As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Data Veracity of Patients and Health Consumers Reported Adverse Drug Reactions on Twitter: Key Linguistic Features, Twitter Variables, and Association Rules
As Twitter emerged as an important data source for pharmacovigilance, heterogeneous data veracity becomes a major concern for extracted adverse drug reactions (ADRs). Our objective is to categorize different levels of data veracity and explore linguistic features of tweets and Twitter variables as they may be used for automatic screening high-veracity tweets that contain ADR-related information. We annotated a published Twitter corpus with linguistic features from existing studies and clinical experts. Multinomial logistic regression models found that first-person pronouns, expressing negative sentiment, ADR and drug name being in the same sentence were significantly associated with higher levels of data veracity (p<0.05), using medical terminology and fewer indications were associated with good data veracity (p<0.05), less drug numbers were marginally associated with good data veracity (p=0.053). These findings suggest opportunities for developing machine learning models for automatic screening of ADR-related tweets using key linguistic features, Twitter variables, and association rules.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.