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Abstract

With the development of the smartphone market, the smartphone application market will grow sig-
nificantly. As a result, malicious code targeting smartphones is increasing exponentially. Attackers
are spreading malicious apps by embedding malicious code in the app through repackaging attacks.
Small-scale payment fraud and malicious files for smart banking also skyrocketed through smishing
attack targeting Android smartphone users. The intelligent attack, which refers to the type of target
attack, has also become fully visible. In the future, mobile payment and electronic financial crime
targeting smartphone users are expected to become more popular through malicious files based on
Android spreading through smishing attack and it is predicted that various irregular mobile security
threats will come true. To prepare for such attacks, several analytical tools have been developed, in-
cluding a sandbox tool that can analyze Android malicious apps. However, as in PC environment, we
anticipate the emergence of anti-analysis schemes that can neutralize these analytical tools. There-
fore, this paper analyzes the anti-analysis schemes applied to malicious applications. By supporting
the analysis of malicious applications based on the results of this work, it will be very helpful to
reduce the research cost of malicious code research and to create a secure smartphone security envi-
ronment.
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1 Introduction

For mobile applications based on Android, which have the highest share in the mobile market [1]], de-
compiling is easily available and repackaging attacks [2] are especially common because of the use of
intermediate language, Dalvik bytecode, which is a new reconstruction of Java bytecode according to
Android’s own method. It inherits the characteristics of existing Java language and has a lot of symbol in-
formation. Since it has an intuitive instruction set system, it is fundamentally vulnerable to decompiling.
These features can also be targeted to malicious applications, such as static analysis that analyzes source
code by decompiling an application suspected of malicious activity, or dynamic analysis that observes
and analyzes actual application execution time. It is possible to distinguish malicious or not.

As a result, mobile malware developers are adopting anti-analysis schemes to protect their applica-
tions from analysis, and their technology is becoming more and more sophisticated. Mobile malware
with anti-analysis schemes can delay the analysis period from a few days to a few months for as long
as the delay period. Damage can be one person, and it can affect groups or countries, so it is necessary
to respond quickly. Therefore, in this paper, we report the results of analyzing the structures of anti-
analysis schemes applied to mobile malware. Based on this analysis, it is expected that the analysis of
mobile malware with anti-analysis scheme will be proceeded smoothly, thereby ensuring rapid response
and minimizing damage, thereby providing a reliable and secure mobile environment.

The paper is organized as follows. We classify anti-analysis schemes in Section[2] Section [3]presents
the analysis results for anti-rooting schemes, Section[d]deals with anti-emulating schemes, and Section 3]
describes anti-debugging schemes. Finally, Section [6] concludes.
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2 Classification of Anti-Analysis Schemes

Anti-analysis scheme is a countermeasure to prevent reverse engineering analysis of codes. As shown
in Table |1} static anti-analysis scheme and dynamic anti-analysis scheme can be classified according
to the timing of the analysis scheme. Static anti-analysis schemes include obfuscation [3ll, packing [4],
and tamper detection [5]. Dynamic anti-analysis schemes include anti-rooting (6], anti-emulating [,
and anti-debugging [8l]. This paper focuses on dynamic anti-analysis schemes applicable to the Android
environment.

Table 1: Classification of Mobile Anti-Analysis Schemes

Schemes H Description
Obfuscation A technique that makes it difficult to analyze code by
Static changing some or all of the application executable files
Packing A technique for compressing and hiding the executables to
avoid exposing the original executables during static anal-
ysis

Tamper Detection || A technique for judging whether or not the executable file
is forged using the integrity checking scheme
Anti-Rooting A technique for detecting whether a user or an application
Dynamic can be granted the highest privilege on the device where
the application is running

Anti-Emulating A technique that detects that the device on which the appli-
cation is running is operating in an emulator environment
that is not a real device but a virtual configuration
Anti-Debugging || A technique to detect that the application’s own execution
flow is being analyzed by another process

3 Anti-Rooting Schemes

The anti-rooting scheme is a technique for determining whether the device is rooted by checking the
changed system properties due to rooting or checking whether the binary files and applications related to
the rooting are installed.

3.1 Application Package Checking

To root the Android device, it is necessary to have applications like SuperSu.apk, KingRoot . apk,
towelroot.apk installed. As shown in Figure(I} on Android, the getInstallPackages () method of
PackageManager allows you to see a list of applications installed on the device, which can detect the
presence of the above-mentioned rooting related package to detect the rooting.

3.2 Binary File Checking

Rooted Android devices have a su binary file in the directory that stores the executables, such as
/system/bin/, /system/xbin/, and /sbin/. As shown in Figure 2} it is possible to obtain the root
privilege by executing the su binary file existing in the corresponding path, so that the rooting can be
detected by checking if the su binary file exists in the corresponding path.
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-
checkPackages ()

- Java pseudocode

checkPackages () {
PackageManager pm =
List<PackageInfo> packages =

for (PackageInfo package

// Detect Rooting

context.getPackageManager () ;

PackageManager.PerMISSION
: packages) {
if (package.packageName.equals (“com.noshufou.android.su”)) {

pm.getInstalledPackages (
GRANTED) ;

Figure 1: Sample Code for Checking Binary Files Related to Rooting

~
checkBinary() - C pseudocode

checkBinary () {
char *su path[] =

struct stat st;
for(i = 0 ;

// Detect Rooting

-

{ “/system/bin/su”, “/system/xbin/su”,

i < su _path num ;
if ( stat(su_path[i], &st)

“/sbin/su”, };

i++) {
== 0) {

Figure 2: Sample Code for Checking Binary Files Related to Rooting

3.3 System Property Checking

The Android system has a build.prop file that shows the properties of the built system image. The
build.prop file contains various system property information such as sdk version information, release
version, product name, and so on. Among the property information stored in the build.prop file is
the property ro.build.tags which describes the build. For an officially deployed Android image, the
ro.build.tags property is set to release-keys, but for images used in an unofficially built image or
emulator, the ro.build.tags property is set to test-keys. It can also be set to various values such as
unsigned, debug depending on the build environment.

Anti-rooting through system attribute detection is a technique to detect unofficially deployed Android
images and finds that the ro.build. tags attribute is not set to release-keys as shown in Figure3|and
Table 2] This is a detection technique that assumes that an Android image that is not formally released
will be rooted, so a device that is not actually rooted can be detected as a rooted device.
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checkProperty() - Java pseudocode

checkProperty () {

=

String build tags =

SystemProperties.get (“ro.build. tags”);
if ( build tags.contains(“release-keys”)
// Detect Rooting

'= false ) {

Figure 3: Sample Code for Checking System Property Related to Rooting

Table 2: Comparison of System Property Between Real Device and Rooted Device

Real Device

Rooted Device

ro.build.version.release=4.4.4
ro.build.date=Fri Jun 13
2014
ro.build.date.utc=1402643149
ro.build.type=user
ro.build.user=android-build

ro.build. tags=release-keys

07:05:49 UTC

ro.build.host=kpfj3.cbf.corp.google.com

ro
ro

.build.
.build.

2015

ro
ro
ro
ro
ro

.build.
.build.
.build.
.build.
.build.

version.release=4.4.4
date=Thu Feb 19 02:20:50 UTC

date.utc=1424312450

type=eng

user=android-build
host=vpbsl3.mtv.corp.google.com
tags=test-keys

3.4 Process List Checking

On the Android system, there is a proc virtual file system that allows you to view information about
running processes. The proc virtual file system is a virtual file system that provides information about
the processes managed by the kernel in the user area. In the proc virtual file system, we can find various
information such as the process name, the parent process ID, and the memory space being used.

As shown in Figure [] the anti-rooting scheme using the process list is a technique for checking the
name of the running processes provided by the proc virtual file system to check whether the process
related to the rooting is being executed. That is, it is a technique to detect that a rooting binary file
or an application that is not detected by the above-described anti-rooting schemes is operating. As
shown in Figure [5] the name of the process running in the proc virtual file system can be found in

/proc/[pid] /cmdline.

4 Anti-Emulating Schemes

The emulating environment has unique properties of the emulator and unique modules added to run the
emulator on the host PC without any problems [9)]. The anti-emulating scheme is a technique to detect
the emulator by using the unique information of the emulator.
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checkProcList () - C pseudocode

checkProcList () |
DIR *dir; struct dirent *dir entry; char cmdline[128];
int fd; char buf[128];
dir = opendir (“/proc”);
while( dir entry = readdir(dir) ) {
sprintf (cmdline, “/proc/%d/cmdline”, dir_entry->d name) ;
fd = open(cmdline, O RDONLY) ;
read (fd, buf, 128);
if ( !strcmp (buf, “su”) | !'strcmp(buf, “/system/bin/sh”) | ... ) {
// Detect Rooting

Figure 4: Sample Code for Checking Processes Related to Rooting

shell@generic:/ # cat /proc/l/cmdline : echo
/init

shell@generic:/ #

Figure 5: Results from /proc/ [pid]/cmdline

Table 3: Comparison of Device Property Between Real Device and Emulator

Properties H Real Device (Nexus S) ‘ Emulator
IMEI 356951040948493 0

Line 1 Number 0 156555215554
Network Operator 45008 310260
Sim Operator 45008 310260
Sim Operator Name KT Android
SubscriberID 450084510014409 | 310260000000000
Voice MailNumber Null 15552175049
Board herring unknown
Brand Google generic
Manufacturer Samsung unknown
Model Nexus S sdk
Product sojuk sdk
Serial 34308265ACC200EC unknown
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4.1 Device Property Checking

The Android device stores device attribute information such as device unique number (IMEI), telephone
number, manufacturer, and model name. The attribute information of the device is set by a manufacturer,
a mobile communication company, and SDK developers, which is set to identify the device. However,
since the Android system image used in the emulator is not an image generated by a separate maker or
a communication company, the device information is set as default information set in the Android open
source. As shown in Table [3] the emulator can be detected when comparing the attribute information of
the currently running device with the device setting information of the emulator image.

4.2 Exclusively Used Process Checking

The emulator virtualizes the execution environment to provide the same execution environment as the
actual device. In this process, interfacing problems with hardware, host OS, and virtual environment
occur. Fixed information such as device driver and library to solve this problem is included. As shown
in Figure[6] it is possible to detect the emulator using this information.

shell@generic:/ # 1ls -Ral dev | grep gemu
crw-rw-rw- system system 10, 62 2016-07-25 03:29 gemu pipe
Srw—rw-rw- root root 2016-07-25 03:29 gemud

Figure 6: Checking Processes Exclusively Used by Emulator

4.3 Kernel Log Checking

The device driver added to solve the interface problem in the emulator environment outputs its operation
log through the kernel log of the OS operating in the virtual environment. In the output kernel
log, the signature is left as the name of the emulator or the code name, which can detect the emulator
environment as shown in Figure

shell@generic:/ # dmesg | grep gemu
<5>Kernel command line: gemu.gles=0 gemu=1 console=ttyS0 android.qgemud=ttySl
androidboot.hardware=goldfish android.checkjni=1 ndns=2

<4>goldfish new pdev gemu pipe at £f018000 irg 19

Figure 7: Detecting Emulator by Checking Kernel Logs

S Anti-Debugging Schemes
The anti-debugging scheme is a technique for detecting the debugger based on the state information

that is changed during application debugging or based on the structural characteristics of the debugging
process [10].
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5.1 TracerPID Checking

To debug processes on a Linux-based system, you must use the ptrace system call provided by the
Linux kernel. The ptrace system call allows you to gain control over other processes. In effect, the
kernel is running to control the process, setting debugging-related information among the process state
information managed by the kernel. That is, the debugger can be detected by checking the set debug-
ging related information. The status information of the processes managed by the kernel is provided in
the /proc virtual file system so that it can be viewed in the user area via /proc/[pid]/status. In
/proc/[PID]/status, status information such as process name, operation status, and PID of process
can be checked. Among the status information, PID information of the process debugging process in
which TracerPID item is running is provided. The TracerPID entry is set to O if the process is nor-
mally running, but it is set to the PID of the debugger process if it is being debugged. By checking this
as shown in Table [} the debugger can verify that the process is being debugged.

