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ABSTRACT

Let R be a prime ring with involution, of characteristic # 2, with center
Z, skew elements K, and extended centroid C. THEOREM. Suppose

[K,K] # {0} and f : K — K is an additive map such that [f(x),x] € Z for
all x € K. Then, unless R is an order in a 16-dimensional central simple

algebra, there exists A € C and an additive map g : K — C such that

€ K.

s

f(x) = Ax + p(x) for all



1. INTRODUCTION

Let R be a ring with center Z, and let A be a subset of R. A map
f : A — R is said to be centralizing if [f(x),x] € Z for all x e A. In
the special case where [f(x),x] =0 for all x e A, f is called commuting.
The study of centralizing maps was initiated by a well-known theorem of Posner
[13] which states that the existence of a nonzero commuting derivation in a
prime ring implies that R is commutative. An analogous result for
centralizing automorphisms on prime rings was obtained by Mayne [12]. A
number of authors have extended these theorems of Posner and Mayne; they have
showed that derivations, automorphisms, and some related maps cannot be
centralizing on certain subsets of noncommutative prime (and some other)
rings. For these results we refer the reader to ([1], [6], [3]) where
further references can be found.

In [4] the description of all centralizing additive maps of a prime ring
R of characteristic not 2 was given and subsequently in [0] the
characterization for semiprime rings of characteristic not 2 was given. It
was shown that every such map f is of the form £(x) = Ax + p(x) where

A € C, the extended centroid of R, and g is an additive map of R imnto

<2
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In [5], using similar methods (although the proof is more complicated),

(V)

commuting traces of biadditive mappings in prime rings satisfying some
additional conditions were characterized. We remark that this
characterization was the main tool in removing the requirement of orthogonal

idempotents in the determination of Lie isomorphisms [8] and Lie derivations

[7] in prime rings.



The main purpose of this paper is to describe the structure of additive
centralizing maps of the skew elements in a prime ring with involution. In
the case of derivations this has been done by Lanski [6]. If R is a prime
ring with involution % it is well-known that % extends in a natural way to
an involution on the central closure RC. The skew elements of R will be
denoted by K; K is closed under the Lie bracket ([x,y] = xy - yx. A rough
statement of our main result (Theorem 6.4) is as follows:-

Let R be a prime ring with involution, of characteristic not 2,
with [K,K] # {0}, and let f : K — K be an additive centralizing
map. Then, unless R is an order in a certain 16-dimensional
central simple algebra, there exists A € C and g : K— C such
that f(x) = Ax + p(x) for all x € K.

In proving the theorem our approach is to reduce the problem, using the
theory of generalized polynomial identities (GPI’s) to the case of matrix
rings where specific calculations can be made. In section 2 we elaborate on
the definitions of centralizing and commuting mapé, give some background on
the structure of K, and recall various results from GPI theory needed in the
sequel. The theory of biderivations in section 3 is used in several places;
in particular the case of involutions of the second kind reduces to theorem
3.3. For the case where x is of the first kind and f : K — K is
commuting, the result is taken care of by Theorems 4.3 and 4.5 of section 4,
and more generally for GPI rings by Theorem 5.5 in section 5. In section 6
the main theorem (Theorem 6.4) is obtained, and we also present, in what may
be of independent interest, a result (Theorem 6.5) in which under rather

general conditions it is shown that f centralizing implies f commuting.



2. PRELIMINARIES

Let R be a ring with center Z, and let A be an additive subgroup of

R. An additive map f : A — A is said to be centralizing if

(1) * [f(x),x] € Z for all x € A,

where [x,y] denotes the Lie bracket operation xy — yx. Linearization of

(1) immediately yields

(2) [f(x),y] + [£(y),x] € Z for all =x,y € A.

An additive map f : A — A is said to be commuting if

(3) [f(x),x] = 0 for all x € A.

Linearization of (3) then gives

(4) [f(x),y] = [Xaf(Y)] for all x,y € A.
Throughout this paper we are assuming that the characteristic of R is not

2, d.e. forall x € R, 2x =0 implies x = 0. Thus, under this
)

assumption, it is clear that (1

(4).

is equivalent to (2) and (3) is equivalent to

We now proceed to give a brief resumé of various concepts and results
concerning the Lie theory of prime rings with involution, together with GPI

theory, which we will need in our study of centralizing and commuting maps.



Many of our remarks can be found in [11], and we recommend this source for
further details.

Let R be a prime ring with involution =x, and with center Z. The
subset of skew elements K = {x € R | x* = -x} is closed under addition and
the Lie bracket, [x,y] = xy - yx. The involution # induces an involution
on the ertended centroid C in a natural way and can be extended to an
involution of the central closure RC. In general a prime ring R is closed
over ¢ field F if F is both the centroid and the extended centroid of R,
or, equivalently, R is an algebra over F vhere F is the extended
centroid. In particular the central closure RC is closed over C.

We let (4 denote the subfield of symmetric elements of € and C# the

set of skew elements of C and note that C = C, ® C Ve say that the

involution % on R is of the first kind if C = C*f and of the second kind
if C#:i {0}. If =+ is of the first kind then the skew elements of RC are
just CK. If x is of the second kind it is easy to see that CK = RC.

For simplifying the structure of R and also for distinguishing between

different types of involutions it is useful to have on hand the notion of the

super *—closure of R (see [11], p. 27). If F is the algebraic closure of

involution on R is given by (ra® f)* =t*a e f, r €R, a€Cy, fe€F.

the field C,, then R = RC, GC*F 'is called the super *fclosure of R. The
(
We will be only interested in R when # is of the first kind, in which case
it is known that R is a closed prime algebra over F.
Now let % be an involution of the first kind of the matrix ring
R = Mn(F) where F is an algebraically closed field. It is a classical and

well-known result that there is a set of matrix units {eij} in R relative

to which either * 1is ordinary transpose or # is symplectic (7Z.e. n = 2m,



* = transpose followed by the inner automorphism determined by the element
[f} %}’ I the mxm identity matrix).

The following remark is a consequence of ([11], Lemma 5.5).

Remark 2.1. [K,K] = {0} if and only if R is commutative or R = M, (F)

under transpose.

As a consequence of ([11], Theorem 3.3 and Lemma 5.2(d)) we have

Tueorem 2.2 If [K,K] # {0} and a € R <is such that [K,a] = {0},

then a € Z.

At this point we make an easily proved but useful observation concerning

commuting maps.

RemARk 2.3. Let R be a closed prime algebra over F with involution
of the first kind, with [K,K] # {0}, and let f : K — K be an additive

commuting map. Then f is F-linear.

Proof. K 1is an F-space, and using (4) we see that
[£(Ax),y] = Dx,E(3)] = AlxE(y)] = A[E(x),y] = [A(x),¥]

x,y € K. Therefore f(Ax) - M(x) = 0 by Theorem 2.2.

h
L

For the moment we let R be any prime ring (with or without involution)
and form the free product RC.(T) over C of the central closure RC and
the free algebra C(T) on a set T of indeterminates. An additive subgroup

A of RC is said to satisfy a generalized polynomial identity over C



(briefly 4 is 6PI over () if there is a non—zero element w(tl,t2,---,tn)

of RC.(T) such that p(a;,---,a ) =0 for all a; € A. A key lemma in the

theory is

LEmmr 2.4 ([9], Theorem 1). If a,b € RC are such that axb = bxa for
~all x € R, then a and b are C-dependent.

Closed prime GPI rings are characterized as follows.

THeEOREM 2.5 ([9], Theorem 3). Let R be a closed prime GPI ring over a
field F. Then R is primitive (acting densely on a vector space V over a
division ring D), R contains nonzero transformations of finite rank (z.e.
R has a non—zero socle, H) and (D:F) < w. Furthermore, if F s

algebraically closed, D = F.

Ve return now to the situation where R is a prime ring with involution.

An important result for our purpose is the following corollary of ([10],
Theorem 4.9):

TueoreEM 2.6. If K 15 GPI over C then R 1is GPI over C.
If K is GPI then Theorems 2.5 and 2.6 together show that the socle K
of RC is nonzero, and the following result serves as a useful link between

prime rings with nonzero socle and matrix rings.

TueoreM 2.7 ([11], Corollary 2.9). lLet R be a primitive ring with

involution aend with nonzero socle H. If hl""’hm el and tf k is a



positive integer < (V:D) there ezists a symmetric tdempotent e in H such

that hl""’hm € eRe and rank e > k.

3. BIDERIVATIONS OF PRIME RINGS

Let R be a ring. A biadditivemap B : R x R — R is called a
biderivation if for every x € R the map y — B(x,y) is a derivation of R,
and for every y € R the map x — B(x,y) is a derivation of R (see [14]
where biderivations satisfying some special properties are studied). Typical
examples are mappings of the form (x,y) — c[x,y] where c is an element of
the center of R. It is our aim to show that in noncommutative prime rings
these obvious examples are essentially the only examples.

The notion of biderivation arise naturally in the study of additive

commuting maps. Namely the linearization

(4) [£(x),y] = [x,£(y)]

of an additive commuting map f implies that the map B : R x R — R given
by B(x,y) = [f(x),y] is a biderivation.
A special case of the following lemma, where B was a biderivation

24 30 . e mesavrad dn ]
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Lemua 3.1. Let R be a ring and B : R xR — R a biderivation. Then

B(x,y)z[u,v] = [x,y]zB(u,v) for all x,y,z,u,v € R.



Proof. We compute B(xu,yv) in two different ways. Using the fact that

B is a derivation in ﬁhe first argument, we get

(5) B(xu,yv) = B(x,yv)u + xB(u,yv).

Since B is a derivation in the second argument, it follows from (5) that
B(xu,yv) = B(x,y)vu + yB(x,v)u + xB(u,y)v + xyB(u,v).

Analogously, we obtain B(xu,yv) = B(xu,y)v + yB(xu,v) = B(x,y)uv + xB(u,y)v +
yB(x,v)u + yxB(u,v). Comparing the relations so obtained for B(xu,yv) we

arrive at

B(x,y) [u,v] = [x,y]B(u,v) for x,y,u,v € R.
Replacing u by zu and using the relations
[zu,v] = [z,v]u + z[u,v], B(zu,v) = B(z,v)u + zB(u,v)

we obtain the assertion of the lemma.

Our next result is a slight generalization of [2], Lemma. Fortunately,

we include it £

+h
i

he same proof works, bu or the sake of completeness.

LEmMA 3.2. Let S be any set and R be a prime ring. If funciions
F:S5—R, G:S— R satisfy F(s)xG(t) = G(s)xF(t) for all s,t €8,
x €R, and F £ 0, then there exists A € C, the extended centroid of R,

such that G(s) = AF(s) for all s € S.



Proof. Given s € S we have F(s)xG(s) = G(s)xF(s) for all x e R. If
F(s) # 0, Lemma 2.4 implies that G(s) = A(s)F(s) for some A(s) € C. Thus
if s,t € S are such that F(s) # 0 and F(t) # 0, the relation
F(s)xG(t) = G(s)xF(t) can be written in the form (A(t)-A(s))F(s)xF(t) = 0.
The primeness of R yields A(s) = A(t). Therefore there exists A € C such
that G(s) = AF(s) for all s € S such that F(s) # 0. However, if
F(s) = 0, then we see from the relation F(s)xG(t) = G(s)xF(t) that

[-p}
—_
tn
—
H

0 since R is prime and F # 0. Thus G(s) = AF(s) for all s € §.

Ve are now in a position to prove

TueoreEM 3.3. Let R be a noncommutaiive prime ring and let
B:RxR—R bea bitderivation. Then there ezists X € C such that
B(x,y) = A[x,y] for all x,y € R.

Proof. Let S =R xR and define A : S — R by A(x,y) = [x,¥];
A #0 since R 1is noncommutative. According to Lemma 3.1 the functions

A,B : S — R satisfy all the requirements of Lemma 3.2. Hence the result
follows.

As a comsequence of Theorem 3.3 we get the principal result of [4].
CoroLLARY 3.4. Let R be a prime ring. If f : R — R is an additive

commuting map, then there ezxists A € C and an additive map p : R — C such

that £(x) = Ax + p(x) for all x € R.
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Proof. Linearizing [f(x),x] = 0 we see that the map (x,y) — [f(x),¥]
is a biderivation. Clearly we may assume R 1is noncommutative. Therefore by
Theorem 3.3 there exists A € C such that [f(x),y] = [Ax,y] for all

x,y € R. Hence we see that for any x € R the element u(x) = £(x) - Jx € C,

and the proof is complete.
4. THE MATRIX RING CASE

In this section we determine all additive commuting maps f : K — K in
the case where R = Mn(F)’ F a field under ordinary transpose or symplectic
involution. Since these involutions are of the first kind we know from Remark
2.3 that f is necessarily F-linear unless n = 2 and #+ is transpose.

We first consider M (F) under transpose. If {eij} are the usual

matrix units for M (F) we set Eij UTILIPY i # j and note that

{E.. | i < j} 1is a basis for K. For convenience if x =% o.. E.. € K, the
ij iy 1 i

support of x = {(i,j) | 035 # 0}. The Eij satisfy Eij = _Eji’

[Eij,Ejk] =B, 1#k, and the consequences thereof.
Now let f : K — K be an additive commuting map, K the skew elements
of Mn(F) under transpose and n # 2 or 4. (The cases n=2 and n =4

are special and will be discussed later.)

LEMMA 4.1. f(Eij) = aEij + Y ooy B, a,q, €F, vhere

k<£
{k,€} n {i,j} = 0.

Proof. Ve may assume (i,j) = (1,2). Writing £(E )

19) " oy oBrg Ve

may deduce from
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0= [zakl “Eygs E12] = Z“ke[Ekz’E12]

that e, = 0 when {k,f} n {1,2} = {1} or {2}.
LEwma 4.2. f(ElJ) = a1J ij? i<j.

Proof. By Lemma 4.1 the result holds for n =3 and so we may assume
that n > 5. Ve may assume (i,j) = (1,2) and in view of Lemma 4.1 we may

write

f(Byy) = aByy + 1§J aijEij’ {i,j} n {1,2} =

|
L%

Suppose, for example, that gy # 0. In (4) we set x

i
=

350 ¥ = Epg
and, using Lemma 4.1 again, we write

f(Ege) = By + kzz Bisbipr  {k:£} 0 {3,5} = 0.

Consider the equation

l
o

a = [ 12 * JayiBy g E35] = [E12’ Pligg + Eﬂszke] =

The term 034[E34,E35] = a34E54 $ Q appears in a and every member of the
support of a has 3 or 5 as an index. However no member of the support

of b has either 3 or 5 since {k,£} n {3,5} = ¢ which contradicts
a=b.
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TueoreEM 4.3. Let R = MH(F) under transpose involution, n + 2, n # 4
and let f : K — K be an additive commuting map. Then there erists A € F

such that f(x) = Ax for all x € K.

Proof. By Lemma 4.2 f(Eij) = aijEij’ i < j and we need only show that
all the a;; are equal (and thus we let A be this common value). In fact,
without loss of generality, it is enough to prove g = 0gq. To this end,
using (4), we see immediately from [a12E12,E13] = [E12,023E23] that

819 = Q93+

For n =2, K is 1-dimensional, generated by E12. Let p be any
additive endomorphism of F. Then the map f : K — K given by
f(eEy,) = p(a)E;y is additive commuting but in general there is mo A € F
such that f(x) = Ax. Thus the theorem fails in this case.

For n =4 it is well-known that K =Ue®V with U and V
3—-dimensional simple Lie algebras. If we define f(u+v) =u -v, ue€ U,
v € V it is clear that f is additive commuting but that the conclusion of
the theorem fails.

Next consider M (F) under symplectic involution. Here =n = 2m and it

is well-known that K consists of all matrices of the form

A S
T -Ab
wvhere A is an arbitrary m x m matrix and S and T are symmetric m x m

matrices. We now let f : K — K be an additive commuting map.

Ve first study the "diagonal" case, writing



A 0 W(A) Xl (A)
6 f =
© H 0 —At” () -p(a)°

where g, x; : Mm(F) — M (F) are linear maps with xi(A) symmetric,

i=1,2.

Levma 4.4.

(a) ¥y =0 for 1i=1,2.

(b) There ezists A € F such that ¢(A) = A + p(A)I,
(In the case m =1 we may take p(A) = 0.)

Proof. Commuting (6) with [i -Zt} results in
(7) [A,p(4)] = 0,
(8) Arg(A) + x()A® = 0, and
(9) Xy (M)A + Ay, (4) = o.

13.

Setting A =TI in (8) results in 2y,(I) =0 whence x,(I) = 0. Using this

and replacing A by A+ I in (8) we obtain x{(4) = 0. Similarly one shows

that y,(A) = 0 and so (a) has been established. From (7) we see that ¢ is

a commuting map on Mm(F). Therefore by Corollary 3.4 there exists X € F

such that ¢(A) = AA + p(A)T for all Ae M (F), with p: M (F) = F an

additive map, which proves (b).
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g(8)  B(S)

Ve next write f[[g g]] = " and set x = [g g},
hy(5)  -g(5)

A0
y = [ t} in the equation [x,f(y)] = [f(x),y]. In view of Lemma 4.4 this
0 -A .

reads

0 SYLETINS| hy(5) 8(5)°] |o 4t

Expansion of (10) yields

(11) (g(5),A] =0
(12) hy(S)A + Ah,(S) = 0
(13) SOAT+u()T) + (Msp(A)T)S = b (S)A® + An, ().

From (11) we conclude that g(S) = 7(S)I, 7(S) € F, and setting A =1 in
(12) we see that h,(5) = 0. Setting A =1 in (13) results in

(14) b, (S) = fS g -} (T
\J.".tl ul\U} U, IJ AT Fl\.l.}o
Setting S = I in (13), together with (14), yields

(15) 2u(A)I = (6-1) (A%+4) for all A € M (F).

In case m

1l

1 we already have p(A) =0 and f =1 so we may assume
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m>1. If f+ A, (15) says that every symmetric matrix is cenmtral, which is
false. Therefore f =1 and so (15) implies pu(A) =0 for all A e M (F).

Thus far we have shown that

A 0 AA 0 0 S
f il = e and f
0 -A 0 -M 0 0

0 S| [7(S)I A8
ol |

i

7(S)I AS
[ 0 -7(5)1}'

} = 0 we see that 29(S5)S = 0 whence

Finally, from
0 -1(S)I

7(S) = 0. A similar argument shows that f L ] so, by the
T O AT O

linearity of f we have proved

TueoneM 4.5. et R = M (F) under symplectic involution and let

f:K— K be an additive commuting map. Then there exists X € F such that

f(x) = Ax for all x € K.
5. THE GPI CASE

Throughout this section we assume that R is a prime ring with
involution * of the first kind and with [K,K] # {0}. VWe let f : K — K

be an additive commuting map.

LEmMa 5.1. f can be eztended to a map g : CK — CK which s C-linear,

commuting and satisfies g(ix) = Af(x), A e C, x e K.
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Proof. Ve define

g[z Aixi] - %), £(x;), 4 €C, x €Kk

To show g is well-defined suppose X Aixi = 0. Then for all y € K we have

171?

[2 A f(xi),y] - B0 [E(xy) ] = B A [x,E()] = [z )ox. f(y)] - 0,

showing that [% Aj f(xi), CK] = {0}. By Theorem 2.2 we conclude that
% X, f(x;) 1is central, and hence 0 since * is of the first kind. That g
is commuting follows easily from the fact that f is commuting. Since CK

is a C-space we see that g must be C-linear by Remark 2.3.

LemMa 5.2. If R is a closed prime algebra over C and F is any
ectension field of C then f can be extiended to a map g : K ® F— K 8, F
which is F-linear, commuting, and satisfies g(x®l) = f(x)®), x €K,

A e F.

Proof. Since K is a C-space we know f is C-linear by Remark 2.3.

Therefore by a well-known property of the tensor product the map

g :K@F .K@F e e -f—;—.—\ B _linnaar man

o wall_Ada ad 13
& weii—{erined rf-iiiical iap.

7]

givan h ~ ) v £) ) 3
EiVeil 0y Xea — 1I{X) n 1

It is also clear that g is commuting since f is.

Ve recall from Theorem 2.5 that if R is a closed prime GPI ring over a
field F then R has nonzero socle H and acts densely on a vector space V
over a division ring D where (D:F) < . Furthermore, if F is

algebraically closed, then D =F.
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Lemma 5.3. If R s closed prime GPI with socle H then H N K is

invariant under f.

Proof. Ve may assume (V:D) = » since otherwise R = H and we are
done. Let h € Hn K. By Theorem 2.7 there exists a symmetric idempotent e
in H such that h € eRe. Setting e; =e and (formally) ey = 1-e we may

express R in its Pierce decomposition relative to e, eq:
L s

R = R11 o R12 ] R21 ] R22 where Rij = eiRej.

Ve use the suggestive terminology X33 for an element of Rij and, given

* *
X35 € Rij’ we note that X3 5 € Rji and we denote X; 5 by X5

elements of R are of the form x; + (xlz—le) + Xgo, X;; € KNR,.,

The skew

X{9 € R12‘ With this machinery in hand we write f(h) = Vi1 * Y19 ~ Y9i * Y99

and for X99 cekn R22 we consider the relation

(16) [f(xzz)’ h] - [X22> f(h)} - {xzz’ Y11 * Y19 " Yor * Yzz]'

Expansion of (16) together with the fact that h € R;; shows that

£ all < r T nD Dy Thanw-am O 9 annliad +
A AL J\.22 T il I.|422- uy LICULCTI &4 (LPPJ.J.CU. v

R22 ve see that Y99 lies in the center of R22, and therefore Vo9 =

[x99:¥99] =0

o tha =i
U LT 1 1lg

since * is of the first kind. It follows that f(h) € H since e lies in

H and the proof is complete.

Lemva 5.4. If R is closed prime GPI over an algebraically closed field
F with [K,K] # {0} and H s the socle of R, then there erists X € F
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such that f(h) = Ah for all heHNnEK, or R M4(F) under transpose

involution.

Proof. If R = Mn(F) then K = H and we are finished by Theorems 4.3
and 4.5. Hence we may assume (R:F) = o. It suffices to show that given
hl’ h2 distinct nonzero elements of H n K, there exists 1 € F such that
f(hy) = Ah; and f(h,) = Ah,. Choosing such h b, € N K we know from
Lemma 5.3 that f(h,) and f(hz) lie in H n K. By Theorem 2.7 there is a
symmetric idempotent e in H of rank > 4 such that h1, h2, f(hl), f(h2)

all lie in eRe. We now define a map g : eKe — eKe by
g(exe) = ef(exe)e, x € K,

which is additive and commuting since f is. But eRe ¥ Mn(F) and, since F
is algebraically closed, we have already seen in section 2 that the involution
is either transpose or symplectic. By Theorems 4.3 and 4.5 applied to eRe
there exists 1 € F such that g(exe) = ) exe for all x € K. In
particular, for i =1,2, f(h;) = ef(h;)e = g(h;) = Ah; and the lemma is

proved.

4+

vy b 3 3
We now ; the pieces wi

awvna all
lavt alidi

section. Ve recall from section 2 the notation R for the super %-closure

RC e, F of R where F is the algebraic closure of C.

THEOREM 5.5. Let R be a prime GPI ring with involution =* of the
first kind, [K,K] # {0}, and R # M,(F) wunder transpose. If f :K —K

ts an additive commuting map there exists A € C such that £(x) = Ax for
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all x e K.

Proof. We claim that it suffices to prove the theorem in the special
case that R is closed prime GPI over an algebraically closed field F.
Indeed, by Lemmas 5.1 and 5.2 f can be extended to an F-linear commuting map
g:CkeF —-CKk®eF givenby aoaxe® f — af(x) ®f, a€C, feF, xc¢cKk,
where R = CR ®, F is the super #-closure of R. By assumption there exists
A € F such that g(y) = Ay for all y € CK ® F. 1In particular
f(x) @1 =xe ) for all x € K. It follows by tensor product considerations
that ) € C and so we see that f(x) = Ax for all x € K.

We may therefore assume that R is closed prime GPI over an
algebraically closed field F. The socle H is nonzero and by Lemma 5.4
there exists A € C such that f(h) = Ah for all he Hn K. Letting x € K
we see from [h, f(x)] = [f(h), x] = [Ah, x] = [h, Ax] that [f(x)-Ax, h] =0
for all h e H n K and hence for all h € H by Theorem 2.2 applied to H.
Thus f(x) - Ax is central. But % 1is of the first kind which results in

f(x) = Ax and the proof is complete.

6. THE GENERAL CASE
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fact commuting.

Lemma 6.1. If R is prime with involution end f : K — K 45 an

additive centralizing map then f 1s commuting.
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Proof. Let a € K and set z = [f(a),a] € Z n K, noting that za® ¢ K
and [f(a), az] = 2za. Setting v = [f(za2), a] from (2) we see that
[f(zaz), a] + [f(a), za2] =v+2%cl In particular [v, a] = 0. We also
see from this that 0 = [f(a), v+2z2a] = [f(a), v] + 2z3, that is

(17) [f(a), v] = -22°.

Now [f(za%), za®] € Z, so [f(za?), za’] = z{[f(za2), ala + a[f(za2),a]} -
z(va+av) = 2zva € Z, since [v, a] = 0. Therefore 0 = [f(a), 2zva] =

2z{[f(a), vlia + v[f(a), a]} = 2z{—2z3a + zv}, 1.e. 9222y = dz*a. If 2 0
then v = 2z2a, whence [f(a), v] = 225 a contradiction to (17). Therefore

z = 0 and the lemma is proved.

At this point we remark that modulo characteristic restrictions Lemma 6.1
holds true under far weaker conditions and at the end of this section we
indicate this in the form of Theorem 6.5, which the reader may find of

independent interest.

In view of Lemma 6.1 we may hereon focus our attention on commuting maps.

We first consider the situation where the involution is of the second kind.

TL£ D y y usa 4 b 2 £
TheEOREM 6.2. If R is prime with % of

e
-,
I~

=3

=9
(=1
-]

18 an additive commuting map then there ezxists X € C4 and p : K — C

sueh that f(x) = Ax + p(x) for all x € K.

Proof. We let B : K x K — K be the biderivation given by B(x,y) =
f(x), y] = [x, £(y)], =x,y € K. Ve note that CK = RC (since =% is of the

second kind) and we define B’ : CK x (K — CK according to
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B % A.x., Bup.y.| = ¥ A.p. B(x:,y.)
L T ”] i, T

where Ai’”j € C, X;,¥; € K. By symmetry it is readily seen from the

equations

B daty D) = By [ £07) = (B B £0,)
that B’ is well-defined and is also a biderivation. By Theorem 3.3 there
exists 7 € C such that B’/(x,y) = 7[x,y] for all x,y € RC. In particular
for x €K, yeR wehave [f(x), y] = B"(x,y) = 7[x,y], whence

f(x) - yx = 6(x) € C. Letting A be the symmetric component of 7 and p(x)
the skew component of §(x) we finally see that f(x) = Ax + p(x), A € C4,
L(x) € C# for x e K.

Again let f : K — K be an additive commuting map in a prime ring with
involution. The following lemma will be useful in reducing the proof of the
main theorem to the GPI case.

Lemma 6.3. For a,x € K, [[a,x], [f(a),x]] = 0.

Proof. The conclusion will follow from expanding [f([x,a]),[x,a]] =0
while making use of (4).
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0 = [£([x,a]),[x;a]]
= [[£([x;a]),x],a] + [x, [£([x,a]),a]]
= [[[xa],£(x)],a] + [x,[[x,a],£(a)]]
= [[x,[a,£(x)]]a] + [x,[[x,a] ,f(a)]]
= [[x;[£(a),x]],2] + [x,[[x,a] ,£(a)]]
= [[x,a],[£(2),x]] + [x,[[£(a),x],a]] + [x,[[x,a] ,(a)]]
= [[x,a], [f(a) ,x]]

We are now in a position to prove the main result of this paper.

