danskin, J.R. Gilchrist, K. Hallett, Mapping materials and dyes on historic tapestries using hyperspectral imaging. Heritage 6, 3159–3182 (2023). https://doi.org/10.3390/heritage6030168

    Article  Google Scholar 

  35. J. Dyer, D. Tamburini, E.R. Oonnell, A. Harrison, A multispectral imaging approach integrated into the study of Late Antique textiles from Egypt. PLoS ONE 13, e0204699 (2018). https://doi.org/10.1371/journal.pone.0204699

    Article  Google Scholar 

  36. H. de La Codre, F. Daniel, R. Chapoulie, L. Servant, A. Mounier, Investigating the materials used in eighteenth-century tapestries from the three French Royal Manufactories: inputs of hyperspectral approaches. Eur. Phys. J. Plus 136, 1193 (2021). https://doi.org/10.1140/epjp/s13360-021-02184-3

    Article  Google Scholar 

  37. H. de La Codre, C. Marembert, P. Claisse, F. Daniel, R. Chapoulie, L. Servant, A. Mounier, Non-invasive characterization of yellow dyes in tapestries of the 18th century: influence of composition on degradation. Color Res. Appl. 46, 613–622 (2021). https://doi.org/10.1002/col.22646

    Article  Google Scholar 

  38. J.K. Delaney, J.G. Zeibel, M. Thoury, R. Littleton, M. Palmer, K.M. Morales, E.R. de la Rie, A. Hoenigswald, Visible and infrared imaging spectroscopy of Picasso’s Harlequin Musician: mapping and identification of artist materials in Situ. Appl. Spectrosc. 64, 584–594 (2010). https://doi.org/10.1366/000370210791414443

    Article  ADS  Google Scholar 

  39. A. Claro, M.J. Melo, S. Schäfer, J.S.S. de Melo, F. Pina, K.J. van den Berg, A. Burnstock, The use of microspectrofluorimetry for the characterization of lake pigments. Talanta 74, 922–929 (2008). https://doi.org/10.1016/j.talanta.2007.07.036

    Article  Google Scholar 

  40. A. Mounier, S. Lazare, G. Le Bourdon, C. Aupetit, L. Servant, F. Daniel, LEDμSF: a new portable device for fragile artworks analyses Application on medieval pigments. Microchem. J. 126, 480–487 (2016). https://doi.org/10.1016/j.microc.2016.01.008

    Article  Google Scholar 

  41. C. Clementi, C. Miliani, A. Romani, U. Santamaria, F. Morresi, K. Mlynarska, G. Favaro, In-situ fluorimetry: a powerful non-invasive diagnostic technique for natural dyes used in artefacts. Spectrochim. Acta A Mol. Biomol. Spectrosc. 71, 2057–2062 (2009). https://doi.org/10.1016/j.saa.2008.08.006

    Article  ADS  Google Scholar 

  42. C. Zaffino, M. Bertagna, V. Guglielmi, M.V. Dozzi, S. Bruni, In-situ spectrofluorimetric identification of natural red dyestuffs in ancient tapestries. Microchem. J. 132, 77–82 (2017). https://doi.org/10.1016/j.microc.2017.01.002

    Article  Google Scholar 

  43. R.D. Gillard, S.M. Hardman, R.G. Thomas, D.E. Watkinson, The detection of dyes by FTIR microscopy. Stud. Conserv. 39, 187–192 (1994). https://doi.org/10.2307/1506597

    Article  Google Scholar 

  44. O.O. Nnorom, G.C. Onuegbu, Authentication of Rothmannia whitfieldii dye extract with FTIR spectroscopy. J. Text. Sci. Technol. 05, 38–47 (2019). https://doi.org/10.4236/jtst.2019.52004

    Article  Google Scholar 

  45. M. Vagnini, C. Miliani, L. Cartechini, P. Rocchi, B.G. Brunetti, A. Sgamellotti, FT-NIR spectroscopy for non-invasive identification of natural polymers and resins in easel paintings. Anal. Bioanal. Chem. 395, 2107–2118 (2009). https://doi.org/10.1007/s00216-009-3145-6

    Article  Google Scholar 

  46. M. Fernandez, Développement du SERS pour l’analyse des colorants et des tanins sur des matériaux du patrimoine. INP-ENSIACET (2022)

  47. F. Casadio, C. Daher, L. Bellot-Gurlet, Raman Spectroscopy of cultural heritage materials: overview of applications and new frontiers in instrumentation, sampling modalities, and data processing. Top. Curr. Chem. 374, 62 (2016). https://doi.org/10.1007/s41061-016-0061-z

    Article  Google Scholar 

  48. M. Leona, J. Stenger, E. Ferloni, Application of surface-enhanced Raman scattering techniques to the ultrasensitive identification of natural dyes in works of art. J. Raman Spectrosc. 37, 981–992 (2006). https://doi.org/10.1002/jrs.1582

    Article  ADS  Google Scholar 

  49. J. Liu, L. Ji, L. Chen, K. Pei, P. Zhao, Y. Zhou, F. Zhao, Identification of yellow dyes in two wall coverings from the Palace Museum: evidence for reconstitution of artifacts. Dyes Pigments 153, 137–143 (2018). https://doi.org/10.1016/j.dyepig.2018.01.057

    Article  Google Scholar 

  50. E.S.B. Ferreira, A.N. Hulme, H. McNab, A. Quye, The natural constituents of historical textile dyes. Chem. Soc. Rev. 33, 329 (2004). https://doi.org/10.1039/b305697j

