single-rb.php

JRM Vol.19 No.5 pp. 528-534
doi: 10.20965/jrm.2007.p0528
(2007)

Paper:

Development of Novel Nanopipette with a Lipid Nanotube as Nanochannel

Kousuke Nogawa*, Yusuke Tagawa**, Masahiro Nakajima*,
Fumihito Arai***, Toshimi Shimizu****, Shoko Kamiya****,
and Toshio Fukuda*

*Department of Micro-Nano Systems Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan

**Department of Mechanical Science and Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan

***Department of Bioengineering and Robotics, Tohoku University, Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan

**** Nanoarchitectonics Research Center, National Institute of Advanced, Industrial Science and Technology, Higashi, Tsukuba, Ibaraki 305-8565, Japan

Received:
May 28, 2007
Accepted:
June 8, 2007
Published:
October 20, 2007
Keywords:
lipid nanotubes, nanopipette, micromanipulation, local environmental control, single cell analysis
Abstract
Single cell analysis gets a lot of attentions to reveal the unknown biological aspects of individual cells. To analyze the properties of a single cell, local environmental control is desired. We propose a novel nanopipette where a lipid nanotube (LNT) as a nanochannel is attached to apply the minimal changes to the environment. LNTs have hollow cylindrical nanostructures consisting of lipid bilayer membranes and their outer and inner surfaces are hydrophilic. Fabrication process of the LNT nanopipette includes two main parts; picking up an LNT and sealing the interspace between it and the glass micropipette. The fluorescent solution was spouted from the fabricated LNT nanopipette. The nanopipette is effective to local environmental control as an end-effecter for biological applications.
Cite this article as:
K. Nogawa, Y. Tagawa, M. Nakajima, F. Arai, T. Shimizu, S. Kamiya, and T. Fukuda, “Development of Novel Nanopipette with a Lipid Nanotube as Nanochannel,” J. Robot. Mechatron., Vol.19 No.5, pp. 528-534, 2007.
Data files:
References
  1. [1] R. C. Mani, X. Li, M. K. Sunkara, and K. Rajan, “Carbon Nanopipettes,” Nano Lett., Vol.3, No.5, pp. 671-673, 2003.
  2. [2] R. Kometani, T. Morita, K. Watanabe, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, and S. Matsui, “Nozzle-Nanostructure Fabrication on Glass Capillary by Focused-Ion-Beam Chemical Vapor Deposition and Etching,” Jpn. J. Appl. Phys., Vol.42, pp. 4107-4110, 2003.
  3. [3] R. W. Clarke, S. S. White, D. Zhou, L. Ying, and D. Klenerman, “Trapping of Proteins under Physiological Conditions in a Nanopipette,” Angew. Chem. Int. Ed., Vol.44, pp. 3747-3750, 2005.
  4. [4] K. Yamada, H. Ihara, T. Ide, T. Fukumoto, and C. Hirayama, “Formation of Helical Super Structure from Single-Walled Bilayers by Amphiphiles with Oligo-L-Glutamic Acid-Head Group,” Chem. Lett., Vol.10, pp. 1713-1716, 1984.
  5. [5] N. Nakashima, S. Asakuma, J. M. Kim, and T. Kunitake, “Helical Superstructures are Formed from Chiral Ammonium Bilayers,” Chem. Lett., Vol.10, pp. 1709-1712, 1984.
  6. [6] P. Yager and P. E. Schoen, “Formation of Tubules by a Polymerizable Surfactant,” Mol. Cryst. Liq. Cryst., Vol.106, pp. 371-381, 1984.
  7. [7] T. Shimizu, M. Masuda, and H. Minamikawa, “Supramolecular Nanotube Architectures Based on Amphiphilic Molecules,” Chem. Rev., Vol.105, pp. 1401-1443, 2005.
  8. [8] S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, Vol.354, pp. 56-58, 1991.
  9. [9] S. Kamiya, H. Minamikawa, J. H. Jung, B. Yang, M. Masuda, and T. Shimizu, “Molecular Structure of Glucopyranosylamide Lipid and Nanotube Morphology,” Langmuir, Vol.21, pp. 1401-1443, 2005.
  10. [10] H. Frusawa, A. Fukagawa, Y. Ikeda, J. Araki, K. Ito, G. John, and T. Shimizu, “Aligning a Single-Lipid Nanotube with Moderate Stiffness,” Angew. Chem. Int. Ed., Vol.42, No.1, pp. 72-74, 2003.
  11. [11] H. Yui, Y. Guo, K. Koyama, T. Sawada, G. John, B. Yang, M. Masuda, and T. Shimizu, “Local Environment and Property of Water inside the Hollow Cylinder of a Lipid Nanotube,” Langmuir, Vol.21, pp. 721-727, 2005.
  12. [12] M. Nakajima, F. Arai, and T. Fukuda, “In situ Measurement of Young’s Modulus of Carbon Nanotube inside TEM through Hybrid Nanorobotic Manipulation System,” IEEE Transactions on Nanotechnology, Vol.5, No.3, pp. 243-248, 2006.
  13. [13] P. Liu, F. Arai, and T. Fukuda, “Cutting of Carbon Nanotubes Assisted with Oxygen Gas inside a Scanning Electron Microscope,” Appl. Phys. Lett., Vol.89, No.11, pp. 113104-113106, 2006.
  14. [14] T. M. Truskett, “The Subtleties of Water in Small Spaces,” Proc. Natl. Acad. Sci. U. S. A., Vol.100, No.18, pp. 10139-10140, 2003.
  15. [15] L. Ying, A. Bruckbauer, D. Zhou, J. Gorelik, A. Shevchuk, M. Lab, Y. Korchevb, and D. Klenerman, “The Scanned Nanopipette: a New Tool for High Resolution Bioimaging and Controlled Deposition of Biomolecules,” Phys. Chem. Chem. Phys., Vol.7, pp. 2859-2866, 2005.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jan. 19, 2025

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy