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Abstract—API-related knowledge is typically dispersed across
various sources of information, including API documentation,
Q&A forums, and other unstructured texts. This fragmentation
of knowledge makes it challenging for developers to effectively
query and retrieve APIs. In this paper, an API knowledge graph
construction method based on multi-source information fusion
is proposed to overcome these issues and enhance API retrieval.
Specifically, the API-related knowledge is acquired from multiple
sources, including API documentation and Stack Overflow, where
API documentation describes the function and structure of
APIs from designers’ perspective, and Stack Overflow provides
insights into the purpose and usage scenarios of APIs from
users’ perspective. They complement each other and together
provide support for API query and retrieval. By analyzing
API documentation, the corresponding APIs and domain con-
cepts are extracted as entities and relationships between them
are identified. Moreover, to extract Q&A entities from Stack
Overflow, machine learning is adopted to classify the purpose
of the question and performs the summary generation for its
answers. Since there exists a gap between the entities from
API documentation and Stack Overflow, a fusion method is
raised to establish connections between them, constructing a more
comprehensive API knowledge graph. To verify the effectiveness
of our API knowledge graph construction method, we evaluate
it in terms of the accuracy of knowledge extraction and API
recommendation. The experimental results demonstrate that our
API knowledge graph can significantly improve the efficiency and
effectiveness of API recommendation.

Index Terms—API knowledge graph, Multi-source informa-
tion, Knowledge extraction, Knowledge fusion, API retrieval

I. INTRODUCTION

API (Application Programming Interface) plays a critical
role in software development. According to statistics, 87% of
developers frequently leverage APIs to address diverse pro-
gramming issues [1]. However, retrieving and finding suitable
APIs is still a challenging task. To improve the efficiency and
quality of API retrieval, researchers have built corresponding
API recommendation systems from various resources to assist
developers in solving programming issues related to APIs.

Currently, several typical API recommendation systems
have been developed, such as RASH [2], BIKER [1], RACK
[3] etc. RASH leverages lexical similarity to recommend APIs
based on API documentation and the Stack Overflow (SO).
In contrast, BIKER utilizes semantic similarity by combining
API documentation and SO to recommend APIs. RACK
establishes relationships between keywords in titles of SO

and API to recommend APIs. These methods have enhanced
retrieval efficiency in contrast to conventional API retrieval.
However, they solely concentrate on valid APIs utilized in
resolved problems and overlook the interconnection between
APIs. In fact, different types of relationships between APIs,
such as inheritance between classes and invocation between
methods, may have varying impacts on API recommendation.
Additionally, APIs that resolve identical problems may possess
functionally similar relationships with one another, which
could enhance the effectiveness of API retrieval. Nevertheless,
the previous API recommendation techniques have not fully
leveraged such relationships.

The Knowledge Graph is a knowledge network that can ef-
fectively represent the semantic association between informa-
tion, which is suitable for expressing API-related knowledge.
For example, Liu et al. [4] constructed an API knowledge
graph by extracting relevant knowledge from API documen-
tation and Wikipedia, while Li et al. [5] constructed an API
warning knowledge graph by extracting warning statements
from API documentation and API tutorials. Ling et al. [6]
constructed an API knowledge graph based on open-source
projects, which took APIs involved in projects as entities,
and the calls, returns and implementations between APIs as
relationships. As can be seen, API documentation can provide
the dependency between APIs, Wikipedia can provide the
concept of software engineering, and open-source projects
can provide the relationship (call, return, implementation etc.)
between APIs. However, all of them lack descriptions on actual
API usage scenarios, which hinders the practical use of API
knowledge graphs in solving real programming issues.

Stack Overflow is an IT technical Q&A website for pro-
grammers. It aims to help solve the actual problems of devel-
opers, and provide information about the purpose of API usage
and real usage scenarios [7]. If the actual usage scenarios of
APIs in SO are incorporated into the knowledge graph, it will
greatly facilitate API retrieval for users. But SO suffers from
a lack of clarity of purpose and information overload. The
statistics show that more than 37% of SO questions contain
more than one answer, with an average of more than 789 words
per answer [8]. This makes it more difficult to capture useful
knowledge from SO.

Thus, this paper proposes an API Knowledge Graph con-
struction based on Multi-Source Information Fusion (AKG-
MSIF), which synthesizes APIs and usage scenarios fromDOI reference number: 10.18293/DMSVIVA2024-027



API documentation and stack overflow. In particular, it en-
tails extracting API and domain concepts as entities from
API documentation and establishing relationships, such as
inclusion, inheritance, and overloading, between them. More
importantly, for SO, to extract its Q&A entities, our method
uses machine learning to classify the purpose of the question
and performs the summary generation for its answers. On this
basis, multi-source knowledge is integrated to construct an
API knowledge graph. Since there exists a gap between the
entities from API documentation and SO, a fusion method is
raised to establish connections between them. To validate the
effectiveness and efficiency of our method, the constructed
API knowledge graph is evaluated from two perspectives:
knowledge extraction accuracy and recommendation effect.
The experimental results show that compared with existing
studies, our AKG-MSIF approach improve the API recom-
mendation effectiveness and efficiency. Our contributions are
as follows:

1. A novel API knowledge graph is constructed by integrat-
ing information from both API documentation and SO,
facilitating API retrieval for users.

2. Due to unclear purpose and information overload in SO,
a machine learning-based method is raised to classify the
purpose of the question and performs the answer sum-
mary generation to obtain the Q&A entities. In addition,
a knowledge fusion methods are raised to bridge the gap
between entities of API documentation and SO.

3. To validate our approach, a series of experiments are con-
ducted, and the experimental results show that compared
with existing API recommendation systems, our novel
knowledge graph has enhanced the recommendation ef-
fectiveness and efficiency.

The rest of this paper is organized as follows: Section 2
introduces the background of related techniques. Section 3
describes our method in detail. Section 4 verifies the validity
of the approach. Section 5 summarizes the whole paper.

II. RELATED WORK

Currently, several typical API recommendation systems
have been developed, such as RASH [2], BIKER [1], RACK
[3] etc. RASH leverages lexical similarity to recommend APIs
based on API documentation and the Stack Overflow. In
contrast, BIKER utilizes semantic similarity by combining
API documentation and Stack Overflow to recommend APIs.
RACK establishes relationships between keywords in titles of
Stack Overflow and API to recommend APIs. These methods
have enhanced retrieval efficiency in contrast to conventional
API retrieval.

Ye et al. [9] proposed a rule-based entity extraction method,
which mostly uses keywords, central words, superlatives,
subordinate words, punctuation marks and other features in
the text. This approach relies on the creation of a complete
knowledge base and lexicon. Stephen et al. [10] proposed
an approach for entity extraction through NLP and pattern-
matching to classify Stack Overflow sentences. This approach

also requires the design of extraction rules. Unlike the rule-
based approach, it takes the syntax and grammar of the
text as the focus, converts it into a syntactic dependency
tree through NLP techniques and analyzes its dependencies,
thereby obtaining the structural parts of the text such as
noun phrases and verb phrases. For example, Lin et al. [11]
manually defined 157 grammatical templates for the language
style of the Stack Overflow. It can be seen that this method
works better for texts with more uniform content formatting.

III. API KNOWLEDGE GRAPH CONSTRUCTION BASED ON
MULTI-SOURCE INFORMATION FUSION

In this paper, we propose an API knowledge graph con-
struction based on multi-source information fusion, where
the API-related knowledge derives from API documenta-
tion and SO. The framework of our approach is shown in
Fig.1, which mainly consists of knowledge acquisition and
knowledge fusion. Concretely, in knowledge acquisition, APIs
and corresponding domain concepts are extracted from the
API documentation and taken as entities. And relationships
between them, such as inclusion, inheritance, and overloading,
are established. Furthermore, Q&A and API concepts are
identified from SO by using machine learning and regarded as
entities. And relationships between Q&A and API concepts are
built. In knowledge fusion, multi-source knowledge from API
documentation and SO is integrated to construct a more com-
prehensive API knowledge graph based on these entities and
relationships. Since there exists a gap between the entities from
API documentation and SO, the relationship between them is
established by various fusion strategies. In the following, we
will detail each part of our approach.

A. Knowledge Acquisition from API Documentation

API documentation provides functional descriptions and
structural information (such as method, parameters and return
values etc.) for APIs. This part focuses on the knowledge
representation and extraction of API documentation about the
PyTorch framework.

1) Knowledge representation of API documentation: The
structural information of the API refers to modules, classes,
methods/functions, etc., which are related to each other by in-
clusion, inheritance, overloading, etc. Moreover, the functional
description in API documentation implies the application
domains of the API, which indirectly reflect the relationship
between the API and application domain. Both the functional
description and structural information can provide useful guid-
ance in API retrieval. Thus, we use the domain concept and
API modules, classes, methods/functions to express the API
knowledge in the document. Further, the APIs and domain
concepts can be associated through ”refer to”, which means
that the description of an API mentions the corresponding
domain concept. So, this paper regards the API and domain
concepts as entities in the API documentation and their ”refer
to” as the relationship between them.



Fig. 1. The Framework of API Knowledge Graph Based on Multi-Source Information Fusion

2) Knowledge extraction from API documentation: To ex-
tract API entities, the API documentation is analyzed. And we
found that API documentation is semi-structured data, where
different HTML tags represent different types of API entities,
such as functional descriptions, parameters, return values, and
return value types etc. Thus, API entities are recognized
through HTML tags. Further, the relationships between API
entities include inclusion, inheritance, overloading. According
to the declaration rules of the class, regular expressions
are used to extract the inheritance relationship, and syntax
analysis is employed to extract the inclusion and overloading
relationship.

Furthermore, each API corresponds to a functional descrip-
tion, and the functional description implies domain concepts.
Thus, for the application domain in API function descriptions,
we use existing domain concept dictionary [12] and NLP to
match and recognize them. And the ”refer to” relationship
between the API and the domain concept can be extracted from
this corresponding structure. For example, the functional de-
scription of API “torch.normal” contains the domain concept
“standard deviation”. When the domain concept “standard
deviation” is identified, a ”refer to” relationship can be es-
tablished between the API ”torch.normal” and the domain
concept ”standard deviation”.

B. Knowledge Acquisition from Stack Overflow

Stack Overflow provides many information (such as title,
the body of the question, label, accepted answer etc.) which
contains specific application scenario information of the API.
This part mainly focuses on the knowledge representation and
extraction on the Q&A tagged by ”PyTorch” on the Stack
Overflow.

1) Knowledge Representation of Stack Overflow: The Q&A
information of SO contain terms related to the API, where
these terms are related to software development, without being
limited to a specific field. Intuitively, these terms implicitly
abstract and summarize the functional role of a specific API.

Thus, these terms are adopted to express the API-related
knowledge and regarded as API concept entities.

What’s more important, the Q&A in SO describe the actual
problems encountered by developers and provide answers
about its usage scenario as well as the purpose of API. So the
Q&A is critical in API retrieval. But the Q&A in SO suffers
from problems of unclear purposes and information overload.
The unclear purpose refers to the difficulty for Q&A to grasp
the reason behind a user’s question and find the corresponding
answer. And information overload refers to the fact that a
single question may have multiple long answers. Statistics
show that over 37% of Q&As include more than one answer,
and each answer has an average of over 789 words [8], making
it challenging to obtain critical information from the Q&A.

Thus, in this paper, we propose a questions’ purpose iden-
tification method through classifying the Q&A automatically.
Further, the answers are summarised based on the features
of Q&A to alleviate the issue of information overload. And
the simplified Q&As that consists of the purpose of questions
and summary of answers are referred to as Q&A entities.
Besides, the “refer to” relationship between Q&A entities and
API concept entities can be established.

2) Knowledge extraction from Stack Overflow: The API
in SO is usually labeled with <code> tags. Thus, API can
be recognized through matching the element labeled with
this tag with the API name in the API documentation. For
the concepts of API in SO, they often appear in the same
sentence, paragraph, or Q&A with the API. Since the API
concept may be a multi-word concept, such as ”convolutional
layer”, this paper proposes a frequency-based API concept
recognition method. Concretely, we look for words that often
appear consecutively but not often separately in SO through
NLP, and take them as API concepts. NLP is used to segment
and remove stop words from SO Q&A to form single-word
concepts. According to the frequency of consecutive words,
we calculate the phrase score and extract the API concept.



The phrase score is shown in formula (1):

score(wiwj) =
count(wiwj)− δ

count(wi)× count(wj)
(1)

Where count(wiwj) represent the number of times two con-
secutive words wi and wj appear in the whole documentation.
count(wi) and count(wj) represent the number of times the
words wi and wj appear. δ is a threshold. When the frequency
of the two consecutive words wi and wj is less than δ, wi and
wj cannot form a two-word phrase. When a two-word concept
is formed, formula (1) can be repeated to detect three-word
phrases. Since API concepts consisting of more than three
words are uncommon, this paper only recognizes phrases of
up to three words as API concepts.

To extract the Q&A entities from SO, this paper employs
machine learning to classify the purpose of the questions and
obtain the purpose type. Based on this, the answer summary
generation based on feature extraction is performed.

In more detail, based on the categorization of SO Q&A
by Stefanie Beyer et al.’s [13], this paper divides the Q&A
into seven categories based on the purpose of question as
follows: (1) “API USAGE” class is to seek suggestions for
implementing a feature or API; (2) “DISCREPANCY” class
is to request Code segments to resolve unexpected results;
(3) “ERRORS” class is to request a bug fix or handle an
exception; (4) “REVIEW” class is to request the best solution;
(5) “CONCEPTUAL” class is to ask about the rationale or
background of the API; (6) “API CHANGE” class is to seek
solutions to issues arising from API version changes problems;
(7) “LEARNING” class is to ask for documentation or tutorials
to learn a tool or language.

XGBoost(eXtreme Gradient Boosting) is one of machine
learning algorithms, which have the capability of fast learn-
ing and prediction [14]. Therefore, in this paper, XGBoost
algorithm is used to train classifiers for SO questions to
determine the purpose of questions. The main steps include:
(1) Label SO Q&A into one of the seven categories. (2)
Convert questions into corresponding word lists through NLP
including as segmentation, stop word removal, and lemmatiza-
tion. (3) The TF-IDF reflects the importance of a word by its
frequency, where TF (term frequency) measures the frequency
that a term appears in a document and IDF (the inverse
document frequency) estimates the ratio of total documents
to the documents that contain the term. In this paper, the TF-
IDF of a question is used as its textual feature and fed into
the XGBoost algorithm to identify the type of the question.

Furthermore, to address information overload in answers
of SO, this paper generates summaries for answers based on
the relevant paragraphs in the answers. That is, based on the
characteristics of SO, the relevance of each paragraph to the
question is calculated by combining question-related features,
content-related features, and user features, and the top M
paragraphs are selected as the summary of the answer. The
concrete feature analysis is as follows:

(1) Question-related feature: if a paragraph contains key
words from the question, it is considered to be related to the

question. The more key words a paragraph contains, the higher
its relevance. In this paper, tags of SO are used as the set of
key words. And the relevance of each answer paragraph and
the question is calculated based on the ratio of the key words
involved in them.

(2) Content-related feature: This feature evaluates the im-
portance of content of paragraphs from three sub-features: the
API occurrence, information entropy, and semantic templates.
For the API occurrence, if at least one API appears in the
paragraph, this sub-feature value is set to 1. Otherwise, it is
set to 0. For information entropy, the inverse documentation
frequency (IDF) value of a word can be used to measure its
information entropy, which can be calculated using formula
(2), where p represents the total number of paragraphs and p′

represents the number of paragraphs containing a particular
word. The higher the IDF value, the lower the occurrence fre-
quency of the particular word, indicating greater importance.
The entropy value of a paragraph can be represented by the
sum of its words’ IDF values, normalized to (0,1].

If a paragraph conforms to at least one semantic template,
the sub-feature value is set to 1. Otherwise, it is set to 0. The
feature value of the content is the sum of the three sub-feature
values.

IDF = log(
p

p′ + 1
) (2)

(3) User feature: In SO, each answer has a corresponding
vote, and the higher the vote, the higher the quality of the
answer. Therefore, the number of votes for the current answer
indicates the importance of the paragraph in this answer, which
can be regarded as the user feature.

For the above three features, we add a smoothing factor
of 0.0001 to avoid the feature score of 0. All features are
normalized to (0,1], and the normalized values of each feature
are multiplied together to obtain the total score of each
paragraph. Finally, the top M paragraphs are selected as the
summary of the answer.

By identifying the type of question and generating the
answer summary, an valid Q&A entity can be obtained.
Furthermore, since a Q&A usually mentions multiple API
concepts, a ”refer to” relationship can be also established
between the API concept and the Q&A entities.

C. Knowledge Fusion from API Documentation and Stack
Overflow

To construct a complete API knowledge graph, the API
knowledge from API documentation and SO Q&A website
should be integrated. As there is a gap between entities from
the API documentation and SO, a fusion method is proposed
to establish a link between them. As mentioned above, entities
about APIs and corresponding domain concepts are extracted
from the API documentation. And entities about API concepts
and Q&A are extracted from SO. Since domain concepts
are not directly related to Q&A entities, it is not mandatory
to establish a connection between them. Thus, this paper
performs knowledge fusion between entities about API and



API concept, API concept and domain concept, and API and
Q&A.

1) Fusion between entities of API and API concepts based
on word co-occurrence: Intuitively, API concepts abstract
and summarize the functional role of a specific API. Thus,
semantic relationships exist between them. In fact, API and
API concepts usually co-occurs in the same paragraph, so
word co-occurrence can be used to link them. Co-occurrence
frequency can evaluate the degree of correlation between API
and API concepts, which refers to the number of times the API
and API concepts appear in the same paragraph. Therefore,
this paper captures the semantic relationship between API and
API concepts by calculating their co-occurrence frequency. Its
formula is shown in formula (3), where freq(Ai → Acj)
represents the co-occurrence frequency between API Ai and
API concept ACj , and α is the threshold. If the co-occurrence
frequency is not lower than the threshold α, a ”refer to”
relationship can be established between API Ai and API
concept ACj .

freq(Ai → ACj) ≥ α (3)

2) Fusion between entities of API concept and domain con-
cept based on semantic similarity: The relationship between
API concepts and domain concepts can help establish indirect
connections between the API, which can help improve the
possibility of retrieving relevant APIs. Thus, it is necessary to
build the links between them. Since API concepts and domain
concepts are composed of phrases, their relationship can be
determined by combining lexical and semantic similarity.
When the similarity between them is higher than the given
threshold, their ”related to” relationship can be established.

In more detail, the lexical similarity simlex can be calcu-
lated using Jaccard similarity, as shown in formula (4), where
Token(n) represents the words that make up the concept.
The semantic similarity between n1 and n2 is calculated using
formula (5), where Vp(n1) represents the vector of the concept
entity, and simcos represents the cosine similarity between
the two vectors. In this paper, based on SO Q&A and API
documentation corpora, we use word2vec [15] to train a word
embedding model and convert concepts into word vectors.
Based on the lexical and semantic similarity, a weighted
similarity calculation formula is raised, which is shown in
formula (6). Generally, semantic similarity is more important
than lexical similarity, so w1 < w2 is set.

simlex(n1, n2) =
|Token(n1)

⋂
Token(n2)|

|Token(n1)
⋃
Token(n2)|

(4)

simcon(n1, n2) =
simcos(Vp(n1), Vp(n2)) + 1

2
(5)

sim(n1, n2) = w1 × simlex(n1, n2) + w2 × simcon(n1, n2)
(6)

Formula (4) measures the similarity between domain concepts
and API concepts in terms of both lexical and semantic
aspects, where n1 and n2 represent the candidate domain
concept and API concept, respectively.

3) Fusion between entities about API and Q&A based on
heuristic algorithm: The relationship between API entity and
Q&A entity enables the integration of the general knowledge
of the API (such as functional description, parameters, return
values, etc.) with their specific knowledge in concrete usage
scenarios (such as how to solve specific problems), which pro-
vides developers with a more comprehensive API information.
Thus, a fusion strategy is raised to establish the relationship
between them.

However, APIs mentioned in SO Q&A are not always in
the form of fully qualified names. For example, the API
”forward()” is mentioned in SO in answer to the question
”what does model.train() do in PyTorch”. But ”forward()”
can be associated with multiple APIs. In order to establish
an unambiguous correlation between Q&A entities and cor-
responding API entities, we design a heuristic strategy. In
general, in SO Q&A, the appearance of code elements has
locality, i.e., APIs mentioned in the same Q&A usually belong
to the same module or class. By parsing the tag in HTML,
we can identify the module or class of the API mentioned
in the Q&A. By specifying regular expressions to identify
the module or class in the code block, their APIs can be
determined. Once unambiguous APIs are identified, a ”refer
to” relationship can be established between the Q&A entity
and the API entity.

IV. EXPERIMENTAL ANALYSIS

In order to verify the validity of our AKG-MSIF approach
for API retrieval, we conduct a series of experiments on
PyTorch API documentation and 7043 API Q&A on Stack
Overflow, and the effectiveness and efficiency are evaluated
on the basis of these experiments. To assess our approach,
three research questions are raised as below.
• RQ1. Can the API knowledge be accurately extracted

from multi-source information?
• RQ2. Can our integrated API knowledge graph obtained

by fusing API documentation and SO improve the effec-
tiveness of API retrievals?

• RQ3. How effective is our AKG-MSIF approach in the
API recommendation? How much improvement can be
achieved compared to baseline methods?

A. Experimental Subject

In this paper, we extracted questions and answers marked
as ”PyTorch” from the official SO data (data released as
of June 2022). We extracted 7043 questions and answers
labeled as ”PyTorch” as the subjects. In order to ensure the
quality of the Q&A, we excluded the Q&A with no answer
and those with a rating of less than 1 (indicating that the
content of the answer was not accepted), and finally collected
3361 Q&A with good quality. Besides, we develop a crawler
script based on scrapy framework, and obtain information
about the API by crawling the official API documentation of
PyTorch. In total, 27 modules, 314 classes, 1570 functions or
methods and their corresponding basic description information
are extracted. The fully qualified names of these API classes



and functions/methods are used to build the API dictionary of
PyTorch.

The final constructed API knowledge graph includes 28730
entities and 142,578 relations. Among them, there are 1912
API entities, 16216 API concepts, 7116 domain concepts, 3361
Q&A entities.

B. Experimental Design

When extracting API concepts, the threshold δ of the
frequency of the two consecutive words was set to 5 to
avoid the recognition of uncommon phrases. Furthermore,
when integrating API and API concepts, the co-occurrence
frequency threshold is set to 3 to capture the semantic
association between entities about API and API concept.
And when integrating API concepts and domain concepts,
considering that semantic similarity is more important than
lexical similarity, weights w1 and w2 were set to 0.3 and 0.5
respectively.

Besides, in order to create experimental queries for retriev-
ing knowledge graph, the following selection criteria were
used: 1) The questions had a rating at least 1. 2) The answer
to the question contains the explicit and exact API and the title
of the question does not contain the API. Based on them, 10
questions were randomly selected from the PyTorch-related
questions in SO as the queries for the experiment, and the
corpus for constructing the knowledge graph did not contain
these 10 questions in order to ensure that the search of API
knowledge graph was valid.

The API knowledge graph constructed in this paper is
stored in a Neo4j graph database. For queries, correspond-
ing keywords are extracted by syntactic analysis using the
StanfordCoreNLP[21]. And for each keyword, we search a
semantically similar concept entity in the API knowledge
graph. The API entity with a ”refer to” relationship with
the concept entity is used as a candidate API, and the Q&A
associated with the candidate API is information about the
specific usage scenario. Since there may be multiple candidate
APIs, they are ranked according to their semantic relevance
to the query. That is, the APIs are ranked by calculating the
semantic similarity (formula(5)) between the query and each
candidate API function description, and the top K APIs are
recommended to users.

The related APIs obtained by searching the API knowledge
graph are further analyzed, so as to verify the effectiveness of
API recommendation based on our knowledge graph. In partic-
ular, we invite 10 masters from the same lab with two years of
experience in using PyTorch to analyze the accepted or highly
rated responses to these questions together with the authors
themselves. When disagreements arose, consistent conclusions
were drawn by analyzing the official API documentation. The
final 10 experimental queries and the number of correct APIs
for them are shown in Table 2.

C. Experimental Results and Analysis

1) Results for RQ1: The focus of this experiment is to
demonstrate the effectiveness of knowledge extraction from

the perspective of entities and relationships extraction. Thus,
the accuracy of entities and relationships extracted from the
API documentation and SO is evaluated.

As is known, API entities and their relationships are derived
from semi-structured API documentation. Based on specific
HTML tags and declarations, entities and relationships related
to them can be extracted and validated easily. Therefore, this
paper mainly evaluates the extraction accuracy of entities from
unstructured text, namely API concept, domain concept and
Q&A entities, as well as their relationships. Since the number
of domain concept entities and relations exceeds tens of thou-
sands, it takes a lot of time to check all entities and relations.
Thus, this paper adopts the random sampling. In more detail,
random samples of 5% of the entities or relationships from
the constructed API knowledge graph is selected with a 95%
confidence level, and the sample estimation accuracy has an
error margin of 0.05.

To assess the validity of API concepts and domain concepts,
we manually identifying the accuracy of sampling results.
After random sampling, the accuracy of 356 domain concepts
obtained from domain concept entities is up to 95.6%, and
the error mainly comes from the domain concept dictionary
itself. The accuracy of 800 API concepts sampled from API
concept entities is 97.8%, and the main reasons affecting the
accuracy are some numerical indicators often mentioned in
SO Q&A, such as ”200k images”. These terms should not
be identified as API concepts. To evaluate the validity of the
relationship between the API concept and domain concept,
the accuracy of sampling results is also manually identified.
After random sampling, 4000 relationships were obtained from
the API knowledge graph, of which 94.3% of API concepts
and domain concept semantics were identified as relevant.
The missing relationships are due to API concepts or domain
concepts not being correctly identified.

To evaluate the effectiveness of the Q&A entity extraction,
the accuracy of the classification of SO questions and the
quality of answer summary is measured. For the classifi-
cation of SO question, the XGBoost algorithm is used to
classify the question types. Through manual labeling, 326
labeled Q&A were obtained, including 118 ”API USAGE”,
accounting for 36.2%, and 65 ”CONCEPTUAL”, accounting
for 20%; 45 ”DISCREPANCY”, accounting for 13.9%; 34
”ERRORS”, accounting for 10.4%; 24 ”REVIEW”, accounting
for 6.1%. The number of ”API CHANGE” and ”LEARNING”
is 20, accounting for 6.1%. In this paper, a 10-fold cross-
validation method was used to verify the validity of SO Q&A
classification. The classification effectiveness was evaluated
using precision, recall, F1 value and accuracy. To verify the
advantages of XGBoost-based classification, the experiment
uses SVM (Support Vector Machine) and RF (Random Forest)
as comparison methods. The comparison of classification
effectiveness of different algorithms are shown in Table II.
The precision of XGBoost is improved by 14.6% and 5.7%
compared to SVM and RF, respectively, and the accuracy is
improved by 5.9% and 4.6%, respectively. Therefore, it can be
seen that the classification for questions of SO using XGBoost



TABLE I
QUERIES AND THE NUMBER OF STANDARD ANSWERS

SO Number Question Number of Related API
44524901 How to do product of matrices in PyTorch? 6
54716377 How to do gradient clipping in PyTorch? 2
48152674 How to check if PyTorch is using the GPU? 7
50544730 How do I split a custom dataset into training and test datasets 1
55546873 How do I flatten a tensor in PyTorch? 4
53841509 How does adaptive pooling in PyTorch work? 4
53266350 How to tell PyTorch to not use the GPU? 2
53879727 PyTorch-How to deactivate dropout in evaluation mode? 2
51136581 How to do fully connected batch norm in PyTorch? 4

algorithm is better than other methods.

TABLE II
COMPARISON OF CLASSIFICATION EFFECTIVENESS OF DIFFERENT

ALGORITHMS

Method Precision Recall F1 Score Accuracy
XGBoost 0.871 0.847 0.834 0.910

SVM 0.760 0.851 0.785 0.850
RF 0.824 0.903 0.849 0.870

Furthermore, to evaluate the quality of summary generation,
this part measures the quality of summary in terms of rele-
vance, usefulness, and diversity. Relevance indicates whether
the summary is relevant to the question. Usefulness indicates
whether the summary content can solve the problem, and
diversity indicates whether the question can be answered from
multiple perspectives. In this part, we set a maximum score
of 5 and a minimum score of 1 for each indicator. To evaluate
the quality of the summary, master students with two years
of experience using PyTorch were invited to participate in
the evaluation. Table III represents the evaluators’ assessment
of the 10 SO Q&A summaries in Table I, where the three
evaluation metrics for each query ranged from 3 to 5, and
the average results for the 10 questions were 3.6, 3.4, and
3.7, respectively, indicating that the feature extraction-based
summary generation method is effective.

2) Results for RQ2: To validate whether the integrated API
knowledge graph obtained by fusing API documentation and
SO improve the effectiveness of API retrievals, we compare
the retrieval results based on multi-source API knowledge
graph with single-source API knowledge graph. The single-
source API knowledge graph is constructed by extracting API-
related knowledge from API documentation and SO Q&A
websites, respectively. The single-source API knowledge graph
extracted from the API documentation includes API entities,
domain concept entities and the relationships among them;
And the other single-source API knowledge graph extracted
from SO Q&A website includes API entities, API concept
entities, Q&A entities and the relationships among them. Three
commonly used metrics in information retrieval are selected
to evaluate the effectiveness of API retrieval, namely, HR(Hit
Ratio), MRR(Mean reciprocal rank) and MAP(Mean average
precision). HR evaluates the percentage of correct results out
of all correct results in the top K search results. MRR is the
position where the first correct result appears. MAP is the
ranking of all correct results. Since the number of the API

related to query is less than 10, this paper sets K=10.

The experimental results are shown in Table IV. It can
be seen that the API recommendation effectiveness of multi-
source API knowledge graph is better than that of single-
source API knowledge graph. This is because that information
fusion indirectly associates the API related to the questions
through the mentioned concepts, which improves the rec-
ommendation effectiveness. In addition, it is worth noting
that there is a large difference between the recommendation
results based on API documentation and those based on SO
Q&A websites. The reason is that the functional descriptions
provided by the API documentation do not involve specific
usage scenarios. Thus, it is difficult to match the domain
concepts with the keywords in the specific questions, resulting
in unsatisfactory recommendation results by using only the
API documentation. In a summary, we can see that our
API knowledge graph is more comprehensive, and enhances
the effectiveness of API retrieval, indicating our AKG-MSIF
approach is effective.

3) Results for RQ3: To evaluate the effectiveness of our
AKG-MSIF approach in API recommendation, three metrics
including HR, MRR and MAP are also used. Besides, the
BIKER recommendation system also combines two types of
data sources (API documentation and Stack Overflow), and
it uses the same dataset as the approach in our paper. While
RACK recommendation system uses only Stack Overflow data
sources. These two techniques are used as our comparison
methods. The experimental results are shown in Table V.
It can be seen that the HR index of our AKG-MSIF has
increased by 49% compared with BIKER and 87% compared
with RACK. The MRR index has increased by 22% compared
with BIKER and 52% compared with RACK. This indicates
that in the first 10 search results, AKG-MSIF can search
more APIs related to the query, and can find the first correct
API earlier than BIKER and RACK. Thus, our AKG-MSIF
has improved retrieval efficiency compared with BIKER and
RACK. Besides, Table VI shows the comparison in terms of
time cost. The construction time of AKG-MSIF is mainly
concentrated in the training of the classifier and summary
generation. Although the time cost of the construction of the
method in this paper is higher than that of BIKER and RACK,
there is a significant improvement in the query speed and the
recommendation effectiveness of the API. Thus, our AKG-
MSIF approach is more effective in API retrieval.



TABLE III
Q&A SUMMARY SCORE

Question Relevance Usefulness Variety
How to do product of matrices in PyTorch? 3 3 3

How to do gradient clipping in PyTorch? 2.85 3 3.57
How to check if PyTorch is using the GPU? 4 3.5 3.5

How do I split a custom dataset into training and test datasets 3.5 4 3.5
How do I flatten a tensor in PyTorch? 3.57 2.85 3.57

How does adaptive pooling in PyTorch work? 3.5 3 4
How to tell PyTorch to not use the GPU? 4.5 4 4.5

PyTorch-How to deactivate dropout in evaluation mode? 3 3 3.5
How to do fully connected batch norm in PyTorch? 4 3.5 4

How to create a normal distribution in PyTorch? 4.5 4 4
AVERAGE 3.6 3.4 3.7

TABLE IV
COMPARISON OF RECOMMENDATION RESULTS BETWEEN MULTI-SOURCE

INFORMATION FUSION AND SINGLE-SOURCE INFORMATION

Method HR MAP MRR
Only SO 0.726 0.490 0.583

Only API Doc 0.322 0.181 0.149
Both 0.774 0.558 0.701

TABLE V
COMPARISON OF RECOMMENDATION EFFECTIVENESS BY DIFFERENT

METHODS

Method HR MAP MRR
AKG-MSIF 0.774 0.558 0.701

BIKER 0.520 0.521 0.573
RACK 0.415 0.420 0.462

TABLE VI
COMPARISON OF TIME COST BY DIFFERENT METHODS

Method Cost Query Cost
AKG-MSIF 16 min 1s/query

BIKER 5 min 2s/query
RACK 10min 5s/query

V. CONCLUSION

This paper proposes an API knowledge graph construction
approach based on multi-source information fusion(AKG-
MSIF), which integrates the functional and structural informa-
tion of APIs, as well as the specific usage scenarios of APIs
from documentation and SO Q&A websites. The experiment
validated the effectiveness of our approach from two aspects:
information extraction and API recommendation effectiveness.
And the results show that the accuracy of domain concept
identification is up to 95.6%, and that of API concepts is
97.8%. And 94.3% of relationships between API concepts and
domain concept are correctly identified. Meanwhile, the Q&A
entities from SO are identified effectively by machine learning
and summary generation. Furthermore, compared with exist-
ing API recommendation systems, our API knowledge graph
is more comprehensive, enhancing the effectiveness of API
retrieval.
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