Abstract
A compact input-reflectionless balanced bandpass filter (BPF) with flexible bandwidth (BW) using a three-line coupled structure (TLCS) is presented in this paper. For the differential mode (DM), the TLCS is applied to achieve the bandpass response; meanwhile, the input coupled-feed line of the TLCS is reused in the input absorption network. This design shows a good fusion of the absorptive and BPF sections, effectively reducing the circuit size, and the BWs of the two sections that can be controlled separately result in a flexibly controllable DM response BW of the proposed input-reflectionless balanced BPF. Detailed analyses of the ratio of the two-part BWs have been given for the first time, which is vital for the passband flatness and reflectionless feature. In the codesign of this work, the input-reflectionless DM bandpass response can be optimized easily, while wideband common mode (CM) noise absorption is achieved by the input absorption network. To verify the design method, a prototype with a compact layout (0.52λ×0.36λ) is designed and measured in the 0–7.0 GHz range. The DM center frequency (f0) is 2.45 GHz with a measured 3 dB fractional bandwidth of 31.4%. The simulation and measurement results with good agreement are presented, showing good performance, e.g., low insertion loss (0.43 dB), wide upper stopband for the DM bandpass response (over 20 dB rejection level up to 2.72f0), and wideband DM reflectionless and CM noise absorption (fractional absorption bandwidth of 285.7%).
摘要
本文提出一种基于三线耦合结构的具有灵活带宽的紧凑型平衡式输入无反射带通滤波器。在差模模式下, 带通响应由三线耦合结构实现, 同时三线耦合结构的输入耦合馈线被输入吸收网络复用。带通滤波部分和吸收部分实现了良好的融合, 有效地减小了电路尺寸, 并且两部分的带宽独立可控, 进而使得该滤波器的差模响应带宽具有灵活可控的特性。此外, 首次对两部分的带宽比进行详细分析,以获得通带平坦度与无反射性能的良好折衷。因此, 该协同设计的输入无反射差模带通响应具有易于优化的特点。同时, 输入端的吸收网络还实现了宽频带内的共模噪声吸收。为了验证该设计方法, 设计了一款尺寸为0.52λ×0.36λ的平衡式输入无反射滤波器, 测量范围为0–7.0 GHz。测得差模响应的中心频率为2.45 GHz, 3 dB相对带宽为31.4%。实测和仿真结果展现了良好的一致性, 并且该滤波器具有0.43 dB的低插入损耗、较宽的差模上阻带(超过20 dB的抑制水平至2.72倍频)以及宽带的差模无反射和共模噪声吸收(吸收相对带宽为285.7%)等优点。
References
Bi XJ, Zeng X, Xu QF, 2020. Slotline-based balanced filter with ultra-wide stopband and high selectivity. IEEE Trans Circ Syst II Exp Briefs, 67(3):460–464. https://doi.org/10.1109/TCSII.2019.2914072
Cao YF, Zhang Y, Zhang XY, 2020. Filtering antennas: from innovative concepts to industrial applications. Front Inform Technol Electron Eng, 21(1):116–127. https://doi.org/10.1631/FITEE.1900474
Chen CP, Oda J, Kamata K, et al., 2013. An iterative synthesis scheme for wideband filter based on parallel-coupled three-line. IEEE European Microwave Conf, p.889–892. https://doi.org/10.23919/EuMC.2013.6686800
Chen JX, Zhan Y, Xue Q, 2015. Novel LTCC distributed-element wideband bandpass filter based on the dual-mode stepped-impedance resonator. IEEE Trans Compon Packag Manuf Technol, 5(3):372–380. https://doi.org/10.1109/TCPMT.2015.2401023
Chen JX, Zhan Y, Qin W, et al., 2016. Analysis and design of balanced dielectric resonator bandpass filters. IEEE Trans Microw Theory Techn, 64(5):1476–1483. https://doi.org/10.1109/TMTT.2016.2546260
Chen X, Yang T, Chi PL, 2021. Arbitrary-order balanced filter with reflectionless characteristics for both common- and differential-mode signals. IEEE Microw Wirel Compon Lett, 31(6):553–556. https://doi.org/10.1109/LMWC.2021.3068469
Fan MY, Song KJ, Yang L, et al., 2021a. Frequency-reconfigurable input-reflectionless bandpass filter and filtering power divider with constant absolute bandwidth. IEEE Trans Circ Syst II Exp Briefs, 68(7):2424–2428. https://doi.org/10.1109/TCSII.2021.3049417
Fan MY, Song KJ, Yang L, et al., 2021b. Frequency-tunable constant-absolute-bandwidth single-/dual-passband filters and diplexers with all-port-reflectionless behavior. IEEE Trans Microw Theory Techn, 69(2):1365–1377. https://doi.org/10.1109/TMTT.2020.3040481
Feng WJ, Che WQ, 2012. Wideband balanced bandpass filter based on three-line coupled structure. Electron Lett, 48(16):1006–1008. https://doi.org/10.1049/el.2012.0448
Feng WJ, Che WQ, Shi YR, et al., 2019. Balanced rat-race couplers with wideband common-mode suppression. IEEE Trans Microw Theory Techn, 67(12):4724–4732. https://doi.org/10.1109/TMTT.2019.2946158
Feng WJ, Pan BS, Zhu HS, et al., 2021. High performance balanced bandpass filters with wideband common mode suppression. IEEE Trans Circ Syst II Exp Briefs, 68(6):1897–1901. https://doi.org/10.1109/TCSII.2020.3044092
Gómez-García R, Muñoz-Ferreras JM, Psychogiou D, et al., 2018. Balanced symmetrical quasi-reflectionless single-and dual-band bandpass planar filters. IEEE Microw Wirel Compon Lett, 28(9):798–800. https://doi.org/10.1109/LMWC.2018.2856400
Gómez-García R, Muñoz-Ferreras JM, Psychogiou D, 2019. Symmetrical quasi-absorptive RF bandpass filters. IEEE Trans Microw Theory Techn, 67(4):1472–1482. https://doi.org/10.1109/TMTT.2019.2895531
Guilabert A, Morgan MA, Boyd TA, 2019. Reflectionless filters for generalized elliptic transmission functions. IEEE Trans Circ Syst I Reg Papers, 66(12):4606–4618. https://doi.org/10.1109/TCSI.2019.2931469
Han Y, Chang YM, Che WQ, 2022. Frequency-selective rasorbers: a view of frequency-selective rasorbers and their application in reducing the radar cross sections of antennas. IEEE Microw Mag, 23(2):86–98. https://doi.org/10.1109/MMM.2021.3125463
Kou N, Yu SX, Ding Z, et al., 2022. Monopulse transmitarray antenna fed by aperture-coupled microstrip structure. Front Inform Technol Electron Eng, 23(3):502–510. https://doi.org/10.1631/FITEE.2000547
Lee B, Lee JH, Lee G, et al., 2022. All-port-reflectionless narrowband filtering power divider topology with generic equations. IEEE Trans Circ Syst I Reg Papers, 69(4):1417–1426. https://doi.org/10.1109/TCSI.2021.3133585
Lee J, Lee JH, Barker NS, 2021. Rigorous design of input-reflectionless filter with Chebyshev response and exact approach to increase reflectionless range. IEEE Trans Microw Theory Techn, 69(10):4460–4475. https://doi.org/10.1109/TMTT.2021.3098530
Li HY, Xu JX, Zhang XY, 2019. Substrate integrated waveguide filtering rat-race coupler based on orthogonal degenerate modes. IEEE Trans Microw Theory Techn, 67(1):140–150. https://doi.org/10.1109/TMTT.2018.2874252
Li YC, Wu DS, Xue Q, et al., 2020. Miniaturized single-ended and balanced dual-band diplexers using dielectric resonators. IEEE Trans Microw Theory Techn, 68(10):4257–4266. https://doi.org/10.1109/TMTT.2020.3008784
Lin TY, Wu TL, 2020. Balanced bandpass filter with common-mode reflectionless feature by terminated coupled lines. IEEE Trans Electromagn Compat, 62(4):1090–1097. https://doi.org/10.1109/TEMC.2020.2991715
Lin TY, Huang YC, Wu TL, 2019. Novel absorptive balanced bandpass filters using resistive loaded transmission lines. IEEE Trans Compon Packag Manuf Technol, 9(4):745–753. https://doi.org/10.1109/TCPMT.2018.2861428
Morgan MA, Boyd TA, 2015. Reflectionless filter structures. IEEE Trans Microw Theory Techn, 63(4):1263–1271. https://doi.org/10.1109/TMTT.2015.2403841
Morgan MA, Groves WM, Boyd TA, 2019. Reflectionless filter topologies supporting arbitrary low-pass ladder prototypes. IEEE Trans Circ Syst I Reg Papers, 66(2):594–604. https://doi.org/10.1109/TCSI.2018.2872424
Pozar DM, 2012. Microwave Engineering (4th Ed.). New York, USA, p.188–190.
Shi J, Xu K, Zhang W, et al., 2016. An approach to 1-to-2n way microstrip balanced power divider. IEEE Trans Microw Theory Techn, 64(12):4222–4231. https://doi.org/10.1109/TMTT.2016.2611495
Song KJ, Yao JC, Chen YX, et al., 2020. Balanced diplexer based on substrate integrated waveguide dual-mode resonator. IEEE Trans Microw Theory Techn, 68(12):5279–5287. https://doi.org/10.1109/TMTT.2020.3015968
Wang XY, Tang SC, Chen JX, 2022. Differential-fed pattern-reconfigurable dielectric patch antenna and array with low cross-polarization. IEEE Trans Antenn Propag, 70(5):3870–3875. https://doi.org/10.1109/TAP.2021.3125363
Wu DS, Li YC, Xue Q, et al., 2022. Balanced dielectric resonator filters with multiple reconfigurable passbands. IEEE Trans Microw Theory Techn, 70(1):180–189. https://doi.org/10.1109/TMTT.2021.3081989
Wu XH, Li YS, Liu XG, 2020. High-order dual-port quasi-absorptive microstrip coupled-line bandpass filters. IEEE Trans Microw Theory Techn, 68(4):1462–1475. https://doi.org/10.1109/TMTT.2019.2955692
Xu KD, Bai YC, Ren X, et al., 2019. Broadband filtering power dividers using simple three-line coupled structures. IEEE Trans Compon Packag Manuf Technol, 9(6):1103–1110. https://doi.org/10.1109/TCPMT.2018.2869077
Xu KD, Lu S, Guo YJ, et al., 2022. Quasi-reflectionless filters using simple coupled line and T-shaped microstrip structures. IEEE J Radio Freq Identif, 6(1):54–63. https://doi.org/10.1109/JRFID.2021.3106664
Yamamoto S, Azakami T, Itakura K, 1966. Coupled strip transmission line with three center conductors. IEEE Trans Microw Theory Techn, 14(10):446–461. https://doi.org/10.1109/TMTT.1966.1126304
Yang L, Gómez-García R, Fan MY, 2020. Input-reflectionless balanced wideband bandpass filter using multilayered vertical transitions. IEEE Asia-Pacific Microwave Conf, p.443–449. https://doi.org/10.1109/APMC47863.2020.9331419
Yu W, Xu L, Zhang XY, et al., 2022. Dual-band dual-mode dielectric resonator filtering power divider with flexible output phase difference and power split ratio. IEEE Trans Microw Theory Techn, 70(1):190–199. https://doi.org/10.1109/TMTT.2021.3113654
Zhang WW, Wu YL, Liu YA, et al., 2017. Planar wideband differential-mode bandpass filter with common-mode noise absorption. IEEE Microw Wirel Compon Lett, 27(5):458–460. https://doi.org/10.1109/LMWC.2017.2690839
Zhang YF, Wu YL, Wang WM, et al., 2022. High-performance common- and differential-mode reflectionless balanced band-pass filter using coupled ring resonator. IEEE Trans Circ Syst II Exp Briefs, 69(3):974–978. https://doi.org/10.1109/TCSII.2021.3103535
Zhang ZQ, Zhang B, Li DT, et al., 2021. A mechanical reliability study of 3-dB waveguide hybrid couplers in submillimeter and terahertz bands. Front Inform Technol Electron Eng, 22(8):1104–1113. https://doi.org/10.1631/FITEE.2000229
Zhou WJ, Chen JX, 2017. High-selectivity tunable balanced bandpass filter with constant absolute bandwidth. IEEE Trans Circ Syst II Exp Briefs, 64(8):917–921. https://doi.org/10.1109/TCSII.2016.2621120
Zhu Y, Song KJ, Fan MY, et al., 2020. Wideband balanced bandpass filter with common-mode noise absorption using double-sided parallel-strip line. IEEE Microw Wirel Compon Lett, 30(4):359–362. https://doi.org/10.1109/LMWC.2020.2974089
Zhu YH, Cai J, Chen JX, 2022. Quasi-reflectionless double-sided parallel-strip line bandpass filter with enhanced selectivity. IEEE Trans Circ Syst II Exp Briefs, 69(2):339–343. https://doi.org/10.1109/TCSII.2021.3099508
Author information
Authors and Affiliations
Corresponding author
Additional information
Project supported by the National Natural Science Foundation of China (No. 20201438)
Contributors
Yahui ZHU designed the research, processed the data, and drafted the paper. Jing CAI, Wei QIN, Wenwen YANG, and Jianxin CHEN helped organize the paper. Yahui ZHU and Jianxin CHEN revised and finalized the paper.
Compliance with ethics guidelines
Yahui ZHU, Jing CAI, Wei QIN, Wenwen YANG, and Jianxin CHEN declare that they have no conflict of interest.
Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Rights and permissions
About this article
Cite this article
Zhu, Y., Cai, J., Qin, W. et al. Compact input-reflectionless balanced bandpass filter with flexible bandwidth using three-line coupled structure. Front Inform Technol Electron Eng 24, 314–326 (2023). https://doi.org/10.1631/FITEE.2200261
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.2200261
Key words
- Input-reflectionless filter
- Balanced bandpass filter (BPF)
- Differential mode (DM)
- Common mode (CM)
- Three-line coupled structure (TLCS)