
Grouping Semantically Related Change-Sets to
Enhance Identification of Logical Coupling

Neeraj Mathur, Sai Anirudh Karre, Y. Raghu Reddy
Software Engineering Research Center

IIIT Hyderabad, Telangana, India
neeraj.mathur, saianirudh.karri{@research.iiit.ac.in}, raghu.reddy@iiit.ac.in

Abstract—Identifying dependency between various artifacts in
a large scale software system is a non-trivial task. As the software
evolves, multiple artifacts like files, docs, classes, database scripts,
etc., are likely to undergo change concurrently. Such artifacts
tend to have a dependency between them, otherwise referred to
as logical coupling. Researchers have used Support and Confi-
dence as an association rule based measurement to predict the
levels of logical coupling among the software artifacts. However,
employing a single change on a software artifact can span across
various closely related changes when many code contributors
are working on the same change. Thus it is important to pre-
process and group these semantically related change-sets before
identifying logical coupling. In this paper, we propose a method
to identify logical coupling and group semantically related change
sets. We evaluate our method on real-world git repositories and
document our observations.

Index Terms—Cosine similarity, dependency, logical coupling,
repository mining, software evaluation, software maintenance,
reverse engineering

I. INTRODUCTION

Large Software systems invariably comprise of artifacts
written in different programming languages integrated by di-
verse technologies using a variety of implementation methods.
Identifying the dependency between artifacts written in two
different programming languages is a non-trivial task. For
example, a JavaScript method may depend on a web service
written in C#. Tracking such dependencies gets increasingly
difficult over a period of time and as they tend to become the
origins of defects in an overall software project.

Heuristically, identifying dependencies from code-revision
history is considered to be lightweight than conducting a
structural analysis of the entire artifact. In the case of code-
revision history, a small amount of information is required
to be analyzed in order to understand the dependency. Such
information is typically stored via the log files of version
control system like GIT, SubVersion, TFS etc. Almost in all
cases, such dependencies are primarily documented in the form
of a free-text comment. Thus, dependency analysis can be
performed between two or more artifacts written in different
languages without having trouble in parsing and analyzing
the content of the artifacts. Logical coupling is one such
implicit dependency observed between two or more software
artifacts. It has been found that artifacts that are considered
to be logically coupled artifacts when they change together

DOI reference number:10.18293/SEKE2019-166

frequently during the evolution of a system [9]. It can reveal
dependencies that are not structural and therefore are not
present in the code or in the documentation.

The reliability of all the existing studies on logical depen-
dencies is inherently connected to the accuracy of the approach
used to identify such dependencies [14]. Version Control
Systems (VCS), that are atomic-featured in their nature have a
change-set - which is comprised of mutually checked-in files
that result in a single commit. In general, software practitioners
often rely on the existence of the atomic commit feature and
consider the change-set as the actual set of files that were
changed together by a code-developer while working on a
given code-based task. In the case of multiple developers
implementing the same change, such code-change can span
across a series of consecutively connected and closely related
individual change-sets. Therefore, by simply inspecting the
change-sets in isolation may lead to incomplete or incorrect
results with respect to the association of logical coupling.

In the past, researchers have proposed approaches to un-
derstand logical coupling. Grouping commits with the same
authors using sliding time window concept was widely used
[14]. However, semantic relationships between the artifacts -
like the same work item or issue number, cosine similarity
of two revision comments, etc. have not been explored by
researchers. Cosine similarity is a popular measure in Infor-
mation retrieval and Data Mining areas. It can be used to
measure the similarity between two documents with respect
to their textual content [11]. In this paper, we present our
preliminary work by utilizing such techniques to identify the
logical dependency between artifacts leading to an increase in
change-set identification and accuracy. In this paper, we:

• suggest an approach to improve logical coupling detection
using semantic relations drawn from the revision com-
ments and cosine similarity.

• perform a preliminary evaluation of the proposed ap-
proach for grouping semantically related change-sets.

The rest of the paper is organized as follows. In Section 2,
we introduce the cosine similarity and grouping semantically
related change-sets. In Section 3, we present the results of our
preliminary evaluation. In Section 4, we present some related
work. Finally, in Section 5, we state our conclusions and future
work.

TABLE I
TERM FREQUENCIES WEIGHT(S)

Term SaS PaP WH
1. Term Frequencies Count

affection 115 58 20
jealous 10 7 11
gossip 2 0 6
wuthering 0 0 38

2. Log Frequency Weight
affection 3.06 2.76 2.30
jealous 2.00 1.85 2.04
gossip 1.30 0 1.78
wuthering 0 0 2.58
3. Weight After Length Normalization
affection 0.789 0.832 0.524
jealous 0.515 0.555 0.465
gossip 0.335 0 0.405
wuthering 0 0 0.588

II. GROUPING CHANGE-SETS

Software Practitioners tend to work on code usually spread
across multiple change-sets, with multiple developers working
on it at the same time. To group these change-sets, the seman-
tic relations of the change-sets’ comments can be utilized. For
large scale software projects, the following can be observed
as grouping criteria for change-sets (i) if and only if two
comments have higher semantic similarity (or) (ii) if and only
if two comments have same referencing work item or an issue
number mentioned in it.

A. Cosine similarity

Cosine similarity is considered as a common measure for
similarity computation [6]. Cosine similarity is used to fetch
the similarity of words with respect to input query in regards
to the text documents queried. To perform this computation,
both the input query and the documents are converted into
their respective unit vector of words (~xi,~yi). We use the below
equation 1 to compute the cosine similarity here, where xi, yi
are the term frequency (tf) weight of a unit vector (term) in
the revision comment x, y. Term frequency is the number of
times a term occurs in a revision comment.

sim(x, y) = cos(~x, ~y) = ~x · ~y =

|V |∑
i=1

xiyi (1)

Let’s look at the case where we wish to calculate cosine
similarity of the books: Sense and Sensibility (SaS), Pride and
Prejudice (PaP) and Wuthering Heights (WH). Table I lists the
Term Frequencies in each of the documents, Log Frequency
Weight (calculated by formula “w = 1 + log 10(tf)”) and
Length Normalized Weight. A vector can be length-normalized
by dividing each of its components by its length. We use Level-
2 normalization (commonly referred as Euclidean norm) as
defined in equation 2:

‖~x‖ =
√∑

i

x2i (2)

Finally we compute cosine similarity of documents as listed
below:
• cos(SaS, PaP) ≈ 0.789×0.832+0.515×0.555+0.335×
0.0 + 0.0× 0.0 ≈ 0.94

• cos(SaS,WH) ≈ 0.79

The resultant values can be used to assess the extent of
similarity based on a predefined threshold values. In equation
3, we used ’0.8’ as a threshold to measure semantic similarity.
We have conducted a preliminary data analysis using the
available datasets and have considered 80% as a reasonable
threshold for desirable similarity values. This value can be
provided by the developers assessing the similarity. However,
reducing the threshold can result in poor precision, where as
increasing the threshold may result in poor recall. So, it is
required for developers to follow the standard threshold which
is widely accepted to avoid poor precision and poor recall.

x
GC
! y

def
=

{
1 if sim(x, y) ≥ 0.8 & datediff(x, y) < α
0 otherwise

(3)
However, in some cases relying on the cosine similarity index
can result in false positives. For example, in some project like
SignalR project [4] developers tend to put generic comments
like “addressed code review comments , fixed formatting, made
changes as per code review feedback” for ongoing activities.
As part of our study, we exclude these kind of change-
sets from grouping. Also, we compare the time difference of
change-sets before grouping them i.e. if the time difference is
more than a few months then we consider such changes as not
related.

B. Hash tags

Another technique for grouping change-sets is based on the
hashtags associated with the commits of co-changed artifacts.
For instance, if we consider the instances of commits from
Table II of two large scale open source projects like SignalR
[4] and NopCommerce [2] hosted on GitHub and Codeplex,
we see that in the example-1, commits ‘203cafc’ and
‘5ad051a’ have similar comments. In case of example-2, the
developers tend to associate work item or issue number in the
comment for future references, like in Git repository, the hash
tags #2376) are associated with the comments.

