As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Cognitive Workload (CWL) is a fundamental concept in predicting healthcare professionals’ (HCPs) objective performance. The study aims to compare the accuracy of the classical model (utilizes all six dimensions of the National Aeronautics and Space Administration Task Load Index (NASA-TLX)) and novel models (utilize four or five dimensions of NASA-TLX) in predicting HCPs’ objective performance. We use a dataset from our previous human factors research studies and apply a broad selection of supervised machine learning classification techniques to develop data-driven computational models and predict objective performance. The study findings confirm that classical models are better predictors of objective performance than novel models. This has practical implications for research in health informatics, human factors and ergonomics, and human-computer interaction in healthcare. Findings, although promising, cannot be generalized as they are based on a small dataset. Future studies may investigate additional subjective and physiological measures of CWL to predict HCPs’ objective performance.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.