single-rb.php

JRM Vol.19 No.2 pp. 174-180
doi: 10.20965/jrm.2007.p0174
(2007)

Paper:

A Mobile Mapping System for Precise Road Line Localization Using a Single Camera and 3D Road Model

Kiichiro Ishikawa*, Yoshiharu Amano*, Takumi Hashizume*,
Jun-ichi Takiguchi**, and Naoyuki Kajiwara**

*Waseda University, 17 Kikui-cho, Shinjyuku-ku, Tokyo 162-0044, Japan

**Mitsubishi Electric Corporation, Kamakura Works, 325 Kamimachiya, Kamakura-shi, Kanagawa 247-8520, Japan

Received:
October 20, 2006
Accepted:
February 6, 2007
Published:
April 20, 2007
Keywords:
Mobile Mapping System, GPS-Gyro/IMU, highway alignment, GIS, FKP
Abstract
Precise highway alignment data to be used in car navigation and ITS to increase driving safety must be kept up-to-date and accurate. A Mobile Mapping System (MMS) provides a highway alignment database and offers unparalleled productivity when combined with navigation and videogrammetry tools. The MMS we propose features a GPS/Dead Reckoning (DR) combined navigation system, a three-axis GPS-Gyro/Inertial Measurement Unit (IMU), laser scanners, nearly horizontal cameras, and network-based Positioning Augmentation Services (PASTM) (Mitsubishi Electric Corporation) and measures center-line and side-line locations precisely based on a 3D road surface model. The carrier-phased D-GPS/DR navigation system and GPS-Gyro/IMU conducts highly accurate positioning in centimeters and posture estimation at 0.073° rms for heading, 0.064° rms for pitch, and 0.116° for roll. It provides 0.095 m rms accuracy for both center-line and side-line measurement when GPS visibility is sufficient. A comparison of accuracy between static RTK-GPS measurement and MMS measurement on the Tateyama Kurobe alpine route confirmed MMS dynamic measurement accuracy and effectiveness.
Cite this article as:
K. Ishikawa, Y. Amano, T. Hashizume, J. Takiguchi, and N. Kajiwara, “A Mobile Mapping System for Precise Road Line Localization Using a Single Camera and 3D Road Model,” J. Robot. Mechatron., Vol.19 No.2, pp. 174-180, 2007.
Data files:
References
  1. [1] H. Hirashita, T. Arai, and T. Yoshida, “Automatic Steering System for Rotary Snow Removers,” ISARC2002, Washington, D.C., pp. 443-448, 2002.
  2. [2] T. Arai, “ITS Application in the field of snow removal in Japan,” 8th ITS World Congress, Australia, 2001.
  3. [3] D. Hanandhar and R. Shibasaki, “VEHICLE-BORNE LASER MAPPING SYSTEM(VLMS) FOR 3-D GIS,” Geoscience and Remote Sensing Symposium, 2001. IGARSS ’01. IEEE 2001 International, pp. 2073-2075, 2001.
  4. [4] C. Frueh and S. J. A. Zakhor, “Data Processing Algorithms for Generating Textured 3D Building Facade Meshes from Laser Scans and Camera Images,” International Journal of Computer Vision, 64(2), pp. 159-184, 2005.
  5. [5] C. V. Tao, “Mobile Mapping Technology for Road Network Data Acquisition,” Proc. Journal of Geospatial Engineering, Vol.2, No.2, pp. 1-13, 2000.
  6. [6] J. A. Farrel and M. Barth, “The Global Positioning System and Inertial Navigation,” McGrawHill, pp. 142-146, 1999.
  7. [7] P. B. Jonathan, “COMPUTATIONAL ANALYSIS OF GPS UDSRAIM ALGORITHMS NEW MEXICO INSTITUTE OF MINING AND TECHNOLOGY,” Ph.D. Dissertation at New Mexico Institute of Mining and Technology, 1998.
  8. [8] K. Ishikawa, J. Takiguchi, Y. Amano, and T. Hashizume, “A Mobile Mapping System for road data capture based on 3D road model,” IEEE International Conference on Control Applications, Munich, Germany, 2006.
  9. [9] D. A. Grejner-Brzezinska and C. Toth, “High Accuracy Dynamic Highway Mapping Using a GPS/INS/CCD System with On-The-Fly GPS Ambiguity Resolution,” GISS Users Manual Version 2.0, 2004.
  10. [10] H. Gontran, J. Skaloud, and P.-Y. Gillieron, “AMOBILE MAPPING SYSTEM FOR ROAD DATA CAPTURE VIA A SINGLE CAMERA,” 6th optical 3D Measurement Techniques – Zurich, Switzerland, 2003.
  11. [11] H. Higuchi, M. Saito, A. Onoda, K. Nishikawa, Y. Shibahara, and Y. Ohmura, “Network-based RTK-GPS for Nation-Wide High Accuracy Positioning and Navigation in Japan,” International Symposium International Space University, 2003.
  12. [12] J. Meguro, J. Takiguchi, R. Kurosaki, and T. Hashizume, “Development of an Autonomous Mobile Surveillance System Using a Network-based RTK-GPS,” IEEE International Conference on Robotics and Automation (ICRA2005), April 2005.
  13. [13] G. Lu, “Development of a GPS Multi-Antenna System for Attitude Determination,” University of Calgary, 1995.
  14. [14] C. Wang, “Development of a Low-cost GPS-based Attitude Determination System,” University of Calgary, 2003.
  15. [15] B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins, “GPS Third edition,” Springer-Verlag Wien New York, 1994.
  16. [16] S. Yoneyama, Y. Okano, T. Kawamata, K. Miyahara, and Y. Okada, “An Examination of The Detection of Road Line and Crosswalk Using Road Structure Information,” FIT2004, pp. 193-194, 2004.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jan. 19, 2025

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy