ManagerTower: Aggregating the Insights of Uni-Modal Experts for Vision-Language Representation Learning

Xiao Xu, Bei Li, Chenfei Wu, Shao-Yen Tseng, Anahita Bhiwandiwalla, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan


Abstract
Two-Tower Vision-Language (VL) models have shown promising improvements on various downstream VL tasks. Although the most advanced work improves performance by building bridges between encoders, it suffers from ineffective layer-by-layer utilization of uni-modal representations and cannot flexibly exploit different levels of uni-modal semantic knowledge. In this work, we propose ManagerTower, a novel VL model architecture that gathers and combines the insights of pre-trained uni-modal experts at different levels. The managers introduced in each cross-modal layer can adaptively aggregate uni-modal semantic knowledge to facilitate more comprehensive cross-modal alignment and fusion. ManagerTower outperforms previous strong baselines both with and without Vision-Language Pre-training (VLP). With only 4M VLP data, ManagerTower achieves superior performances on various downstream VL tasks, especially 79.15% accuracy on VQAv2 Test-Std, 86.56% IR@1 and 95.64% TR@1 on Flickr30K. Code and checkpoints are available at https://github.com/LooperXX/ManagerTower.
Anthology ID:
2023.acl-long.811
Volume:
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Month:
July
Year:
2023
Address:
Toronto, Canada
Editors:
Anna Rogers, Jordan Boyd-Graber, Naoaki Okazaki
Venue:
ACL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
14507–14525
Language:
URL:
https://aclanthology.org/2023.acl-long.811/
DOI:
10.18653/v1/2023.acl-long.811
Bibkey:
Cite (ACL):
Xiao Xu, Bei Li, Chenfei Wu, Shao-Yen Tseng, Anahita Bhiwandiwalla, Shachar Rosenman, Vasudev Lal, Wanxiang Che, and Nan Duan. 2023. ManagerTower: Aggregating the Insights of Uni-Modal Experts for Vision-Language Representation Learning. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 14507–14525, Toronto, Canada. Association for Computational Linguistics.
Cite (Informal):
ManagerTower: Aggregating the Insights of Uni-Modal Experts for Vision-Language Representation Learning (Xu et al., ACL 2023)
Copy Citation:
PDF:
https://aclanthology.org/2023.acl-long.811.pdf
Video:
 https://aclanthology.org/2023.acl-long.811.mp4

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy