As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Being able to teach complex capabilities, such as folding garments, to a bi-manual robot is a very challenging task, which is often tackled using learning from demonstration datasets. The few garment folding datasets available nowadays to the robotics research community are either gathered from human demonstrations or generated through simulation. The former have the huge problem of perceiving human action and transferring it to the dynamic control of the robot, while the latter requires coding human motion into the simulator in open loop, resulting in far-from-realistic movements. In this article, we present a reduced but very accurate dataset of human cloth folding demonstrations. The dataset is collected through a novel virtual reality (VR) framework we propose, based on Unity’s 3D platform and the use of a HTC Vive Pro system. The framework is capable of simulating very realistic garments while allowing users to interact with them, in real time, through handheld controllers. By doing so, and thanks to the immersive experience, our framework gets rid of the gap between the human and robot perception-action loop, while simplifying data capture and resulting in more realistic samples.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.