    Article  Google Scholar 

  51. N. Kahraman, R. Karadag, Characterization of sixteenth to nineteenth century ottoman silk brocades by scanning electron microscopy-energy dispersive x-ray spectroscopy and high-performance liquid chromatography. Anal. Lett. 50, 1553–1567 (2017). https://doi.org/10.1080/00032719.2016.1236264

    Article  Google Scholar 

  52. J. Wouters, C.M. Grzywacz, A. Claro, A comparative investigation of hydrolysis methods to analyze natural organic dyes by HPLC-PDA - nine methods, twelve biological sources, ten dye classes, dyed yarns, pigments and paints. Stud. Conserv. 56, 231–249 (2011). https://doi.org/10.1179/204705811X13110713013353

    Article  Google Scholar 

  53. J. Garçon, La pratique du teinturier Tome III Les recettes types et les procédés spéciaux de teinture (Gauthier-Villars & Fils, Paris, 1897)

    Google Scholar 

  54. E. Knecht, Manual of dyeing: for the use of practical dyers, manufacturers, students and all interested in the art of dyeing (Charles Griffin and company, London, 1917)

    Google Scholar 

  55. A. Mounier, S. Lazare, F. Daniel, LEDµSF : un nouvel outil pour l’étude de la fluorescence UV des matériaux du patrimoine culturel. In: Instrumentation portable. Quels enjeux pour l’archéométrie ?, Éditions des Archives Contemporaines. pp 99–121 (2020)

  56. J.-J. Ezrati, Les effets de la composition spectrale des sources électriques sur la conservation des objets du patrimoine. Lett L’OCIM 5–11 (2013). https://doi.org/10.4000/ocim.1193

  57. J. Workman, L. Weyer, Practical Guide and Spectral Atlas for Interpretive Near-Infrared Spectroscopy, 2nd edn. (CRC Press, Boca Raton, 2012)

    Book  Google Scholar 

  58. M. Aceto, A. Agostino, G. Fenoglio, A. Idone, M. Gulmini, M. Picollo, P. Ricciardi, J.K. Delaney, Characterisation of colourants on illuminated manuscripts by portable fibre optic UV–visible–NIR reflectance spectrophotometry. Anal. Methods 6, 1488 (2014). https://doi.org/10.1039/c3ay41904e

    Article  Google Scholar 

  59. W. Nowik, Dyes | Liquid Chromatography. In: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier (2013)

  60. A. Romani, C. Clementi, C. Miliani, B.G. Brunetti, A. Sgamellotti, G. Favaro, Portable equipment for luminescence lifetime measurements on surfaces. Appl. Spectrosc. 62, 1395–1399 (2008). https://doi.org/10.1366/000370208786822250

    Article  ADS  Google Scholar 

  61. C. Miliani, A. Romani, G. Favaro, A spectrophotometric and fluorimetric study of some anthraquinoid and indigoid colorants used in artistic paintings. Spectrochim. Acta A Mol. Biomol. Spectrosc. 54, 581–588 (1998). https://doi.org/10.1016/S1386-1425(97)00240-0

    Article  ADS  Google Scholar 

  62. C. Miliani, A. Romani, G. Favaro, Acidichromic effects in 1,2-di- and 1,2,4-tri- hydroxyanthraquinones. A spectrophotometric and fluorimetric study. J. Phys. Org. Chem. 13, 141–150 (2000). https://doi.org/10.1002/(SICI)1099-1395(200003)13:3%3c141::AID-POC220%3e3.0.CO;2-J

    Article  Google Scholar 

  63. H.-Y. Jiang, X.-D. Hu, J.-J. Zhu, J. Wan, J.-B. Yao, Studies on the photofading of alizarin, the main component of madder. Dyes Pigments 185, 108940 (2021). https://doi.org/10.1016/j.dyepig.2020.108940

    Article  Google Scholar 

  64. C. Chavanne, L.G. Troalen, I.B. Fronty, P. Buléon, P. Walter, Noninvasive characterization and quantification of anthraquinones in dyed woolen threads by visible diffuse reflectance spectroscopy. Anal Chem 94, 7674–7682 (2022). https://doi.org/10.1021/acs.analchem.2c01073

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to Béatrice de Chancel-Bardelot, curator at the time of this study of the Musée de Cluny in Paris, for authorizing access to the collection. Thanks to the Musée des Abattoirs in Toulouse for their welcome during the analysis campaign. Many thanks to Charlotte Marembert for exchanges and initiation to dyeing during the colour chart sample creation. We are also grateful to Emmanuel Pénicaut, curator at the Mobilier National and Manufactures Nationals, for the access to the dyeing and restoration workshops of the Manufactures des Gobelins, as well as to all his team. Thanks to the Archives Nationales for their welcoming and enabling us to consult the different sources. The authors would also like to sincerely thank Raphaëlle Déjean and Thalia Bajon-Bouzid, private textile conservators-restorers, for their help and availability for this study. We want to thank Francesca Galluzzi for her help and encouragement. Finally, this study received financial support from the French government in the framework of the University of Bordeaux’s IdEx “Investments for the Future” program/GPR Human Past.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pauline Claisse.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Claisse, P., de La Codre, H., Nowik, W. et al. Original and restored materials revealed by contactless and micro-invasive methods of the Lady and the Unicorn tapestry “Mon seul désir”. Eur. Phys. J. Plus 138, 832 (2023). https://doi.org/10.1140/epjp/s13360-023-04435-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04435-x

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy