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Abstract  12 

Increasing attention is being directed at mapping the fractional woody cover of savannahs using 13 

Earth-observation data. In this study, we test the utility of Landsat TM/ ETM-based spectral-temporal 14 

variability metrics for mapping regional-scale woody cover in the Limpopo Province of South Africa, 15 

for 2010. We employ a machine learning framework to compare the accuracies of Random Forest 16 

models derived using metrics calculated from different seasons. We compare these results to those 17 

from fused Landsat-PALSAR data to establish if seasonal metrics can compensate for structural 18 

information from the PALSAR signal. Furthermore, we test the applicability of a statistical variable 19 

selection method, the recursive feature elimination (RFE), in the automation of the model building 20 

process in order to reduce model complexity and processing time. All of our tests were repeated at 21 

four scales (30, 60, 90, and 120 m-pixels) to investigate the role of spatial resolution on modelled 22 

accuracies.  23 

Our results show that multi-seasonal composites combining imagery from both the dry and wet 24 

seasons produced the highest accuracies (R2= 0.77, RMSE=9.4, at the 120 m scale). When using a single 25 

season of observations, dry season imagery performed best (R2=0.74, RMSE=9.9, at the 120 m 26 
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resolution). Combining Landsat and radar imagery was only marginally beneficial, offering a mean 27 

relative improvement of 1% in accuracy at the 120 m scale. However, this improvement was 28 

concentrated in areas with lower densities of woody coverage (<30%), which are areas of concern for 29 

environmental monitoring. At finer spatial resolutions, the inclusion of SAR data actually reduced 30 

accuracies. Overall, the RFE was able to produce the most accurate model (R2=0.8, RMSE=8.9, at the 31 

120 m pixel scale). For mapping savannah woody cover at the 30 m pixel scale, we suggest that 32 

monitoring methodologies continue to exploit the Landsat archive, but should aim to use multi-33 

seasonal derived information. When the coarser 120 m pixel scale is adequate, integration of Landsat 34 

and SAR data should be considered, especially in areas with lower woody cover densities. The use of 35 

multiple seasonal compositing periods offers promise for large-area mapping of savannahs, even in 36 

regions with a limited historical Landsat coverage.  37 

 38 
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 45 

1 Introduction 46 

Savannah ecosystems are characterised by a dynamic mosaic of tree, shrub and grass species. 47 

Variations in these components can result in widely divergent ecological functions (Sankaran et al., 48 

2005). There is growing concern over the health and sustainability of savannahs across the world. 49 

Increases in shrub cover at the expense of grasslands (i.e. shrub encroachment) have been reported 50 

in semi-arid environments globally (Naito and Cairns 2011, Stevens et al., 2016, Tian et al., 2016, 51 

Skowno et al., 2017). In contrast, overexploitation of woody shrubs and trees for fuelwood may be 52 

depleting woody cover in other regions (Wessels et al., 2013, Brandt et al., 2017). 53 
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Monitoring savannahs is a challenging endeavour, and due to the discontinuous nature of land 54 

cover in such environments, categorical maps are of limited value. Alternatively, representing the 2-55 

dimension horizontal woody cover component as a continuous fractional layer is more ecologically 56 

relevant, and recent advances in the field have focused their attention to this characteristic (Bucini et 57 

al., 2010, Armston 2009, Naidoo et al., 2016). However, the spatial heterogeneity of savannahs makes 58 

fractional cover modelling vulnerable to scale effects, as areas of very high or low coverage will be lost 59 

by aggregation to coarser scales (Guerschman et al., 2009). Therefore, it is necessary to consider 60 

analyses over a range of resolutions, enabling an optimum balance between model accuracy and 61 

spatial detail to be established (Urbazaev et al., 2015).  62 

Passive optical Earth observation (EO) data, such as Landsat, have commonly been employed to 63 

map savannah vegetation in the past (Prince and Astle 1986). Such data discriminate vegetation type 64 

by exploiting the full spectral range of reflected solar radiation. Passive optical data also allow for 65 

vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), to be used as proxies 66 

of various biogeophysical parameters, such as net primary productivity (NPP), fraction of 67 

photosynthetically active radiation (fPAR), and leaf area index (LAI) (Carlson and Ripley 1997, 68 

Higginbottom and Symeonakis 2014, Zhu et al., 2013). Yet single date optical imagery can be 69 

inappropriate for discriminating woody and grass coverage, as photosynthetic activity is detected 70 

indiscriminately (Olsson, Leeuwen, and Marsh 2011). In savannahs, the woody cover component 71 

decreases temporal variation within the NDVI signal, as bushes and shrubs maintain leaves 72 

throughout the dry season (Bucini et al., 2010, Naidoo et al., 2016).  Information derived from a pixel-73 

level time series can therefore contain valuable information for land cover mapping.  If sufficient 74 

observations are available, phenological metrics detailing the start and end points of seasons can be 75 

calculated (Brandt et al., 2016). Alternatively, spectral-temporal variability metrics from single 76 

spectral bands or indices (e.g. minimum, maximum, mean, median, etc.) can quantify variability even 77 

in regions with lower observation densities (Müller et al., 2015, Zhong, Gong, and Biging 2014).  78 
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Irrespective of processing method, optical data possesses fundamental limitations for mapping 79 

woody environments, because it does not directly correlate to surface structure (Naidoo et al., 2016). 80 

Active EO sensors such as Synthetic Aperture Radar (SAR) provide information on the 3-dimensional 81 

structure of the land surface, by emitting microwaves and measuring the intensity of energy reflected 82 

back to the sensor after interactions with ground objects i.e. the backscatter (σ0) of the signal. The 83 

use of SAR data in fractional woody cover mapping, particularly L-band, operating with wavelengths 84 

of 0-15 cm , has been well demonstrated (Bucini et al., 2010, Mathieu et al., 2013, Naidoo et al., 2015, 85 

2016). Mitchard et al., (2009) identified a consistent relationship between cross-polarised L-band 86 

backscatter and aboveground biomass (AGB) across four pan-African tropical savannahs, regardless 87 

of vegetation composition. Advanced Land Observing Satellite (ALOS) Phased Array type L-band 88 

Synthetic Aperture Radar (PALSAR) imagery has been highlighted as the most reliable satellite-based 89 

indicator of both AGB and canopy coverage for woody cover in semi-arid savannahs (Naidoo et al., 90 

2015, 2016). However, the use of L-band imagery for mapping long-term land cover change is affected 91 

by a number of data continuity issues, sensor failures (JERS-1, ALOS PALSAR), high data costs, and the 92 

short lifespan of radar systems, resulting in a limited temporal archive compared to Landsat. There 93 

are less limitations when using C-band radar, such as Radarsat or Sentinel-1, due to more consistent 94 

coverage (Reiche et al., 2016 ). However, C-band radar is not as sensitive to woody cover, compared 95 

to L-band (Mathieu et al., 2013). 96 

More recently, the fusion of optical and radar imagery has been shown to provide an 97 

improvement upon single-sensor fractional cover accuracies (Bucini et al., 2010, Naidoo et al., 2016). 98 

Bucini et al., (2010) and Naidoo et al., (2016) combined L-band radar data with Landsat to map woody 99 

canopy coverage in the Kruger National Park, South Africa: the fusion approach improved the accuracy 100 

over single sensor predictions, particularly when combining SAR with multi-season imagery. Lucas et 101 

al., (2006) used PALSAR thresholds in conjunction with Landsat-derived Foliage Projected Cover maps 102 

to successfully discriminate regrowth stages in open Eucalyptus forests. Merging various SAR 103 

wavebands, such as C, X, or L, have also been shown to provide benefits for woody cover mapping, 104 
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although these improvements were found to be smaller (~3%) when compared with L-band alone 105 

(Naidoo et al., 2015). Choosing the appropriate sensor, or combination of sensors, for woody cover 106 

mapping, is therefore an increasingly complex decision with further study required.  107 

The increasing number and variety of EO systems in operation, coupled with open-data policies, 108 

presents a wide range of pathways for land cover mapping. Compared to earlier investigations, it is 109 

now routine for studies to use high-dimensional data. However, this approach comes with statistical 110 

limitations. Predictive models trained using high-dimensional data are prone to overfitting, thus 111 

transferring poorly to unseen validation data. This issue is important, potentially incurring a high 112 

degree of variance into classifications, whilst reducing bias (i.e. the bias-variance dilemma) (James et 113 

al., 2013, Kuhn and Johnson 2013). A number of techniques exist to process high-dimensional data 114 

and extract the most relevant variables, aiming to reduce model complexity whilst retaining predictive 115 

accuracy (Guyon et al., 2002, Guyon and Elisseeff 2003). To date the implementation of these methods 116 

in remote sensing analyses has been limited (Meyer et al., 2016), but may be increasingly beneficial in 117 

the near future as the number of data sources continues to increase.  118 

Within this context, the overarching aim of this study is to develop a framework for accurately 119 

mapping the fractional woody cover of semi-arid savannahs at large spatial scales, using freely and 120 

widely available data sources. We address this overarching aim by carrying out a multi-scale 121 

comparative exercise that provides answers to the following questions: 122 

1. Can annual time series of Landsat metrics be used to accurately map fractional woody cover, 123 

and to what extent does seasonality of the compositing period influence results? 124 

2. How do Landsat-based estimates compare to multi-sensor fusion approaches combining L-125 

band SAR data? 126 

3. Can automated variable selection methods, such as Recursive Feature Elimination, assist in 127 

reducing the number of variables used without compromising accuracy? 128 
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2 Study Area 129 

Our study area is the Limpopo Province, South Africa (Fig 1). The province is ~125,000 km2 and 130 

intersects 14 Landsat WRS-2 scenes. This region is predominantly open deciduous savannah and 131 

grassland, with discontinuous woody cover ranging from 0-60% coverage (Mucina and Rutherford 132 

2006). The climate is mainly semi-arid with small humid subtropical areas (Kottek et al., 2006). Mean 133 

annual temperatures range from 21-23C and winters are mild and frost-free (Scholes et al., 2001). 134 

Rainfall increases along a north-south gradient, with mean annual precipitation of 450 mm/year in 135 

the north, rising to 700 mm/year in the south (Scholes et al., 2001). The majority of rainfall occurs in 136 

the winter months (October to March; Fig 2). 137 

 138 

Figure 1: Location of the study area, the Limpopo Province of South Africa 139 
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 140 

 141 

Figure 2: Annual seasonality of NDVI for a dense shrub and grassland pixel, and regional rainfall for 142 

the Limpopo Province. NDVI is the mean value from 15 year of MODIS-MCD43A4 16 day 143 

observations, rainfall data is the mean and standard deviations from FEWS-NET 144 

(https://www.fews.net/). The vertical lines indicate the start and the end of the dry season. 145 

There are pronounced contrasts in land use intensity across the region. In the east, the 146 

Kruger National Park is the largest protected area in South Africa featuring minimal human usage 147 

beyond fire experiments and animal enclosures. This contrasts with the communally governed areas 148 

originating from apartheid-era homelands (Worden 2012). These areas generally feature very high 149 

population densities ranging from 200-300 people per km2, resulting from forced resettlement in 150 

the 1960-1990 apartheid period (Pollard et al., 2003). Consequently, overgrazing and unsustainable 151 

wood harvesting are widespread with many areas classified as degraded (Wessels et al., 2013). 152 
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3 Data 153 

3.1 Training and validation data 154 

We aimed to develop a transferable method for woody cover mapping. Accordingly, we used 155 

training and validation data from aerial imagery, so that our methodological framework would be 156 

applicable in study areas where such imagery is available but other data may not be or are costly, e.g. 157 

field surveys, Lidar.  In South Africa, the National Geospatial Information (NGI) agency of the 158 

Department of Rural Development and Land Reform have been providing 0.5 m colour aerial 159 

photography since 2008 , with an orthoreftification accuracy of  ±3 m (NGI 2017) . Six 5×5 km images 160 

were selected according to a stratified approach based on mean annual precipitation, with acquisition 161 

dates between the 19th April and 7th August of the years 2008 and 2009 (Appendix 1). 162 

3.2 Satellite imagery 163 

3.2.1 Landsat  164 

Spectral-temporal variability metrics are a method of capturing information on the temporal 165 

evolution of spectral values within a pixel (Muller et al., 2016). We hypothesised that metrics 166 

capturing this variability would be effective for woody cover monitoring. To generate metrics, all 167 

available Landsat 5 and 7 images that intersected the Limpopo Province for 2009-2010 were used, for 168 

the wet season additional images from the two neighbouring hydrological years were also used 169 

(scene footprints shown in Fig 1). Top-of-atmosphere (TOA) reflectance was calculated using standard 170 

bias-gain equations. Pixels affected by clouds or cloud shadow were removed based on the F-mask 171 

algorithm (Zhu and Woodcock 2012), no correction was applied for missing Scan Line Corrector (SLC-172 

off) pixels. For each pixel, all co-located observations were used to calculate the following statistics: 173 

mean, median, minimum, maximum, and standard deviation. These metrics were calculated over 174 

three time-periods: annual, dry season and wet season (Fig 2), resulting in a total of 90 Landsat-175 
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derived layers. The number of images used within each observation period is given in Table 1. Due to 176 

persistent high cloud cover, wet season metrics were calculated over three southern hemisphere 177 

hydrological years. Processing was undertaken in the Google Earth Engine cloud computing 178 

environment (Gorelick et al., 2017, Moore and Hansen, 2011). 179 

 180 

Period Start Date End Date Landsat 5 Images Landsat 7 Images Total Images 

Annual Cycle 1st January 31st December 86 259 345 

Dry 

Season 

1st November 30th April 52 186 238 

Wet 

Season 

1st May 1st October 27 102 129 

Total Unique 
Images 

  88 324 412 

Table 1: Number of Landsat images used in each period for variability metric calculations. Wet 181 

season metrics are calculated over three hydrological years: 2009-2010, 2010-2011, and 2011-2012. 182 

Total Unique does not equal the sum of rows as images can be included in both a single season and 183 

the annual period. 184 

 185 

3.2.2 ALOS-PALSAR 186 

ALOS PALSAR, and its successor ALOS-2 PALSAR-2, are fully polarimetric L-band Synthetic Aperture 187 

Radar systems (Rosenqvist et al., 2007). These sensors operate at a wavelength of 23.6 cm. We used 188 

the 2010 data from the ALOS PALSAR global mosaic, a science-ready product generated annually for 189 

2007 to 2010 (ALOS), and 2015 (ALOS-2). The images for this mosaic were from the dry season, with 190 

acquisition dates between 1st July - 3rd October and two images from 2009. Dual polarization HH 191 

(horizontal-horizontal) and HV (horizontal-vertical) backscatter data were used. Pre-processing of the 192 

input raw imagery includes orthorectification using the Shuttle Radar Topography Mission (SRTM) 193 
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Digital Elevation Model (DEM), calibration, speckle reduction, and a destriping procedure (Shimada 194 

and Ohtaki 2010, Shimada et al., 2014). The raw digital number format was converted to backscatter 195 

(σ0) using the calibration equation: 196 

 σ0 = 10∗ log10(DN +0.001)2 + CF (1) 197 

where DN is the raw digital number and CF is a calibration factor (=-83). The 25 m mosaic was 198 

resampled to match the Landsat resolution using bilinear resampling.  199 

4 Methods 200 

The methodological framework is shown in Fig 3. To establish the optimum approach for fractional 201 

woody cover mapping, we ran a series of random forest regressions to compare the accuracies 202 

achieved from single season Landsat metrics, multi-season data, or multi-sensor combining Landsat 203 

and SAR data. These models were repeated at four resolutions: 30, 60, 90 and 120 m, to ascertain the 204 

ideal scale for large-area monitoring. Processing was undertaken in the R Statistical Software 205 

Environment, using the raster, caret, and randomForest packages (Hijmans et al., 2015, Kuhn 2015, 206 

Liaw and Wiener 2002, R Core Team 2015). Fractional cover sampling code was adapted from Leutner 207 

and Horning (2016).  208 
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 209 

Figure 3. Flow chart of methodological framework. VVI: Visible Vegetation Index; PCA: Principle 210 

Components Analysis; RFE: Recursive Feature Elimination.  211 

4.1 Creation of Reference Data 212 

To create training data the six aerial imagery subsets were classified into woody/non woody 213 

masks. We opted for aerial image classification to enable methods to be transferable to other 214 

locations, due to the generally satisfactory availability of aerial imagery at appropriate scales (Staben 215 

et al., 2016). Firstly, a principal components analysis (PCA) was applied to the three RGB layers and 216 

the first two components were extracted. Secondly, we calculated the visible vegetation index 217 

