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Abstract

This paper outlines the matrix exponential description of radiative transfer. The eigendecomposition method which serves
as a basis for computing the matrix exponential and for representing the solution in a discrete ordinate setting is considered.
The mathematical equivalence of the discrete ordinate method, the matrix operator method, and the matrix Riccati equations
method is proved rigorously by means of the matrix exponential formalism. For optically thin layers approximate solution
methods relying on the Padé and Taylor series approximations to the matrix exponential, as well as on the matrix Riccati equa-
tions are presented. For optically thick layers, the asymptotic theory with higher-order corrections is derived, and parametriza-
tions of the asymptotic functions and constants for a water-cloud model with a Gamma size distribution are obtained.
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1. Introduction
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The radiative transfer is an important issue for astro-
physics, atmospheric physics, meteorology and engineering
sciences. A wide range of solution methods of the radiative
transfer equation (RTE) have been proposed (see, e.g., [1–
11] and references therein for a general review). The discrete
ordinate method [6, 12–14] and the matrix operator method
[15–18] involve replacing the continuous dependence of the
radiance on direction by a dependence on a discrete set of
directions. For a homogeneous layer, the discretized radia-
tive transfer equation then takes the form of a system of linear
first-order differential equations. In the classical discrete or-
dinate method of Chandrasekhar, the solution of the system
of equations is expressed as a linear combination of charac-
teristic solutions of the discretized problem, while the ma-
trix operator method is primarily oriented toward numeri-
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cal computations of the reflection and transmission matrices.
Another group of methods are based on the concept of in-
variant imbedding, which is due to Ambarzumian [19]. Am-
barzumian derived an equation for the reflection function of
a semi-infinite atmosphere by noting that the reflection func-
tion remains unchanged upon addition of a new layer. This
technique was further generalized by Chandrasekhar [13] to
a finite layer, while Bellman et al. [20] showed that the reflec-
tion function derived by using the invariant imbedding satis-
fies the Riccati equation.

The system of differential equations of the discretized ra-
diative transfer equation can be solved by using a classi-
cal mathematical procedure involving the matrix exponen-
tial operator, in which the system matrix appears in the expo-
nent. Waterman [21] was the first who provided a matrix ex-
ponential description of radiative transfer. Mathematical el-
egance aside, he showed its practical value in radiative trans-
fer computations from both the analytical and purely numer-
ical point of view. In particular, Waterman related the ma-
trix exponential to the extinction matrix incorporating the re-
flection and transmission matrices of a homogeneous layer,
provided an eigenvector representation of the matrix expo-
nential, derived analytical expressions for the reflection and
transmission matrices in the limit of small and large optical
thicknesses, showed that the matrix exponential can be used
to generate starting values for the doubling method, and ap-
plied the matrix exponential formalism to conservative scat-
tering. Flatau and Stephens [22] extended the concept of
matrix exponential of a homogeneous layer to an inhomo-
geneous atmosphere by introducing the so-called propaga-
tor (matrix) operator. As Waterman, Flatau and Stephens re-
lated the propagator to the extinction matrix of a homoge-
neous layer, notified the similarity between the matrix ex-
ponential solution and Chandrasekhar’s discrete ordinate so-
lution, established various properties of the propagator and
used them to derive the Riccati matrix equations for an in-
homogenous atmosphere, as well as the adding and doubling
formulas. Although in both papers [21, 22] an eigendecompo-
sition method for computing the matrix exponential is con-
sidered, explicit and stable representations of the reflection
and transmission matrices are not given. This problem has
been solved by Nakajima and Tanaka [18] by using a system
of characteristic solutions of the discretized problem, and by
Budak et al. [23, 24] by using the matrix exponential formal-
ism. It should be also mentioned that Doicu and Trautmann
[25, 26] designed the so-called discrete ordinate method with
matrix exponential to compute the radiance field in a multi-
layered atmosphere.

The purpose of this paper is to provide a consistent
overview of the matrix exponential description of radiative
transfer. We mainly focus on a mathematical rigorous and
self-contained analysis based on the results given in [21, 22,
27] and our own results [25, 26, 28, 29]. The final goals are
to prove the mathematical equivalence of the discrete ordi-
nate method, matrix operator method, and the matrix Riccati
equations method, on the one hand, and to derive efficient
computations formulas for the reflection and transmission

matrices in the limit of small and large optical thicknesses,
on the other hand.

The rest of the paper is organized as follows. In Section 2,
we present the discrete ordinate setting in which the matrix
exponential method is applied, while in Section 3, we dis-
cuss the eigendecomposition method for computing the ma-
trix exponential. Section 4 is devoted the discrete ordinate
method with matrix exponential. In Section 5, dealing with
the matrix operator method with matrix exponential, we de-
rive several representations of the reflection and transmis-
sion matrices for arbitrary optical thickness, as well as, for
small and large optical thicknesses. In Section 6 we establish
the matrix Riccati equations, prove the mathematical equiv-
alence between the matrix Riccati equations method and the
matrix exponential method in computing the reflection and
transmission matrices of a homogeneous layer, and discuss
some approximation solution methods for small values of
the optical thickness and/or single scattering albedo. Finally,
Section 7 contains some concluding remarks. Additional re-
sults dealing with a justification of the Gaussian quadrature
in the discrete ordinate method, a review of eigendecompo-
sition methods for computing the matrix exponential, and an
extension of the analytical results to conservative scattering
are presented in appendices.

2. Matrix formulation of the radiative transfer equation

For a given solar direction Ω0 = (−µ0,ϕ0), with µ0 > 0 be-
ing the cosine of the solar zenith angle and ϕ0 the solar az-
imuthal angle, the equation describing the radiative transfer
in a plane-parallel homogeneous layer of optical thickness τ
is

µ
dId(τ,µ,−µ0,ϕ−ϕ0)

dτ

= Id(τ,µ,−µ0,ϕ−ϕ0)− ω

4π
F0p(µ,−µ0,ϕ−ϕ0)e−τ/µ0

− ω

4π

ˆ 2π

0

ˆ 1

−1
p(µ,µ′,ϕ−ϕ′)Id(τ,µ′,−µ0ϕ

′−ϕ0)dµ′dϕ′, (1)

where Id(τ,µ,−µ0,ϕ−ϕ0) is the diffuse radiance at optical
depth τ along the direction specified by the cosine of the
zenith angle µ and the azimuthal angle ϕ, p(µ,µ′,ϕ−ϕ′) is
the scattering phase function for the radiation scattered from
the direction Ω′ = (µ′,ϕ′) into the direction Ω = (µ,ϕ), ω is
the single scattering albedo, and F0 is the solar flux. For sim-
plicity, the thermal emission term is neglected in equation
(1). If the homogeneous layer is placed in a multi-layered
atmosphere at optical depth τ0, the radiative transfer equa-
tion for the diffuse radiance e Id(τ0 + τ,µ,−µ0,ϕ−ϕ0) con-
tains the direct transmission term exp[−(τ0 + τ)/µ0] instead
of exp(−τ/µ0). The total radiance, defined in terms of the dif-
fuse and direct radiances by

I (τ,µ,−µ0,ϕ−ϕ0) = Id(τ,µ,−µ0,ϕ−ϕ0)+ I¯(τ,µ,−µ0,ϕ−ϕ0)

solves the radiative transfer equation (1) without the single
scattering source term. Note that for the direct radiance I¯,
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we have

I¯(τ,µ,−µ0,ϕ−ϕ0) = F0δ(µ+µ0)δ(ϕ−ϕ0)e−τ/µ0 ,

and

µ
dI¯
dτ

(τ,µ,−µ0,ϕ−ϕ0) = I¯(τ,µ,−µ0,ϕ−ϕ0).

Considering the Fourier cosine expansions for the phase
function

p(µ,µ′,ϕ−ϕ′) =
Mmax∑
m=0

(2−δm0)pm(µ,µ′)cos[m(ϕ−ϕ′)], (2)

and the diffuse radiance

Id(τ,µ,−µ0,ϕ−ϕ0) =
Mmax∑
m=0

Idm(τ,µ,−µ0)cos[m(ϕ−ϕ0)], (3)

where Mmax is the number of azimuthal modes in the expan-
sions, yields the following radiative transfer equation for the
individual azimuthal components of the radiance:

µ
dIdm(τ,µ,−µ0)

dτ
= Idm(τ,µ,−µ0).

− (2−δm0)
ω

4π
F0pm(µ,−µ0)e−τ/µ0

− 1

2
ω

ˆ 1

−1
pm(µ,µ′)Idm(τ,µ′,−µ0)dµ′. (4)

To simplify notations, hereafter the index m will be sup-
pressed with the dependence on azimuthal mode assumed.

In order to deal with (4) we replace the integral by a sym-
metric quadrature rule with 2N nodes and weights, i.e., if µk

with k = 1, . . . , N , is a node associated with the weight wk ,
then −µk is also a node associated with the same weight.
Usually, the quadrature is chosen to be (double) Gaussian, in
which case the number of azimuthal modes is Mmax ≤ 2N −1.
This result is discussed in Appendix 1. In the discrete ordinate
space, the radiative transfer equation for the diffuse radiance
vector id = [i+

d
, i−
d

]T with i±
d
= [Idm(±µk ,−µ0)], k = 1, ..., N ,

reads as

did
dτ

(τ) =−Aid(τ)−e−τ/µ0 b, 0 ≤ τ≤ τ. (5)

The entries of the layer matrix

A =
[

A11 A12

−A12 −A11

]
, (6)

are

A11 = MS+W−M,

A12 = MS−W, (7)

while the entries of the layer vector

b =
[

b1

b2

]
, (8)

are

b1 = Mb+,

b2 =−Mb−, (9)

where

[S±]kl =
1

2
ωpm(µk ,±µl ), (10)

[W]kl = wkδkl , (11)

[M]kl =
1

µk
δkl , (12)

[b±]k = (2−δm0)
F0

4π
ωpm(±µk ,−µ0), (13)

for k, l = 1, ..., N . Here, δkl is the Kronecker symbol.
In order to reduce the eigenvalue decomposition of A from

a general to a symmetric problem, we define the scaled dif-
fuse radiance vector îd = [̂i+

d
, î−
d

]T , through the relation

î±d = W
1
2 M− 1

2 i±d . (14)

Hereafter, the “hat” symbol on vectors and matrices refers to
scaled quantities. For the scaled diffuse radiance vector, the
radiative transfer equation is

d̂id
dτ

(τ) =−Â îd(τ)−e−τ/µ0 b̂, 0 ≤ τ≤ τ, (15)

where the expressions of the scaled layer matrix Â and the
layer vector b̂ are as in (6) and (8), respectively, with

Â11 = M
1
2 W

1
2 (S+−W−1)M

1
2 W

1
2 ,

Â12 = M
1
2 W

1
2 S−M

1
2 W

1
2 , (16)

and

b̂1 = M
1
2 W

1
2 b+,

b̂2 =−M
1
2 W

1
2 b−. (17)

From the principle of reciprocity of the phase function, it fol-
lows that S+ and S−, and so, that Â11 and Â12 are symmet-
ric matrices. The scaling procedure (14), which is equiva-
lent to the application of a similarity transformation to A with

the diagonal block matrices W
1
2 M− 1

2 , is standard in radiative
transfer and has been used by Waterman [21], Nakajima and
Tanaka [18], and Stamnes and Swanson [14].

In the framework of the matrix exponential approach, the
solution of the initial value problem consisting in the vec-
tor differential equation (15) and the initial condition îd (0),
is given by

îd(τ) = e−Âτ îd (0)−
ˆ τ

0
e−Â(τ−τ′)e−τ

′/µ0 b̂dτ′. (18)

Let us give an interpretation of the matrix exponential solu-
tion (18). Making use of a spectral decomposition of the ma-
trix Â, it can be shown thatˆ τ

0
e−Â(τ−τ′)e−τ

′/µ0 b̂dτ′ = (e−Âτ−e−τ/µ0 I)µ0(I−µ0Â)−1 b̂, (19)
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whence, setting

ĉ =µ0(I−µ0Â)−1 b̂, (20)

we express (18) as

îd(τ) = e−Âτ [̂id(0)− ĉ]+e−τ/µ0 ĉ. (21)

The classical approach for solving the vector differential
equation (15) is to express the general solution as the sum of
a homogeneous and a particular solution, i.e.,

îd(τ) = îh(τ)+ îp(τ). (22)

The particular integral solving (15), is

îp(τ) = e−τ/µ0 ĉ, (23)

where ĉ is given by (20). The homogeneous or the fundamen-
tal solution solves the equation

d̂ih
dτ

(τ) =−Â îh(τ), (24)

and is given by

îh(τ) = e−Âτ ĉh. (25)

The integration vector ĉh is obtained from (22) and the initial
condition îd (0); the result is ĉh = îd(0)−ĉ. Then, accounting of
(22), (23), and (25) we find that an equivalent representation
of (21) is

îd(τ) = e−Âτ [̂id(0)− îp(0)]+ îp(τ). (26)

If the incident direction µ0 coincides with a discrete ordinate
direction, say µ0 = µl for some l , then the homogeneous and
particular solutions can be interpreted as the total and direct
radiance vectors, respectively. To show this, let us define the
vector î¯(0) = [̂i+̄(0), î−̄(0)]T by î+̄(0) = 0 and

[̂i−¯(0)]k = (2−δm0)
F0

2π

√
µk

wk
δkl , k = 1, . . . , N .

By straightforward calculation it can be shown that î¯(0) =
−ĉ. As a result, the particular solution îp(τ) given by (23) can
be identified with the direct radiance vector î¯(τ), defined by
î¯(τ) = e−τ/µ0 î¯(0), i.e., î¯(τ) = − îp(τ), and so, the total radi-
ance vector î(τ), defined by î(τ) = îd(τ)+ î¯(τ), can be identi-
fied with the homogeneous solution îh(τ). Note that both î¯
and îp solve the differential equation µ0d̂i¯(τ)/dτ = − î¯(τ),
while both î and îh solve the differential equation (24). It
should be pointed out that in a continuous setting, the total
radiance is a generalized function, or a distribution, while in
a discrete setting and under the above assumption, the total
radiance, regarded as a function µk , has a jump at µk = µl (=
µ0).

In [22], the matrix exponential exp(−Âτ), reflecting the
internal properties of the homogeneous medium, is called
propagator and is denoted by P(τ), i.e., P(τ) = exp(−Âτ). If

the initial condition is given, then the solution deeper in the
medium can be recovered (propagated) down from the up-
per boundary by applying this propagator. However, the ob-
tained solution has no physical meaning, as long as the ra-
diative transfer equation cannot be treated as an initial value
problem. The initial condition means that both sets of up-
ward and downward radiances at the upper boundary are
known, a fact which typically does not occur in atmospheric
radiative transfer. This by no means reduces the usefulness of
matrix exponential (propagator), as it will be demonstrated in
the course of our analysis.

3. Eigendecomposition method for computing the matrix
exponential

The matrix exponential can be computed by using an
eigendecomposition of the matrix Â. Exploiting the block
symmetry of Â, we find

Â = V̂
[
Λ 0
0 −Λ

]
V̂−1, (27)

with

V̂ =
[

V̂+ V̂−
V̂− V̂+

]
(28)

and (the abbreviation ’not’ stands for notation)

Λ= diag[λ1, ...,λN ]
not= [λk ]. (29)

The spectral decomposition of the matrix Â can be obtained
by one of the following methods: direct decomposition of an
asymmetric matrix [14], square-root decomposition [18], and
Cholesky decomposition [30]. These approaches are summa-
rized in Appendix 2. In (28), the matrices V̂± are of the form

V̂± = [v̂±1 , ..., v̂±N ]
not= [v̂±k ],

where

[
v̂+k
v̂−k

]
are the right eigenvectors of Â corresponding to

λk , and

[
v̂−k
v̂+k

]
are the right eigenvectors of Â corresponding

to −λk . The matrix exponential is then given by

e−Âτ = V̂
[
Γ(τ) 0

0 Γ(−τ)

]
V̂−1, (30)

with

Γ(τ) = [e−λkτ]. (31)

From (30) it is apparent that the computation of the matrix
exponential requires the computation of the inverse of the
right eigenvectors matrix V̂. In Waterman’s approach, the in-
verse V̂−1 is computed by using the following result: For any
matrix A, which has a complete set of linearly independent
eigenvectors, the inverse of the right eigenvector matrix is the
transpose of the left eigenvector matrix. Indeed, let A be an
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n×n matrix with distinct eigenvalues, xk be a right eigenvec-
tor of A corresponding to λk , i.e., Axk = λk xk , and yl be a left
eigenvector of A corresponding to λl , i.e., AT yl = λl yl . Then,
from yT

l Axk = λk yT
l xk = λl yT

l xk , we see that for λk , λl , we

have yT
l xk = 0. Moreover, assuming that xk and yk are nor-

malized in the sense that yT
k xk = 1, k = 1, ...,n, we find that

X−1 = YT , where X = [xk ] and Y = [yk ]. Thus, the spectral de-
composition of A reads as A = XΛX−1 = XΛYT .

Accounting of (27)-(29), we deduce that the systems of nor-
malized right and left eigenvectors corresponding to λk and
−λk are(
λk ,

1√∣∣ak
∣∣
[

v̂+k
v̂−k

]
,

sign(ak )√∣∣ak
∣∣

[ −v̂+k
v̂−k

])
(32)

and(
−λk ,

1√∣∣ak
∣∣
[

v̂−k
v̂+k

]
,

sign(ak )√∣∣ak
∣∣

[
v̂−k
−v̂+k

])
, (33)

respectively, with ak = ||v̂−k ||2 − ||v̂+k ||2. To simplify notations
we put

1√∣∣ak
∣∣ v̂±k → v̂±k and v±k = sign(ak )v̂±k , (34)

so that(
λk ,

[
v̂+k
v̂−k

]
,

[ −v+k
v−k

])
(35)

and(
−λk ,

[
v̂−k
v̂+k

]
,

[
v−k
−v+k

])
(36)

are the systems of normalized right and left eigenvectors cor-
responding to λk and −λk , respectively. Thus, we have V̂−1 =
V

T
, with

V =
[ −V+ V−

V− −V+

]
, (37)

V± = [v±k ]. (38)

The spectral decomposition of Â is then

Â = V̂
[
Λ 0
0 −Λ

]
V

T
, (39)

or explicitly,

Â =
N∑

k=1
λk

[
v̂+k
v̂−k

][ −v+k
v−k

]T

−λk

[
v̂−k
v̂+k

][
v−k
−v+k

]T

, (40)

while the matrix exponential is

e−Âτ = V̂
[
Γ(τ) 0

0 Γ(−τ)

]
V

T
, (41)

or explicitly,

e−Âτ =
N∑

k=1
e−λkτ

[
v̂+k
v̂−k

][ −v+k
v−k

]T

+eλkτ

[
v̂−k
v̂+k

][
v−k
−v+k

]T

.

(42)

A short comment is in order. In the absence of scatter-
ing (ω = 0), we have Â11 = −Â22 = −M, and Â12 = Â21 = 0.
As a result, we obtain V̂+ = 0, V̂− = I, and Λ = M; thus,
the eigenvalues are the inverse of the discrete ordinates, i.e.,
λk = 1/µk . The matrix exponential is the diagonal matrix
exp(Âτ) = [eλkτ;e−λkτ] and the homogeneous solution at τ =
τ, given by îh(τ) = [eλkτ;e−λkτ ]̂ih(0), is a representation of the
Beer-Lambert attenuation law for the downward and upward
radiances, i.e., [̂i−

h
(τ)]k = exp(−λkτ)[̂i−

h
(0)]k and [̂i+

h
(0)]k =

exp(−λkτ)[̂i+
h

(τ)]k , respectively. If scattering is present, the
Beer-Lambert law is still valid but for the downward and up-
ward radiances ξ−(τ) and ξ−(0) corresponding to the trans-
formed radiance vector

ξ(τ) =
[
ξ+(τ)
ξ−(τ)

]
=

[
0 I
I 0

]
V

T
îh(τ).

