Paper:
Development of Microscopic Hardness and Stiffness Investigation System with MicroRobot
Montree Pakkratoke, Shinnosuke Hirata,
Chisato Kanamori, and Hisayuki Aoyama
Department of Mechanical Engineering and Intelligent Systems, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
- [1] J. B. Pethica, “Ion implantation into metals,” Proc. of the 3rd Int. Conf. on Modification of Surface Properties of Metals by Ion Implantation, held at UMIST, Manchester, p. 147, 1981.
- [2] E. T. Lilleodden, W. Bonin, J. Nelson, J. T. Wyrobek, and W. W. Gerberich, “In situ imaging of µN load indents into GaAs,” J. of Materials Research, Vol.10, issue 09, pp. 2162-2165, 1995.
- [3] N. A. Burnhan and R. J. Colton, “Measuring the nanomechanical properties and surface forces of materials using an atomic force microscope,” J. of Vacuum Science and Technology A., Vol.7, No.4, pp. 2906-2913, 1989.
- [4] T. J. Bell, A. Bendeli, J. S. Field, M. V. Swain, and E. G. Thwaite, “The determination of surface plastic and elastic properties by ultra micro-indentation,” Metrologia Vol.28, No.6, pp. 463-469, 1992.
- [5] CSIRO Telecommunication & Industrial Physics, Lindfield NSW 2070 Australia, “Ultra-micro indentation system (UMIS),” unpublished.
- [6] Hysitron company, “TI-series Triboindenter,” unblished.
- [7] MTS system corporation, “Nano indenter XPW,” unpublished.
- [8] S. Fatikow, T. Wich, H. Hulsen, T. Sievers, and M. Jahnisch, “Microrobot system for automatic nanohandling inside a scanning electron microscope,” Int. Conf. on robotic and automation, pp. 1402-1407, 2006.
- [9] O. Ergeneman, J. J. Abbott, G. Dogangil, and B. J. Nelson. “Functionalizing Intraocular Microrobots with Surface coatings,” Int. Conf. on Biomedical robotics and Biomechatronics, pp. 232-237, 2008.
- [10] J. Dong, S. hong, and G. Hesselgren, “WIP: A Study on Development of Endodontic micro robot,” Proc. of the 2006 IJME- INTERTECH Conf., pp. 104-110, 2006.
- [11] P. L. Young, K. Byungkyu, G. L. Moon, and P. Jong-Oh, “Locomotion mechanism design and fabrication of biomimetic micro robot using shape memory alloy,” Int. Conf. on robotics and automation, pp. 5007-5012, 2004.
- [12] O. Fuchiwaki and H. Aoyama, “Manipulation by Miniature Robots in a SEM Vacuum Chamber,” J. of Robotics and Mechatronics, Vol.14, No.3, pp. 221-226, 2002.
- [13] ISO/DIS 14577, “Instrumented indentation test for hardness and materials parameters,” 2007.
- [14] R. Alfred, “Magnetic repulsion: An introductory experiment,” Am. J. Phys., Vol.41, pp. 1332-1336, 1973.
- [15] B. Juan, H. Emilia, M. Salvador, and P. Jose, “Oscillations of a dipole in a magnetic field: An experiment,” Am. J. Phys., Vol.58, No.9, pp. 838-843, 1990.
- [16] C. Ramon, M. M. Jose, and J. C. B. Maria, “The magnetic dipole interaction as measured by spring dynamometer,” Am. J. Phys., Vol.74, No.6, pp. 510-513, 2006.
- [17] V. David, B. Marco, H. Ludek, and S. Petr, “Magnetostatic interactions and force between cylindrical permanent magnets,” J. of magnetism and magnetic materials., Vol.321, pp. 3758-3763, 2009.
- [18] S. Defrancesco and V. Zanetti, “Experiments on magnetic repulsion,” Am. J. Phys., Vol.51, No.11, pp. 1023-1025, 1983.
- [19] P. Montree, L. Natchapon, and H. Aoyama, “Combination of VCA based Micro Force Generator and Micro Robot for Micro Hardness and Stiffness Test,” SICE Annual Conf. 2010, p. 3186, 2010.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2012 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.