(Joseph and Devadas 2015) which uses visible light spectra to estimate photosynthetic activity and is 218 

defined as: 219 

 220 

𝑉𝑉𝐼 =  [(1 −
𝑅 − 𝑅0

𝑅 + 𝑅0
)(1 −

𝐺 − 𝐺0

𝐺 + 𝐺0
)(1 −

𝐵 − 𝐵0

𝐵 + 𝐵0
)]   (2) 221 
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where VVI is the visible vegetation index, R, G and B are the red, green, and blue intensities in the 222 

image, R0, G0 and B0 are values of red, green, blue used to reference green colour (30, 50, and 1, 223 

respectively), determined by the image bit rate (Joseph and Devadas 2015). 224 

A Random Forest classifier was used to create the binary woody-non woody layers from the 225 

original RGB layers, principle components, and VVI. Individual models were generated for each image 226 

using 400 manually selected points per image (75/25% training-validation split). The mean 227 

classification accuracy was 85%. Full accuracy statistics are given in the Appendix. An example 228 

classified mask is shown in Fig 4. 229 

 230 

Figure 4: Example of the RGB woody classification. (a) raw RGB image; (b) classified woody 231 

cover shown in red, and (c) 30 m grid for fractional cover sampling. 232 

To generate training and validation data for the satellite imagery, Landsat pixel-sized squares (i.e. 233 

30×30 m) were extracted from the woody/non-woody masks and the percentage woody coverage 234 

calculated. From each image, 7000/α samples were extracted, where α takes the values of 1, 2, 3 or 235 

4, depending on the aggregation level used to test the effect of scale in the accuracy of the woody 236 

cover estimates (Fig 3). For example, for a pixel size of 30m, α=1 and the samples extracted from each 237 

image are 7000, whereas for an aggregation level of α=2 or a pixel size of 60 m, the number of samples 238 

extracted are 7000/2=3500. These samples were merged and split into equal training and validation 239 

subsets with equal probability distributions of woody cover (Fig 5). The spatial aggregation process 240 

may incur central tendency in training values, with the reduction in high or low samples making the 241 
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subsequent regression task easier. To quantify this, we tested for any significant difference between 242 

the sample distributions using Pairwise-Wilcoxon tests. These highlighted a significant (p < 0.05) 243 

difference between the data at 30 m and all other scales which can also be visualised in the relatively 244 

reduced number of high (>75%) and low (<10%) values in the respective aggregated pixel histograms 245 

(Figure 5).  246 

 247 

 248 

Figure 5: Density histograms of model training values at the four scales tested 249 

4.2 Random Forest Regression 250 

Predictive models were generated using the Random Forest algorithm. Random Forest is an 251 

ensemble machine learning procedure that combines bootstrapping and aggregation (bagging) with 252 

decision trees (Breiman 2001). All models were individually tuned using 10 repeats of 10-fold cross 253 
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validation to identify the ideal parameter specification. This covered the number of variables 254 

considered at each tree node and the number of trees constructed. 255 

4.3 Variable Selection 256 

To identify optimum predictive models, we incorporated all potential variables into a variable 257 

selection process. According to statistical learning theory, a model containing fewer predictors that 258 

is comparably accurate is preferential to a more complex model (James et al., 2013, Kuhn and Johnson 259 

2013). Backwards selection methods are effective in identifying the ideal number of variables for 260 

prediction, allowing the selection of the most parsimonious model that offers comparable accuracy 261 

(Guyon et al., 2002, James et al., 2013, Kuhn and Johnson 2013). The combination of Landsat metrics 262 

and PALSAR data resulted in 92 predictors (90 Landsat metrics + 2 PALSAR backscatter), a number of 263 

which are correlated. To identify the most important predictors, we implemented the backwards 264 

selection method of recursive feature elimination (RFE). RFE is a parameter selection process that 265 

incorporates the estimation of test (validation) errors and variable importance (Guyon et al., 2002). 266 

Firstly, a model is constructed using all available predictors (Mp). The test error of this model (i.e. 267 

adjusted R2 and RMSE) is then estimated using 10-fold cross validation, and variable importance 268 

scores are calculated. A second model is then established which excludes the lowest contributing 269 

variable from Mp, and test error and variable importance are recalculated. This process is repeated 270 

until a one-variable model remains. A full iteration of this procedure is repeated 10 times to account 271 

for variations in the cross validation sampling, providing a robust estimate of test errors. An ideal 272 

model that offers the best performance whilst using the least variables can then be selected. 273 
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5 Results 274 

5.1 Woody Cover Mapping 275 

A fractional woody cover map derived from the most accurate model tested, is shown in Fig 6. Subsets 276 

comparing the mapped woody cover estimates from a number of models and the NGI aerial imagery 277 

are shown in Fig 7.  278 

 279 

Figure 6. Fractional woody cover results for the Limpopo Province based on the Recursive 280 

Feature Elimination model at the 120 m pixel scale. Black squares A and B are the locations of the 281 

subsets in Fig 7. 282 
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 283 

Figure 7. Spatial patterns of woody cover for subsets A and B of Fig 6 at 30 and 120 m pixel scales. 284 

Five model predictions and the respective reference aerial imagery from the NGI are shown. 285 

Aerial imagery acquisition dates: A: 19 April 2009, B: 30 April 2009. 286 
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5.2 Seasonal Landsat models 287 

The performance of Landsat-based models is shown in Fig 8 and Table 2. When using metrics 288 

derived from a single season, the highest accuracies were obtained by using the dry season metrics, 289 

followed by the full annual cycle, with the wet season performing the worst. This pattern was 290 

consistent across all scales (Table 2). Using a combination of metrics derived from two seasons, the 291 

highest accuracies came from models incorporating both dry and wet season data, followed by dry 292 

and annual, and finally wet and annual (Table 2). Reducing the pixel resolutions (i.e. increasing the 293 

aggregation factor), consistently raised the model performances, with the largest improvement 294 

occurring in the initial aggregation from 30 m to 60 m. 295 

  296 

Figure 8. Model accuracy results for Landsat metrics-based models RMSE units are percentage 297 

woody cover (0-100%) 298 

 299 
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 300 

 301 
 

120 m 
n-3,848 

90 m 
n-6,826 

60 m 
n-10,499 

30 m 
n-21,000  

R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

 Landsat Dry and Wet  0.77 9.4 0.762 10 0.738 11 0.653 14.2 

 Landsat Dry and Annual  0.763 9.5 0.76 10 0.733 11.1 0.646 14.4 

 Landsat Wet and Annual  0.76 9.6 0.756 10.1 0.728 11.2 0.643 14.4 

Landsat Dry  0.741 9.9 0.732 10.5 0.705 11.6 0.618 14.9 

Landsat Annual  0.717 10.4 0.723 10.7 0.689   12 0.61 15.1 

 Landsat Wet  0.714 10.5 0.702 11.1 0.675 12.3 0.604 15.2 

Table 2. Model accuracy results for the Landsat metrics-based models, RMSE units are percentage 302 

woody cover (0-100%) 303 

5.3 Fused models 304 

Accuracy statistics from models combining Landsat metrics with ALOS PALSAR backscatter are 305 

shown in Fig 9 and Table 3. Overall, the same ranking of seasonal performance as Landsat-only models 306 

was observed. For a single season, accuracy decreased from dry to annual to wet, whilst multi-season 307 

models were ranked: dry and wet, dry and annual, and wet and annual. The only exception to this 308 

order was at the 90 m pixel scale, where the single season annual metrics and dry-annual multi-309 

season models performed best (Table 4). 310 

The fusion of PALSAR backscatter with Landsat metrics had contrasting impacts on model 311 

accuracy (Table 4). At the 120 m scale, all models were improved. Conversely, at the 30 m scale, 312 

performances were negatively affected. At mid-range scales (60 and 90 m), the single season annual 313 

models were improved, as did the 90 m ‘wet’ model. All other mid-scale models responded negatively 314 

to the SAR fusion or were unaffected. At the 120 m scale, the fusion was generally more effective for 315 

single season models over multi-temporal combinations. Finally, at all scales, the annual models 316 

performed better when used together with the SAR data. 317 
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 318 

Figure 9: Model accuracies (R2 and RMSE) for Landsat-PALSAR fusion models 319 

Table 3. Accuracy metrics for Landsat-PALSAR fusion models 320 
 

120 m 90 m 60 m 30 m 
 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

 Landsat Dry and Wet  0.773 9.3 0.757 10 0.729 11.2 0.648 14.3 

 Landsat Dry and Annual  0.769 9.4 0.758 10 0.729 11.2 0.642 14.4 

 Landsat Wet and Annual  0.763 9.5 0.753 10.1 0.721 11.3 0.641 14.5 

 Landsat Dry  0.755 9.6 0.731 10.5 0.703 11.7 0.614 15 

 Landsat Annual  0.742 9.9 0.737 10.4 0.698 11.8 0.611 15 

 Landsat Wet  0.723 10.3 0.706 11 0.668 12.3 0.601 15.2 

PALSAR Only 0.37 15.5 0.313 16.9 0.25 18.7 0.180 22.2 

 321 

 322 

 323 

 324 

 325 
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Table 4. Difference between the Landsat only and Landsat-PALSAR fusion models. Green numbers 326 

indicate improvement from the fusion while red the opposite. 327 
 

120 m 90 m 60 m 30 m  
R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

 Landsat Dry and Wet  0.003 -0.1 -0.5 0 -0.9 0.2 -0.005 0.1 

 Landsat Dry and Annual  0.006 -0.1 -0.2 0 -0.4 0.1 -0.004 0 

 Landsat Wet and Annual  0.003 -0.1 -0.3 0 -0.7 0.1 -0.002 0.1 

 Landsat Dry  0.014 -0.3 -0.1 0 -0.2 0.1 -0.004 0.1 

 Landsat Annual  0.025 -0.5 1.4 -0.3 0.9 -0.2 0.001 -0.1 

Landsat Wet  0.009 -0.2 0.4 -0.1 -0.7 0 -0.003 0 

5.4 Recursive Feature Elimination (RFE) 328 

The accuracy results from the RFE automated variable selection approach is shown in Fig 10. At 329 

all scales, model accuracies were higher when more than 25 variables where included in the model 330 

and performance declined rapidly when fewer than that were considered. The optimal number of 331 

variables to balance predictive accuracy and model simplicity was established as 57 for the 120 m-332 

pixel scale, 54 for the 90 m, 70 for the 60 m, and 85 for the 30 m, the top five variable for each model 333 

are shown in Table 6.  Applying a threshold of two standard errors, based on the cross validations 334 

samples for the best model, allows similarly performing models to be compared (James et al., 2013). 335 

These models ranged from the one that includes all 92 layers to a minimum of 14 variables for the 336 

120 m scale, 20 for the 90 m scale, 29 for the 60 m, and 39 for the 30 m scale. At all scales, the model 337 

constructed by the RFE was the best preforming (Fig 11), providing an improvement in the achieved 338 

R2 of at least 0.012 (Table 5). The 120m scale RFE model was the overall most accurate (Fig 6).  To 339 

compare the within model variation in accuracy, Figure 12 shows class accuracy statistics for 10% 340 

intervals of woody cover 341 
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 342 

Figure 10: Cross-validated R2 and RMSE results from the recursive feature elimination (RFE) 343 

process 344 

Table 5. Accuracy metrics for the model produced by the recursive feature elimination (RFE), all 345 

92 variables, and the best Landsat-only and Landsat-SAR fused combinations. 346 

 
120 m 90 m 60 m 30 m 

 
R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

Recursive Feature 
 Elimination 

0.789 8.9 0.777 9.7 0.75 11. 0.661 14.2 

All 92 Variables 0.778 9.2 0.767 9.8 0.741 11. 0.655 14.2 

 Landsat Dry and Wet  0.77 9.4 0.762 10 0.738 11. 0.653 14.2 

 Landsat Dry and Wet + SAR 0.773 9.3 0.757 10 0.729 11.2 0.648 14.3 

 347 
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 348 

Figure 11 Density scatter plot of the Recursive Feature Elimination models at the four resolutions  349 
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 350 

Figure 12. Balanced accuracy figures for the different 120 and 30 m-scale models and woody cover 351 

density classes, the original continuous woody cover values were binned into 10% intervals. RFE-352 

Recursive Feature Elimination model. 353 

 354 
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 30 m 60 m 90 m 120 m 

1 HH HH HV HV 

2 B1 SD Dry B1 SD Dry HH HH 

3 B2 SD Dry B4 SD Dry B4 Median 

Annual 

B3 Median 

Annual 

4 B4 Median Wet HV B3 Median Dry B5 Median Dry 

5 B4 SD Dry B1 Min Wet B3 Median 

Annual 

B3 Median Dry 

Table 6: Top five variables from the Recursive Feature Elimination model, at each scale (30m, 355 

60m, 90m and 120m). SD: standard deviation. 356 

6 Discussion 357 

6.1 Landsat metrics, seasonality and scale 358 

The accuracies obtained from the Landsat-derived woody cover maps varied according to the 359 

temporal window for which metrics were calculated. For single season data, the dry period metrics 360 

were the most useful. This result was anticipated due to the persistence of green shrubs into the dry 361 

season, compared with the grass layer (Fig 2; Naidoo et al., 2016). This makes woody cover easier to 362 

discriminate, compared to other periods where differences are less pronounced (Brandt et al., 2016). 363 

This can also explain the overestimation of wet season models in Fig 7, as the grass and wood layers 364 

are more difficult to separate and identify.  365 

The distribution of errors also varied with seasonality. Dry season metrics performed better in 366 

areas of sparse woody cover (0-30% cover), whereas wet metrics offered marginal improvements in 367 

the 30-40% and 50-60% percentiles (Fig 12). This can be attributed to the dry season metrics having 368 

relatively a greater discriminatory power at sparse coverage where woody canopies are more distinct. 369 
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Furthermore, some areas of moderate woody coverage were under-predicted by dry season only 370 

metrics. This can be attributed to the fact that some woody species are less persistent in dry 371 

conditions (Subset B in Fig 7). 372 

The best result from the multi-seasonal Landsat comparisons was the combination of dry and wet 373 

season metrics. Although wet season metrics were the least effective mono-temporal models, when 374 

combined with the contrasting dry season, the information covering the peak biomass period was 375 

beneficial. This improvement was mainly limited to coverage between 10 and 70 % where each 376 

percentile produced greater class accuracies than either single-season case, at both fine (30 m) and 377 

coarse (120 m scales). In general, the multi-seasonal combinations improved prediction across the 378 

full range of woody cover densities, with the 10-40% percentiles, at 120 m resolution, achieving the 379 

highest-class accuracies. The ability to extract multiple sets of metrics from a time-series of images is 380 

noteworthy, reducing to a certain extent the drawback of a temporally limited Landsat archive in 381 

many savannah regions. 382 

As fractional woody cover approaches the highest values (>70%), all models perform poorly with 383 

no model achieving a percentile class accuracy of more than 56% (Fig 12). This is partly due to the 384 

rare occurrence of this class, which affects the regression analysis. The poor accuracy for dense 385 

woody savannahs has been noted by numerous other studies (e.g. Bucini et al., 2010, Naidoo et al., 386 

2016), and should be a priority for future studies. 387 

We tested models at four scales: 30, 60, 90, and 120 m pixels. As pixel size increased, model 388 

accuracies consistently improved (Figs 8 and 9). The largest improvement occurred with the initial 389 

aggregation from 30 to 60 m, with a mean R2 increase of 13.09%±0.9, across the 13 models tested. 390 

However, this change must be considered with the distribution of the input training values. At 30 m, 391 

there is a relativity larger spread of values and a higher proportion of dense and sparse woody 392 

coverage (Fig 5). Accordingly, this distribution is a more complicated endeavour for the regression 393 

analysis, as indicated by the low class accuracies for high cover percentiles (Fig 12). Concurrently, the 394 
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greater proportion, and pixel purity, of sparsely (0-10%) wooded areas at 30 m result in comparably 395 

high class accuracies for the first percentile class (Fig 12). Resampling to a coarser resolution reduces 396 

the occurrence of dense woody coverage, due to central tendency, making the regression exercise 397 

easier. This simplification is restricted to the 30 to 60 m aggregation with no visual or statistical 398 

evidence that additional resampling improves the outcome of the regression. Further reductions in 399 

the pixel resolution result in more modest but consistent improvements of 4.20%±0.74 and 400 

1.30%±0.99 in the R2 when re-scaling from 60 to 90 m and from 90 to 120 m, respectively. At coarser 401 

scales, artefacts from the Landsat processing are likely to be smoothed, as errors resulting from the 402 

Scan Line Corrector failure and undetected clouds are minimised (Fig 7). Furthermore, despite the 403 

high georeferencing accuracy of the datasets, errors from potential misalignment of the training 404 

imagery and Landsat data may be more prevalent at 30 m and averaged at coarser scales.   For many 405 

regional-scale applications, land cover maps at 90 or 120 m may be sufficient, and an accuracy vs. 406 

precision trade-off might be appropriate. Maps at 120 m may be more accurate, but have less fidelity 407 

for detecting the clumps and canopies of dryland vegetation. This trade off may become more 408 

pertinent with the availability of 10-20 m imagery from Sentinel-2 (Bastin et al., 2017) .  409 

Overall, the accuracies achieved by the Landsat-based models are comparable to those of radar-410 

based studies at similar scales. Urbazaev et al., (2015) achieved R2 values of 0.71 and 0.66 using 411 

multiple and single season PALSAR images at 50 m resolution, respectively, whilst Naidoo et al., 412 

(2016) obtained R2 of 0.8 and 0.81 using single-season PALSAR data at 105 m. Given our 413 

considerably larger study area, our results are promising for regional-scale analysis, as the spatial 414 

breadth, temporal depth, and rapid processing potential of the Landsat archive is unmatched by any 415 

radar system (Kennedy et al., 2014, Roy et al., 2014). Our metrics-based approach outperforms the 416 

various single date Landsat scenarios across multiple seasons achieved by Naidoo et al. (2016) who 417 

reported R2 values of 0.32-0.65 at 105 m resolution. There are clear benefits to quantifying seasonal 418 

variability using metrics, as demonstrated by the high ranking of standard deviation layers (Table 6). 419 

Furthermore, multi-seasonal metrics further improved results over multi-seasonal image 420 
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combinations. We attributed this refinement to two factors: firstly, metrics are more resistant to 421 

bias incurred by rainfall and moisture variation; secondly, metrics such as standard deviation can 422 

represent the temporal profile of the land cover, imitating time-series approaches. This is in 423 

agreement with Müller et al. (2015), who found that annual metrics outperform best available pixel 424 

composites for tropical savannahs in Brazil. 425 

Large-area mapping of savannah systems remains a challenge due to high heterogeneity and 426 

subjective biome classifications (Herold et al., 2008, Hüttich et al., 2011). Current approaches for 427 

regional-scale mapping generally focus on best-available pixel composites for classification (Griffths 428 

et al., 2013, White et al., 2014, Frantz et al., 2017). Due to the high temporal variation in savannahs, 429 

this method is particularly vulnerable to bias effects caused by pixels being selected in different 430 

phenological stages (Hüttich et al., 2011, Müller et al., 2015). We demonstrate that Landsat-based 431 

spectral variability metrics offer a robust alternative for land cover mapping at large spatial scales, 432 

applicable to epochal or annual analyses. South Africa possesses good availability of Landsat imagery 433 

in the USGS archive, owing to the successful transfer of data from the Johannesburg receiving station, 434 

active since 1980 (Wulder et al., 2015). However, in many savannah regions, such as the Sahel and 435 

east Africa, the historical Landsat archive is sparse. By combining multiple years of observations, wall-436 

to-wall mapping should be possible even with low annual image availability. Furthermore, 437 

segmenting a time-series into multiple temporal windows allows additional value to be extracted 438 

from a single series of observations, potentially compensating for a relatively limited archive. The 439 

high image acquisition rate of Landsat 8 relative to the historic Landsat archive, combined with 440 

comparable imagery from the Sentinel-2 satellites, will result in improved temporal resolution for 441 

optical imagery (Drusch et al., 2012, Roy et al., 2014). Increased observations should enable our multi-442 

seasonal metrics approach to be expanded by using more or smaller temporal windows, for example 443 

the beginning or ending of the dry season. Evidence from MODIS-based studies suggests that this 444 

refinement may allow increased discrimination of subtle land covers, such as densely wooded 445 

savannahs, which are currently poorly mapped (Hüttich et al., 2009). 446 
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6.2 Landsat-PALSAR fusion 447 

Integrating the Landsat metrics with L-band PALSAR backscatter had divergent impacts. Finer-448 

scale maps (30 to 90 m) were negatively affected by the inclusion of radar, with the Landsat-only 449 

models outperforming their fused counterparts (Table 4). Comparably, the PALSAR-only models 450 

performed poorly, especially at fine-scales (Table 3).  We attribute this to the high-level of noise in 451 

radar imagery at higher resolutions, as illustrated in Fig 13. Errors caused by factors such as speckle, 452 

moisture content and geolocation accuracy are far more prevalent in finer-scale radar data. 453 

Therefore, at 30 to 90 m pixel scales, the PALSAR imagery contains a weak signal-to-noise ratio, 454 

incurring a negative impact on the regression model. This is further reflected in the increasing ranks 455 

of radar variables in the Recursive Feature Elimination (RFE, Table 6). Accordingly, SAR-fusion reduced 456 

class accuracy by ~1% for area 20-60% coverage, at 30 m scales (Fig 12).Conversely, the coarse scale 457 

models (120 m) were consistently improved by the addition of PALSAR backscatter to the Landsat 458 

metrics, with the single-season combinations undergoing the greatest improvement. The lower 459 

improvements for the multi-seasonal scenarios indicates that some of the information contained in 460 

radar backscatter can be obtained from multi-seasonal metrics. The inclusion of L-band radar had the 461 

highest impact on sparse woody cover classes (0-30%). Within these classes, inclusion of the SAR 462 

variables increased balanced accuracies by 1-9% and 1-2%, at 120 and 30 m scales, respectively (Fig 463 

12). Visual examination of the prediction subset maps indicates that this improvement is due to the 464 

SAR fusion correcting for overestimations when there is 0 - 20 % woody cover (e.g. the central pivot 465 

irrigation fields in Subset A of Fig 7). 466 
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 467 

Figure 13: Subsets of HV polarized PALSAR backscatter across a grassland-shrub transition at 468 

different resolutions 469 

Multi-sensor fusion approaches are becoming more popular, due to an increase in the number of 470 

operational sensors and the open-access data policies. The improvements at coarse scales are in line 471 

with those found in other studies employing SAR and Landsat data together (Bucini et al., 2010, 472 

Naidoo et al., 2016). However, this study is the first to quantify the effect and mechanism of this 473 

fusion across multiple seasons and scales. The accuracies of the PALSAR-only models generated here 474 

are lower than other South African studies (e.g. Naidoo et al., 2016, Urbazaev et al., 2015). We 475 

attribute this to the much larger and heterogeneous study area that we cover, encompassing human 476 

modified landscapes where the other two studies were confined within the Kruger National Park. The 477 

source of training data could also have affected the accuracy of our PALSAR-based estimates: we 478 

employ aerial photographs while Naidoo et al. (2016) and Urbazaev et al. (2015) use more accurate 479 

characterisations from the field or from LiDAR sources.  It should also be noted that our study used a 480 

mosaicked ALOS PALSAR layer produced from images acquired across a three month window (1st July 481 

- 3rd October), including two images acquired in the previous year. Seasonal effects, such as canopy 482 

density and moisture content, may prevent the mosaicked images from being artefact-free. 483 

Alternatively, the global-scale processing undertaken in the creation of the mosaicked PALSAR layer, 484 
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such as speckle reduction and topographic normalisation, may reduce the fidelity of backscatter 485 

measurements when compared to scene-specific methods applied elsewhere (e.g. Naidoo et al., 486 

2016, Urbazaev et al., 2015). Furthermore, multi-sensor fusion has a potential for image miss-487 

registration errors between the imagery (Lehmann et al., 2015). 488 

Although overall model accuracies are only moderately changed by the inclusion of L-band SAR 489 

data, the consistent allocation of improvements at low densities of woody cover may be highly 490 

relevant to semi-arid savannah case studies. The process of shrub encroachment into grasslands is a 491 

major threat to the livelihoods of many pastoralists in the developing world. For prevention and 492 

remediation to be successful, action must be taken as early as possible. The periodic monitoring of 493 

sparsely wooded savannahs, which are vulnerable to shrub encroachment, is therefore a pressing 494 

requirement. For this purpose, the fusion of PALSAR and Landsat imagery is beneficial, offering a 495 

higher likelihood of timely change detection than single-sensor approaches. In the coming years, 496 

fusion techniques based C-band radar from Sentinel-1 may offer good promise, owing to the 12 day 497 

revisit time.  498 

6.3 Merit of variable reduction methods 499 

To ascertain the value of variable reduction methods we applied a Recursive Feature Elimination 500 

(RFE) on out 92 variable dataset. The RFE produced the best preforming model at all scales, compared 501 

to all Landsat and Landsat-PALSAR fusion cases (Fig 11). In general, the number of variables used in 502 

the RFE models decreased with aggregation: we attribute the requirement of less variables at coarser 503 

resolutions to improvements in signal-to-noise ratios as noisier layers are smoothed. Dimension 504 

reduction methods are also useful for highlighting the type of variables that contain useful 505 

information for the model building. The high ranking of standard deviation - a proxy for seasonal 506 

variability highlights the importance of temporal information for woody cover mapping.  507 
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As both the number of active sensors and the availability of open data archives increase, remote 508 

sensing analyses are using high-dimensional datasets. The utility of variable selection or dimension 509 

reduction methods will inevitably increase in order to deal with the increasing data volume. Currently, 510 

these tools are primarily used in hyperspectral analyses, but are underutilised in other areas (Pal and 511 

Foody 2010). The fact that the RFE was able to automate the process of selecting a superior model 512 

highlights the potential of automating model construction using machine learning methods that may 513 

currently be underused (Meyer et al., 2016). At large-scales, mapping land cover with fewer variables 514 

can drastically reduce processing time, leaving unnecessary variables out can therefore be useful for 515 

computing and statistical purposes.   516 

7 Conclusions 517 

We tested the potential of Landsat-derived spectral variability metrics and PALSAR composites 518 

for mapping woody coverage, in southern African savannahs. We compared the role of seasonal 519 

compositing period, and the effect of multi-sensor fusion through the addition of ALOS PALSAR 520 

backscatter to the Landsat layers. Furthermore, we investigated the role of pixel scale on map 521 

accuracy, and the potential of variable selection methods for automating the model building 522 

process. 523 

We draw a number of conclusions from our modelling scenarios. Firstly, Landsat metrics can 524 

produce highly accurate maps of fractional cover in savannas, with dry season imagery being the 525 

preferred temporal window. Further improvements can be made by combining multi-seasonal 526 

metrics, derived from two contrasting seasons. In particular, integrating dry and wet season layers 527 

produced good improvements in map accuracy. Secondly, the fusion of Landsat and PALSAR layers 528 

is not always beneficial. At fine scales (30-60 m), L-band SAR integration reduced model 529 

performance consistently, potentially due to the high level of noise inherent to radar data, 530 
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particularly in savannahs. Conversely, at the 120 m scale, the addition of PALSAR was beneficial, 531 

particularly for areas with less than 30% coverage, and for some models at 90 m scales as well. 532 

Finally, the use of a recursive feature elimination automated variable selection process was very 533 

efficient in constructing an accurate parsimonious model, producing the most effective model at 534 

every scale examined whilst reducing the number of variables used to of 57 out of 90.  535 

In summary, Landsat metrics offer a suitable option for regional-scale mapping of savannah 536 

woody cover, and should allow decadal scale analysis of land cover changes.  The use of multi-537 

seasonal composites are particularly promising for accurate fractional woody cover mapping. For 538 

contemporary monitoring, the fusion of Landsat metrics with L-band radar is recommended for 539 

areas with lower woody cover densities, and particularly for the rapid detection of shrub 540 

encroachment into grass-dominated savannahs. Future studies will benefit from automated variable 541 

reduction approaches and the increased image acquisition rates from the Sentinel constellation, 542 

that feature both radar (C-Band) and optical satellites.  543 
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 745 

Appendix 746 

Table A1 Woody cover mask classification accuracies. 747 

Mask 
Number 

Date Accuracy  Sensitivity  Specificity  
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1 19/04/2009 0.74 0.73 0.75 

2 30/04/2009 0.85 0.88 0.80 

3 01/05/2009 0.85 0.88 0.80 

4 07/08/2008 0.87 0.87 0.88 

5 23/06/2008 0.85 0.86 0.85 

6 01/06/2008 0.92 0.88 0.95 

Positive Class: Woody Cover 
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