Table 4: Detecting Debugger by Checking TracerPid

Normal Process Debugging Process
$ cat /proc/1754/status $ cat /proc/l1754/status
Name : m.android.email Name: m.android.email
State: S (sleeping) State: S (sleeping)
Tgid: 1754 Tords 1754
Pid:1754 Pid: 1754
PPid: 201 PPid: 201
TracerPid: 0 TracerPid: 7270
Uid: 10027 10027 10027 10027 Uid: 10027 10027 10027 10027

5.2 Debugging API Checking

As mentioned earlier, the ptrace system call, which provides debugging facilities on Linux systems,
provides process control. The ptrace system call provides various control functions according to the
argument value passed as the request argument. The argument can be set to the request argument value
such as control request for other process, memory R/W, system call hooking, signal hooking, etc. The
PTRACE_TRACEME request parameter value can check whether or not the process itself is being debugged

(See Figure|g).

5.3 Timing Checking

The timing check scheme is based on the execution time of a process. In the case of a process being
debugged, the execution of the process is performed through the interaction with the analyzer using the
debugger, thereby causing the waiting time for the execution of the process. The execution wait time
may be several seconds or several minutes. However, in a typical execution environment, even if latency
occurs, it takes less time than msec. This difference can be used to detect that a process is being debugged
as shown in Figure[9]

45



Survey of Dynamic Anti-Analysis Schemes Lim, Shin, Lee, Kim, and Yi

e A
detect_debugger () - C pseudocode

detect debugger () {
if (ptrace (PTRACE TRACEME, 0, 0, 0) !'= 0) {
// Detect Debugger

Figure 8: Detecting Debugger by Checking API

¢ )
timing check() - C pseudocode

timing check () {
struct timeval start, end;
gettimeofday (&start, NULL);
/*
* Target code to protect
*/
gettimeofday (&end, NULL) ;
if ( end.tv_sec - start.tv_sec < threshold )

// Detect Debugger
\J J

Figure 9: Detecting Debugger through Timing Checking

5.4 Breakpoint Instruction Checking

The debugger can set breakpoints in the program’s instructions to control the execution of the program.
If a breakpoint is set, the program will stop running just before executing the command. The principle of
stopping the program is to change the command at the point where the breakpoint is set to a command that
can not be interpreted by the CPU, thereby stopping the execution of the program from the CPU. Because
of this execution control principle, the program can detect the behavior of the debugger. Since the code
area of the program is fixed and unchanged after compilation, a unique hash value is generated when a
hash algorithm is applied. If the code area changes due to the breakpoint setting as above, reapplying
the hash algorithm to the code area generates a new hash value different from the existing hash value.
Therefore, it is possible to detect the behavior of the debugger by comparing two hash values.

5.5 Signal Checking

All signals passed to the debugging process are passed to the debugger first, and control over the signal
is transferred to the debugger. The debugger can determine whether or not to pass the signal back to the
debugging process, but the default option is not to be passed. Based on this principle, if the signal is not
delivered to the process after generating the signal, it can be confirmed that the debugger is operating as
shown in Figure
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( A

signal check() - C pseudocode

int detect = 0;

void signal handler (int signo) {
detect++;

}

int antiDebugging () {
detect = 0;
SIGNAL (SIGINT, signal_ handler);
SIGNAL (SIGINT, signal handler);
if( detect '= 2 ) {

// Detect Debugger

Figure 10: Detecting Debugger by Checking Signal

6 Conclusion

The latest mobile malware contains a variety of anti-analysis schemes, so it can not easily be analyzed
with existing malware analysis tools. Also, even if analysis is possible, it takes a lot of analysis time
and causes more damage than during the delayed period. In this paper, we have analyzed the structure of
anti-analysis schemes applied to mobile malware. Based on this, we will be able to automatically identify
anti-analysis schemes rather than passive analysis that relies on reverse engineering analysts in the future
and write code that bypasses them in memory. If such an automated anti-analysis evading technology
is developed, it will respond quickly to intelligent mobile malware and contribute to minimizing the
damage.
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