We group change-sets having same hash tag values based
on the mathematical formulae given in equation 4.

x
GC
! y

def
=
{

1 if HashTags(x) ∩HashTags(y) 6= ∅
0 otherwise

(4)

C. Our Approach

The proposed approach is described in Algorithm 1.
As shown in the algorithm, the initial steps required to
build a postings list [6] for each revision so as to help in
identifying the change-sets having same tokens. Once the
posting list is built using Algorithm 2, the entire revision
history is looped through (shown in line numbers 6-12) to
get semantically related change-sets and group them in a

https://github.com/SignalR/SignalR/issues/2376

TABLE II
MOTIVATING EXAMPLES

Example 1
Commit: 203cafc
DumpingDisconnect.Net
Comment: Removing handling Disconnect message
in the .NET Client as the server no longer
sends Disconnect messages.
Commit: 5ad051a
DumpingDisconnect.JS
Comment: Removing handling Disconnect message
in the .JS client as the server no longer
sends Disconnect messages.
Example 2
Commit:9c762c4
#2376 Reject failed invocation with a single JS object
representing HubExce...
Commit:f9bfbe3
#2376 Tests verifying HubException
details are sent to clients
Commit: 35cfccb
#2376 Flow HubExceptions
which to clients even with detailed errors disabled

list. The ‘getRelatedChangeSets’ subroutine returns
semantically related change sets for the current iteration of the
revision based equation (3, 4). The change-sets are then added
to a dictionary of the list of semantically grouped change-sets.

Algorithm 1: Change set grouping algorithm
Result: Grouped Change Sets List

1 procedure group_changeset
2 revisionLists← git.GetRevisionListIterator();
3 while rev in revisionLists do
4 addToPostingList(rev.Id,rev.Comment);
5 end
6 Map(groupId, revisionList) changeSetGroups;
7 int groupId ← 1;
8 while revision rev in revisionLists do
9 revList ← getRelatedChangeSets(rev.comment);

10 changeSetGroup.Add(groupId,revList);
11 groupId++;
12 end
13 end procedure

Algorithm 2 describes the subroutine used to create Postings
List Index. The revision id and the associated comment are
passed as input parameters to this routine. The parameters are
further processed to remove all characters except ‘[0-9a-b]w’
using regular expression match thereby tokenizing the string
with words and their occurrences in the comments. Each token
with its revision id to the Postings List Index is added to the
postings list. The sample posting list is listed in Table III.

TABLE III
SAMPLE POSTING LIST

Token Postings List
commerce doc1, 4; doc2, 5;
tokenize doc1, 50; doc3, 23;

Algorithm 2: Postings list builder subroutine
Result: Generate Postings List
Input: RevId and Comment

1 Procedure addToPostingsList
2 // get hashmap of terms with frequency count
3 tokensList← getTokens(comment);
4 while token in tokensList do
5 if postingsList.get(token.key) then
6 postingsList.Get(token.key).Add(token);
7 else
8 postingsList.Add(token.Key, token);
9 end

10 end
11 End Procedure

Algorithm 3 describes the subroutine responsible for re-
turning semantically related change-sets. It accepts revision
‘comment’ as a parameter. It converts the comments to tokens
and queries the postings list dictionary for these tokens to fetch
the posting list. Each posting list returned is reviewed against
the criteria mentioned in the equation to return the related
change-set list.

Algorithm 3: Fetch semanticaly related change-set
Result: Generate Postings List
Input: Comment

1 procedure getRelatedChangeSets
2 tokens← getTokensList(comment);
3 postingsList← getPostingsList(tokens);
4 List < revID,Comment > revisionList = null;
5 while post in postingsList do
6 bool isRelevant ← false
7 if hasSameHashTag(comment,post) then
8 isRelevant← true;
9 end

10 if cosine(comment,post.comment) > 0.8 then
11 isRelevant← true;
12 end
13 if isRelevant then
14 revisionList.Add(post.revID,post.Comment);
15 end
16 end
17 end procedure

III. PRELIMINARY EVALUATION

In this section, we provide details of our preliminary evalu-
ation using our proposed approach to group change-sets in
few C# programs. we used NGit [1] to traverse the Git
repository change-sets. We used two open source projects
(SignalR and NopCommerce) that had substantial revision
history to evaluate our approach. SignalR is an ASP.Net
library that provides real-time communication support to a
web application and NopCommerce is an ASP.Net based e-
commerce web system.

https://github.com/neerajmathur/SignalR/commit/203cafc
https://github.com/neerajmathur/SignalR/commit/5ad051a
https://github.com/neerajmathur/SignalR/commit/9c762c4
https://github.com/SignalR/SignalR/issues/2376
https://github.com/neerajmathur/SignalR/commit/f9bfbe3
https://github.com/SignalR/SignalR/issues/2376
https://github.com/neerajmathur/SignalR/commit/35cfccb
https://github.com/SignalR/SignalR/issues/2376

TABLE IV
MANUAL EVALUATION OF IDENTIFIED GROUPING

NopCommerce SignalR
Appropriate? Commits & Notes Appropriate? Commits & Notes

1 Yes
8bacf936baf4, efc731eeecb6, fd4ab9f67cce
Enhancement for store owner to search
unpublished and published products

Yes ae9d5f7d57db, 8a2245b17d41
Modification for Forever Frame JS client

2 Yes
e6ec8e0b83ee, 782d3b87a6e3, c87537559940,
d2792ada31c8 : Changes for product search and
user friendly product name

Yes
0611ce61abe9, 261bb48fbca8
Changed the logic of addQs question mark query
string detection

3 Yes d40a89b56610, d0c04fc618d4
Modification related to custom validation No 7996107ffbea, 877bcd59c454

Different instances of ‘Removed unused code’

4 Yes c5fe44ff76b8, 74e4a8e6c154, 28fb664d5c5f
Modifications related to Shipping Address Yes 240f6c58a5c3, de40de96a6b0, ff0bc98c2d34

Fix to ensure connection with LongPolling client

5 Yes
5e559b08a9ea, 050ddf2133e2
Enhancement related to filter shipments
and Orders by warehouse

Yes 0b71d56, a60d923, 9c762c4, f9bfbe3e, 35cfccb
Modifications related to HubExceptions

6 Maybe

305d4c1268b9, 3bf134f2c758, 9cdd0b2699b3
First two commits are related to store mapping
to setting and third is related to store mapping
to categories

Yes
8dc620093097, dd39b641bc27, 94ff30dd5821
Updates to crank for automation, and more
Stress metrics

7 Yes 7a62bbdc9b24, c55d3897bf68
Localization changes for hard coded string Yes 4148ea70f62d, 43aac84329b7

Handling of security errors in websockets

8 Yes f020e98231f5, 95263d99979f
Enhancement for friendly name of Affiliates MayBe a596aeb43c55, 5b47f9ba24a8

Updated self host sample.

9 No
188f4243ba1d, 8330d952235e
First is the Fluent library update and second is
the Entity Framework library update

Yes
143aa036367b, 7be649699e1d
Changed Web Socket implementation to
not send an empty frame at the end

10 Yes 57b7c7fdc445, 410eae6cd1f8
Modification for manufacturer store mapping Yes

f81f6c2, 1118b15, cdaaa33,3 5b65d0
Ensure JS SSE & WS transports will attempt
reconnecting multiple times

11 Yes
d2f341323abc, fbd49df6f2dd, f02244dc5fae
Enhancement for shipping rate computation for
‘FedEx’, ‘UPS’ and ‘by weight’

Yes
4cf7d2b, 730aa53, c6ffb08, 41317c9, 56e4002,
8dc3ac4 :Exception handling unresolved endpoints
in ServiceBus scale-out

12 No
bcecd04eb644, 5cfc2977138, b559ca0aa2e4
Author forgot a file to checkin in previous commit,
but comments were same in all the commits

Yes 5ad051a9822b, 203cafcd1cbe
Handling of disconnect message in JS and .Net

13 Yes
c3782eef4eba, b80d4cdecfa1
Added "Order paid" message template sent to
a customer

Yes

1162f9163ba8, 47c7084ec3a4, ccdade4488ef
added checks for null and empty values in the
send and group methods in hub
and persistent connection

14 - - Yes

bddcb70, 7dfa876, 13f2ffe, 9ff238e, 61c0c5c, 212fb4e
Modification as per the static code analysis tool
‘FxCop’, Usually these are not related changes as
FxCop is used to check naming conventions

We calculated the basic descriptive statistics for the number
of commits grouped together. As listed in Table V, in case
of NopCommerce project, 357 change-set groups were created
with 1017 commits which are 19.44% of the actual commits
with a maximum of 11 revisions and an average of 2.85
commits per change-set. In SingnalR project, 301 change-
set groups were created with 969 commits which are 21.49%
of the actual commits with a maximum of 22 revisions and
an average of 3.21. The figure 1 displays a Scatter Plot
view of length versus number of change-set groups created
for NopCommerce and SignalR projects respectively. Overall,
there is a little dispersion in the values as evident by the
standard deviation.

To corroborate the results of our algorithm, we have made
attempts to conduct an inspection of a few random samples [3]

TABLE V
CHANGESET GROUP STATISTICS

Project NopCommerce SignalR
Total commits 5229 4509
Active Since 2009 2011
of groups 357 301
of commits grouped 1017 969
% of commits grouped 19.44 21.49
Max 11 22
Avg 2.85 3.21
StDev 1.48 2.7

from the 658 change-set groups identified by our algorithm.
We inspected 13 samples from each NopCommerce and Sig-
nalR to verify whether the revisions were grouped to a single

https://nopcommerce.codeplex.com/SourceControl/changeset/8bacf936baf4

01020 50 100 150 200
0
2
5

10

20

30

40

50

Number of change-set groups

L
en

gt
h

SignalR
NopCommerce

Fig. 1. Scatter plot of length versus change set groups

purpose or not. By verifying the revision files, comments, and
diff code - we were able to judge whether the grouping made
sense. We have used a statistical random sample size calculator
[3], which enabled us to generalize our results with a margin
of an error of 20% and confidence level of 80%. The results
of our inspection are listed in Table IV.

In ‘NopCommerce’, out of 13 samples 11 were seman-
tically related. In two samples which were not semantically
related, ‘Sample 6’ had two revisions ‘305d4c1268b9,
3bf134f2c758’ related to ‘store mapping changes
for settings’ but its third revision ‘9cdd0b2699b3’
was related to ‘store mapping for categories’.
Additionally, their comments appeared to be semantically re-
lated but as per the code paths, it seemed that they were not ac-
tually related to each other. In the other ‘Sample 12’,the first
revision ‘188f4243ba1d’ was related to the latest update of
‘fluent’ library and the second revision ‘8330d952235e’
was related to the latest update of ‘EntityFramework’
library and hence they were not semantically related.

In ‘SignalR’, out of 14 samples, 11 were semantically
related. In three samples that were not semantically related,
‘Sample 8’ had two revisions related to self-host changes
as per the comments but post analyzing the changed code a
semantic relation could not be established in both the revision
changes, hence we marked it as ‘MayBe’. In ‘Sample 3’,
the revisions were done to remove unused code in multiple
places but the author provided the same comments for both
of them which resulted in high cosine similarity responsible
for their grouping. In ‘Sample 14’, it had the fixes of the
naming conventions identified by the static analysis tool named
‘FxCop’.

We have observed that our approach is able to semantically
group change-sets which has the potential to enhance the
identification of logical dependency with a margin of 20%
error in detection. As per our sample analysis, we did not
notice any instance of grouping by HashTag that is not
semantically related, however the groups which were created

by semantic (cosine) similarity had few instances that were
not related.

IV. RELATED WORK

Gall et al. are the first to introduce the concept of logical
coupling [9] by analyzing the dependencies in 20 different
product releases of a telecommunications switching system.
D’Ambros et al. have made attempts to visualize logical
coupling using an interactive visualization approach called
Evolution Radar [7]. This approach was not composite and
extensive enough for large software systems. Graves et al. [10]
have shown that the future occurrence of faults can be easily
predicted by the past revision histories of the software system.
However, this reliability of this prediction can be questioned as
it was never evaluated against a real-world evolving software
product. Logical coupling has also been employed to predict
changes in the software product [15] and was used to infer
code decay [8]. There are many such use-cases which are
introduced and practiced by software researchers. Mockus et
al. [12] have found that the rate of widespread of a change
over sub-systems and its related artifacts is a strong indicator
for a presence of defects in a respective change. However, it
requires a strong empirical validation on a real-world data set.

Ambros et al. [5] have reverse engineered a software system
using an interactive visualization technique called the Evolu-
tion Radar, which can effectively break down the amount and
complexity of the logical coupling information. Manishankar
et al. [13] proposed new measurement for improving detection
accuracy of evolutionary coupling by blending the concept
location in a code-base to determine whether the changes to
the co-changed entities are corresponding in nature and are
thus related. Gustavo Ansaldi Oliva et al. [14] have proposed
an approach to group timely-close and semantically-related
change-sets containing the same author and commit message
by using a sliding time window concept. In spite of such
significant research being brought out by a variety of software
practitioners, the semantic relationship between the artifacts
was never made by linking the approach to detect logical cou-
pling. The existing approaches are built under the assumptions
that the developer will check-in all the related files in a single
commit, whereas this is not a practical scenario. In contrast to
existing state-of-art approaches, our approach is considerably
different as it considers grouping of change-sets semantically
in order to enhance the detection of logical coupling.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a simple approach to group
semantically related change-sets in atomic-commit featured
Version Control Systems before performing logical coupling
identification. We used Cosine Similarity and work item hash-
tag match to group various change-sets. We were able to
group almost 20% of the revisions. As part of our validation,
we implemented the proposed algorithms in our approach to
group various change-sets and presented preliminary evalua-
tion results for the same. Our evaluation revealed promising
results with a margin of error 20% in ‘Cosine Similarity’

grouping of change-sets. Whereas in ‘HashTag’ evaluation, we
found that almost all the samples were semantically related.
Intuitively, the results could easily be interpreted to conclude
that ‘HashTag’ grouping provided a high degree of accuracy
in grouping the change-sets, whereas ‘Cosine Similarity’ had
few instances of false positives.

As part of our future work, we plan to detect hashtags by
using pattern recognition techniques using a new algorithm
that can reduce the possible HashTag patterns from the revision
comments. We also plan to develop a technique to filter
semantically unrelated files and exclude false positives. We
observed that most of the false positive are related to ongoing
design tasks “like refactoring, merge of branches”. Therefore
we will plan to develop a filtering rule to exclude such change-
sets as part of our future data sets. In regards to our present
analysis, we have only targeted the main/trunk branch for
detecting change-set groups. In the future, we would explore
the possibilities to work with multiple branches. In regards to
existing approaches, we ought to conduct an empirical study
to understand the efficiency of our approach against the rest.
We will be working further to enhance the effectiveness of our
approach by evaluating it against large code-base.

REFERENCES

[1] ngit. www.github.com/mono/ngit.
[2] nopcommerce - asp.net open-source e-commerce shopping cart solution.

www.nopcommerce.com.

[3] Random sample calculator. www.raosoft.com/samplesize.html.
[4] Signalr - incredibly simple real-time web for .net. www.signalr.net.
[5] M. D. Ambros and M. Lanza. Reverse engineering with logical coupling.

In Reverse Engineering, 2006. WCRE’06. 13th Working Conference on,
pages 189–198. IEEE, 2006.

[6] H. S. Christopher Manning, Prabhakar Raghavan. Introduction to
Information Retrieval. Camebridge University Press, 2008.

[7] M. D’Ambros, M. Lanza, and M. Lungu. Visualizing co-change
information with the evolution radar. 35(5):720–735, 2009.

[8] S. Eick, T. Graves, A. Karr, A. Mockus, and P. Schuster. Visualizing
software changes. 28(4):396–412, 2002.

[9] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical coupling based
on product release history. In Software Maintenance, 1998. Proceedings.,
International Conference on, pages 190–198, 1998.

[10] T. Graves, A. Karr, J. Marron, and H. Siy. Predicting fault incidence
using software change history. 26(7):653–661, 2000.

[11] A. Kumar. Modern information retrieval: A brief overview. Bulliten
of IEEE Computer Society Technical Committee on Data Engineering,
4(24):35–43, November 2001.

[12] A. Mockus and D. M. Weiss. Predicting risk of software changes. Bell
Labs Technical Journal, 5(2):169–180, 2000.

[13] M. Mondal, C. K. Roy, K. Schneider, et al. Improving the detection accu-
racy of evolutionary coupling by measuring change correspondence. In
Software Maintenance, Reengineering and Reverse Engineering (CSMR-
WCRE), 2014 Software Evolution Week-IEEE Conference on, pages
358–362. IEEE, 2014.

[14] G. A. Oliva, F. Santana, M. Gerosa, and C. de Souza. Preprocessing
change-sets to improve logical dependencies identification. In Pro-
ceedings of the 6th International Workshop on Software Quality and
Maintainability, 2012.

[15] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl. Mining version
histories to guide software changes. 31(6):429–445, 2005.

www.github.com/mono/ngit
www.nopcommerce.com
www.raosoft.com/samplesize.html
www.signalr.net

	Introduction
	Grouping Change-sets
	Cosine similarity
	Hash tags
	Our Approach

	Preliminary Evaluation
	Related Work
	Conclusion and Future Work
	References

