Abstract
This paper presents a methodology of designing an amplifier integrated with a microstrip filter using an active coupling matrix. The microstrip filter is directly coupled to the active device, and the integrated filter amplifier can achieve filtering as well as matching functionalities, simultaneously, eliminating the need for separate matching networks. The filter amplifier is represented by an active coupling matrix, with additional columns and rows in the matrix corresponding to the active transistor. The matrix can be used to calculate the S-parameter responses (i.e., the return loss and the gain) and the initial dimensions of the integrated device. Moreover, the integration of a filter and an amplifier leads to a reduced loss and a more compact architecture of the devices. An X-band microstrip filter amplifier has been designed and demonstrated as an example. Microstrip technology has been chosen because of its appealing advantages of easy fabrication, low cost, and most importantly, easy integration with active devices.
摘要
提出一种基于有源耦合矩阵的微带集成滤波放大器的设计理论. 通过消除匹配结构, 微带滤波器可直接与放大器耦合, 同时实现滤波和匹配功能. 通过引入附加的行和列表示有源晶体管, 该放大器的拓扑结构可用耦合矩阵综合和表达. 该有源耦合矩阵可用于计算S参数 (回波损耗和增益) 和集成器件的初始物理尺寸. 该集成设计方法有效降低了电磁波损耗, 并且使器件结构更为紧凑. 由于微带线易加工、 低成本、 易于与有源器件集成等优点, 本文设计、 加工并测量了基于微带线工艺的X波段放大器.
Similar content being viewed by others
References
Aljarosha A, Zaman AU, Maaskant R, 2017. A wideband contactless and bondwire-free MMIC to waveguide transition. IEEE Microw Wirel Compon Lett, 27(5):437439. https://doi.org/10.1109/LMWC.2017.2690846
Bahl IJ, 2008. Fundamentals of RF and Microwave Transistor Amplifiers. Wiley, Hoboken, USA. https://doi.org/10.1002/9780470462348
Cameron RJ, 2011. Advanced filter synthesis. IEEE Microw Mag, 12(6):42–61. https://doi.org/10.1109/MMM.2011.942007
Cameron RJ, Kudsia CM, Mansour RR, 2007. Microwave Filters for Communication Systems: Fundamentals, Design and Applications. Wiley, Hoboken, USA.
Chang CY, Itoh T, 1990. Microwave active filters based on coupled negative resistance method. IEEE Trans Microw Theory Tech, 38(12):1879–1884. https://doi.org/10.1109/22.64569
Chen KL, Lee J, Chappell WC, et al., 2013a. Co-design of highly efficient power amplifier and high-Q output bandpass filter. IEEE Trans Microw Theory Tech, 61(11): 3940–3950. https://doi.org/10.1109/TMTT.2013.2284485
Chen KL, Lee TC, Peroulis D, 2013b. Co-design of multi-band high-efficiency power amplifier and three-pole high-Q tunable filter. IEEE Microw Wirel Compon Lett, 23(12): 647–649. https://doi.org/10.1109/LMWC.2013.2283876
Chun YH, Yun SW, Rhee JK, 2002. Active impedance inverter: analysis and its application to the bandpass filter design. Proc IEEE MTT-S Int Microwave Symp, p.1911–1914. https://doi.org/10.1109/MWSYM.2002.1012237
Chun YH, Lee JR, Yun SW, et al., 2005. Design of an RF low-noise bandpass filter using active capacitance circuit. IEEE Trans Microw Theory Tech, 53(2):687–695. https://doi.org/10.1109/TMTT.2004.840565
Courtney PG, Zeng J, Tran T, et al., 2015. 120W Ka band power amplifier utilizing GaN MMICs and coaxial waveguide spatial power combining. Proc IEEE Compound Semiconductor Integrated Circuit Symp, p.1–4. https://doi.org/10.1109/CSICS.2015.7314457
Darcel L, Dueme P, Funck R, et al., 2005. New MMIC approach for low noise high order active filters. Proc IEEE MTT-S Int Microwave Symp, p.787–790. https://doi.org/10.1109/MWSYM.2005.1516731
Gao Y, Powell J, Shang XB, et al., 2018. Coupling matrix-based design of waveguide filter amplifiers. IEEE Trans Microw Theory Tech, 66(12):5300–5309. https://doi.org/10.1109/TMTT.2018.2871122
Gao Y, Shang XB, Guo C, et al., 2019. Integrated waveguide filter amplifier using the coupling matrix technique. IEEE Microw Wirel Compon Lett, 29(4):267–269. https://doi.org/10.1109/LMWC.2019.2901892
Gao Y, Zhang F, Lv X, et al., 2020. Substrate integrated waveguide filter-amplifier design using active coupling matrix technique. IEEE Trans Microw Theory Tech, 68(5):1706–1716. https://doi.org/10.1109/TMTT.2020.2972390
Gonzalez G, 1996. Microwave Transistor Amplifiers: Analysis and Design (2nd Ed.). Prentice Hall, Pearson, UK.
Ito M, Maruhashi K, Kishimoto S, et al., 2004. 60-GHz-band coplanar MMIC active filters. IEEE Trans Microw Theory Tech, 52(3):743–750. https://doi.org/10.1109/TMTT.2004.823531
Kumar TB, Ma KX, Yeo KS, 2017. A 60-GHz coplanar waveguide-based bidirectional LNA in SiGe BiCMOS. IEEE Microw Wirel Compon Lett, 27(8):742–744. https://doi.org/10.1109/LMWC.2017.2723951
Kurokawa K, 1965. Power waves and the scattering matrix. IEEE Trans Microw Theory Tech, 13(2):194–202. https://doi.org/10.1109/TMTT.1965.1125964
Lin YS, Wu JF, Hsia WF, et al., 2013. Design of electronically switchable single-to-balanced bandpass low-noise amplifier. IET Microw Antenn Propag, 7(7):510–517. https://doi.org/10.1049/iet-map.2012.0426
Pozar DM, 2012. Microwave Engineering (4th Ed.). Wiley, New York, USA.
Schwierz F, Liou JJ, 2002. Modern Microwave Transistors: Theory, Design, and Performance. Wiley, Hoboken, USA.
Strang G, 2016. Introduction to Linear Algebra (5th Ed.). Wellesley-Cambridge Press, Wellesley, USA.
Author information
Authors and Affiliations
Contributions
Yang GAO and Lei LI designed the research. Fan ZHANG and Jiawei ZANG manufactured and measured the device. Yang GAO drafted the manuscript. Lei LI, Yingying QIAO, and Xiaobang SHANG revised and finalized the paper.
Corresponding author
Ethics declarations
Yang GAO, Fan ZHANG, Yingying Qiao, Jiawei ZANG, Lei LI, and Xiaobang SHANG declare that they have no conflict of interest.
Additional information
Project supported by the National Natural Science Foundation of China (No. 62001520)
Rights and permissions
About this article
Cite this article
Gao, Y., Zhang, F., Qiao, Y. et al. A microstrip filter direct-coupled amplifier based on active coupling matrix synthesis. Front Inform Technol Electron Eng 22, 1260–1269 (2021). https://doi.org/10.1631/FITEE.2000292
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.2000292