Computer Science > Artificial Intelligence
[Submitted on 19 May 2022]
Title:Reinforcement Learning with Brain-Inspired Modulation can Improve Adaptation to Environmental Changes
View PDFAbstract:Developments in reinforcement learning (RL) have allowed algorithms to achieve impressive performance in highly complex, but largely static problems. In contrast, biological learning seems to value efficiency of adaptation to a constantly-changing world. Here we build on a recently-proposed neuronal learning rule that assumes each neuron can optimize its energy balance by predicting its own future activity. That assumption leads to a neuronal learning rule that uses presynaptic input to modulate prediction error. We argue that an analogous RL rule would use action probability to modulate reward prediction error. This modulation makes the agent more sensitive to negative experiences, and more careful in forming preferences. We embed the proposed rule in both tabular and deep-Q-network RL algorithms, and find that it outperforms conventional algorithms in simple, but highly-dynamic tasks. We suggest that the new rule encapsulates a core principle of biological intelligence; an important component for allowing algorithms to adapt to change in a human-like way.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.