TieoreEM 6.4. lLei R be a prime ring with involution =, of
characteristic + 2, with center Z, eziended centroid C, and skew elements
K. 4ssume further that [K,K] # {0} and that the super s—closure R is
unequal to M4(F) under transpose. If f : K — K s an additive
centralizing map, i.e. [f(x),x] € Z for all x € K, then there exists ) €
Cx+ and an additive map p : K — C, such thet £(x) = Ix + p(x) for all

#
x € K.

Proof. By Lemma 6.1 we may assume that f is commuting and by Lemma 6.2
that * is of the first kind. If R is GPI we are finished by Theorem 5.5.
ore we may assume R is not GPI.

Ve claim that for any a € K, a and f(a) are C-dependent, i.e.,
f(a) = A(a)a, A(a) € C. Let AC(t) denote the free product over C of

A = RC and the free algebra C(t), and consider the element

p(t) = [[a,t],[f(a),t]] € Ag(t). "
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By Lemma 6.3, ¢(t) is satisfied by K and if ¢(t) # 0 then by Theorem 2.6
R is GPI. Therefore ¢(t) = 0. But expansion of ¢(t) using the fact that
[a,f(a)] = 0 and that a, f(a) are C-independent, shows that ¢(t) cannot
be 0, and so'our claim that a, f(a) are C-dependent is established.

It remains to show that A(a) is independent of a. For a,x € K we

conclude from A(a+x)(a+x) = f(a+x) = f(a) + £(x) = A(a)a + A(x)x that
(18) (Mam)-1@)]a + a2 @))x = o.

Ve fix a#0¢€ K and let A =1(a). If a,x € K are C-independent then
from (18) we see A = A(a) = A(x). If x=o¢ea, a € C then

£(x) = of(a) = ada = Ax. Therefore there exists )} € C such that f(x) = ix
for all x € K and the proof of the theorem is complete.

As promised at the beginning of this section we now present a result of
independent interest which gives rather general conditions under which f
centralizing implies f commuting. For convenience we shall say that a ring
has characteristic > m if for each 0 <k <{m and each x € R, kx =0

implies x = 0.

TueoreEM 6.5. Let R be a ring having no nonzero central nilpotent

£
b

elements and let A be an addiicve subgroup of R for which there is a fized
. n

tnteger mn > 2 such that a € A for all a € A. Furthermore assume that R
has characteristic > 2n. If f : A — A 1is an additive centralizing map

then f 4s commuting.

Proof. The assumption of characteristic > 2n will be frequently used

without specific mention. Let a € A and set z = [f(a), a],
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u = [f(a"), a]. It is easily seen that [f(a), ak] - kza® 1 for all k > 1
since z € Z (the center of R). By (2) we see that

[£(a%), a] + [f(a), a%] = u + nza® ! € Z,
and so [u,a] = 0. Horeover
0 = [f(a), u+nza® 1] = [f(a), u] + n(n-1)z2a" 2,
that is
(19) [£(a), u] = -n(n-1)z2a™2.

Now [f(aV), a"] € Z so [f(a"), a™] = nua® ! € 7 since [u,a] = 0, so that

uan_l € Z. Therefore

0 = [f(a),ua")

[f(a), wla® + u[f(a), a® 1]

2,203 (11—1)uzan—2 using (19).

-n(n-1)z

From this we conclude that uzam2 = nz2a2n‘3 from which it follows that

€ Z and so we obtain 0 = [f(a), nz2a2n‘2] -

n(2n-2)z3a2n“3, or 0 =223, An easy induction then shows that for

= 0. Indeed, assuming %20k _ o ye see that

— n_
ZUa, = nz“a . But ua 1

3 <k <2n we have 7K 20k
[f(a), zka2n_k] = (2n~k)zk+1a2n'k—1 = 0, whence JHip2n-(kl) gy
2

particular for k = 2n we have z°" = 0 from which we conclude z = 0 and

the proof is complete.
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Ve remark that if R is prime with involution and A = K then a3 €A

for all a € A. A close examination of the proof of Theorem 6.5 reveals that

for n =3 Theorem 6.5 holds if char R > 3. Hence, with the extra

restriction of char R # 3, Lemma 6.1 is a corollary to Theorem 6.5.
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12.
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