Computer Science > Computer Vision and Pattern Recognition
[Submitted on 7 Jul 2022]
Title:Adaptation of Surgical Activity Recognition Models Across Operating Rooms
View PDFAbstract:Automatic surgical activity recognition enables more intelligent surgical devices and a more efficient workflow. Integration of such technology in new operating rooms has the potential to improve care delivery to patients and decrease costs. Recent works have achieved a promising performance on surgical activity recognition; however, the lack of generalizability of these models is one of the critical barriers to the wide-scale adoption of this technology. In this work, we study the generalizability of surgical activity recognition models across operating rooms. We propose a new domain adaptation method to improve the performance of the surgical activity recognition model in a new operating room for which we only have unlabeled videos. Our approach generates pseudo labels for unlabeled video clips that it is confident about and trains the model on the augmented version of the clips. We extend our method to a semi-supervised domain adaptation setting where a small portion of the target domain is also labeled. In our experiments, our proposed method consistently outperforms the baselines on a dataset of more than 480 long surgical videos collected from two operating rooms.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.