@inproceedings{kobayashi-etal-2020-attention,
title = "Attention is Not Only a Weight: Analyzing Transformers with Vector Norms",
author = "Kobayashi, Goro and
Kuribayashi, Tatsuki and
Yokoi, Sho and
Inui, Kentaro",
editor = "Webber, Bonnie and
Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.emnlp-main.574/",
doi = "10.18653/v1/2020.emnlp-main.574",
pages = "7057--7075",
abstract = "Attention is a key component of Transformers, which have recently achieved considerable success in natural language processing. Hence, attention is being extensively studied to investigate various linguistic capabilities of Transformers, focusing on analyzing the parallels between attention weights and specific linguistic phenomena. This paper shows that attention weights alone are only one of the two factors that determine the output of attention and proposes a norm-based analysis that incorporates the second factor, the norm of the transformed input vectors. The findings of our norm-based analyses of BERT and a Transformer-based neural machine translation system include the following: (i) contrary to previous studies, BERT pays poor attention to special tokens, and (ii) reasonable word alignment can be extracted from attention mechanisms of Transformer. These findings provide insights into the inner workings of Transformers."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kobayashi-etal-2020-attention">
<titleInfo>
<title>Attention is Not Only a Weight: Analyzing Transformers with Vector Norms</title>
</titleInfo>
<name type="personal">
<namePart type="given">Goro</namePart>
<namePart type="family">Kobayashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tatsuki</namePart>
<namePart type="family">Kuribayashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sho</namePart>
<namePart type="family">Yokoi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bonnie</namePart>
<namePart type="family">Webber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Attention is a key component of Transformers, which have recently achieved considerable success in natural language processing. Hence, attention is being extensively studied to investigate various linguistic capabilities of Transformers, focusing on analyzing the parallels between attention weights and specific linguistic phenomena. This paper shows that attention weights alone are only one of the two factors that determine the output of attention and proposes a norm-based analysis that incorporates the second factor, the norm of the transformed input vectors. The findings of our norm-based analyses of BERT and a Transformer-based neural machine translation system include the following: (i) contrary to previous studies, BERT pays poor attention to special tokens, and (ii) reasonable word alignment can be extracted from attention mechanisms of Transformer. These findings provide insights into the inner workings of Transformers.</abstract>
<identifier type="citekey">kobayashi-etal-2020-attention</identifier>
<identifier type="doi">10.18653/v1/2020.emnlp-main.574</identifier>
<location>
<url>https://aclanthology.org/2020.emnlp-main.574/</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>7057</start>
<end>7075</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Attention is Not Only a Weight: Analyzing Transformers with Vector Norms
%A Kobayashi, Goro
%A Kuribayashi, Tatsuki
%A Yokoi, Sho
%A Inui, Kentaro
%Y Webber, Bonnie
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F kobayashi-etal-2020-attention
%X Attention is a key component of Transformers, which have recently achieved considerable success in natural language processing. Hence, attention is being extensively studied to investigate various linguistic capabilities of Transformers, focusing on analyzing the parallels between attention weights and specific linguistic phenomena. This paper shows that attention weights alone are only one of the two factors that determine the output of attention and proposes a norm-based analysis that incorporates the second factor, the norm of the transformed input vectors. The findings of our norm-based analyses of BERT and a Transformer-based neural machine translation system include the following: (i) contrary to previous studies, BERT pays poor attention to special tokens, and (ii) reasonable word alignment can be extracted from attention mechanisms of Transformer. These findings provide insights into the inner workings of Transformers.
%R 10.18653/v1/2020.emnlp-main.574
%U https://aclanthology.org/2020.emnlp-main.574/
%U https://doi.org/10.18653/v1/2020.emnlp-main.574
%P 7057-7075
Markdown (Informal)
[Attention is Not Only a Weight: Analyzing Transformers with Vector Norms](https://aclanthology.org/2020.emnlp-main.574/) (Kobayashi et al., EMNLP 2020)
ACL