Computer Science > Artificial Intelligence
[Submitted on 30 Nov 2024]
Title:CaDA: Cross-Problem Routing Solver with Constraint-Aware Dual-Attention
View PDF HTML (experimental)Abstract:Vehicle Routing Problems (VRPs) are significant Combinatorial Optimization (CO) problems holding substantial practical importance. Recently, Neural Combinatorial Optimization (NCO), which involves training deep learning models on extensive data to learn vehicle routing heuristics, has emerged as a promising approach due to its efficiency and the reduced need for manual algorithm design. However, applying NCO across diverse real-world scenarios with various constraints necessitates cross-problem capabilities. Current NCO methods typically employ a unified model lacking a constraint-specific structure, thereby restricting their cross-problem performance. Current multi-task methods for VRPs typically employ a constraint-unaware model, limiting their cross-problem performance. Furthermore, they rely solely on global connectivity, which fails to focus on key nodes and leads to inefficient representation learning. This paper introduces a Constraint-Aware Dual-Attention Model (CaDA), designed to address these limitations. CaDA incorporates a constraint prompt that efficiently represents different problem variants. Additionally, it features a dual-attention mechanism with a global branch for capturing broader graph-wide information and a sparse branch that selectively focuses on the most relevant nodes. We comprehensively evaluate our model on 16 different VRPs and compare its performance against existing cross-problem VRP solvers. CaDA achieves state-of-the-art results across all the VRPs. Our ablation study further confirms that each component of CaDA contributes positively to its cross-problem learning performance.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.