We proceed now to derive some matrix identities which
will be frequently used in the following. In terms of block ma-

trices, the orthogonality relation V̂ V
T = I2N , where I2N is the

identity matrix of dimension 2N ×2N , reads as[
V̂+ V̂−
V̂− V̂+

][ −V+ V−
V− −V+

]T

= I2N , (43)

from which we infer that

V̂−V
T
− − V̂+V

T
+ = IN , (44)

V̂+V
T
− = V̂−V

T
+ . (45)

Similarly, from V
T

V̂ = I2N , we obtain

V
T
−V̂−−V

T
+V̂+ = IN , (46)

V
T
−V̂+ = V

T
+V̂−. (47)

Accounting of (44)-(47), the following matrix identities read-
ily follow:

V
T
+V

−T
− = V̂−1

− V̂+, (48)

V
−T
− V

T
+ = V̂+V̂−1

− , (49)

V
−T
− = V̂−− V̂+V̂−1

− V̂+. (50)

On the other hand, from (34) and (38), we see that

V± = V̂±S, (51)

where S = [sign(ak )] is a diagonal matrix of plus and minus
ones. As SS= IN , we find that the matrices V̂T+V̂− and V̂+V̂−1−
are symmetric, i.e.,

(V̂T
+V̂−)T = V̂T

+V̂−, (52)

(V̂+V̂−1
− )T = V̂+V̂−1

− , (53)
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but V̂−V̂T+ and V̂−1− V̂+ are not; in particular, we have

(V̂−SV̂T
+)T = V̂−SV̂T

+ , (54)

(V̂−1
− V̂+)T =S(V̂−1

− V̂+)S. (55)

Solution (18) with the matrix exponential as in (41) is the
starting point in our analysis. This solution, in the form of the
propagator P(τ) = exp(−Âτ), is a combination of both grow-
ing and decaying exponentials. For large optical thicknesses,
growing exponentials will dominate the solution given in
this form, and the direct application of the propagator leads
to numerical instability. This behavior is referred to as di-
chotomic [22]. However, by appropriate manipulations of
(18) and by introducing scaling transformations, computa-
tionally stable equations, the so-called layer equation and the
interaction principle equation can be derived. These equa-
tions, which are the quintessence of the discrete ordinate
and matrix operator method with matrix exponential, are dis-
cussed in Sections 4 and 5, respectively.

4. Discrete ordinate method with matrix exponential

In the framework of the discrete ordinate method with ma-
trix exponential, the layer equation is a computationally sta-
ble relation connecting the layer-top radiance vector îd(0)
and the layer-bottom radiance vector îd(τ) [25, 26]. For a
multi-layered atmosphere, each layer equation is assembled
into the system matrix of the entire atmosphere. By imposing
appropriate boundary conditions at the top and the bottom
of the atmosphere, the system of equations is solved for the
level values of the radiances. Thus, the method avoids com-
puting an explicit solution for each layer by imposing bound-
ary conditions for the entire atmosphere, as well as, the con-
tinuity condition for the radiances across the layer interfaces.

The layer equation is derived by inserting the matrix expo-
nential representation (41) in (18), and by multiplying the re-
sulting equation with an appropriate scaling matrix as in [31].
The result is

D1(τ)V
T

îd(τ) = D0(τ)V
T

îd(0)−Db(τ)V
T

b̂, (56)

where

D1(τ) =
[

IN 0
0 Γ(τ)

]
, D0(τ) =

[
Γ(τ) 0

0 IN

]
,

Db(τ) =
 e−λk τ−e−τ/µ0

1/µ0−λk
0

0 1−e−τ(λk+1/µ0)

1/µ0+λk

 . (57)

If the level values of the radiances îd(0) and îd(τ) are known,
the radiance at an internal point τ, with 0 ≤ τ ≤ τ, is com-
puted as

îd(τ) = V̂E(τ,τ)

[
ξ+(0)
ξ−(τ)

]
− V̂Eb(τ,τ)η, (58)

where now ξ(τ) = [ξ+(τ),ξ−(τ)]T = V
T

îd(τ), η= V
T

b̂ , and

E(τ,τ) =
[
Γ(τ) 0

0 Γ(τ−τ)

]
,

Eb(τ,τ) =
 e−λk τ−e−τ/µ0

1/µ0−λk
0

0 −e−τ/µ0 1−e−(τ−τ)(λk+1/µ0)
1/µ0+λk

 . (59)

The matrix exponential representation of the solution as
given by (18) is mathematically equivalent to the classical
Chandrasekhar’s representation in terms of the characteristic
solutions

e−λkτ

[
v̂+k
v̂−k

]
and eλkτ

[
v̂−k
v̂+k

]
. (60)

To show this equivalences, we consider (20), i.e.,

îd(τ) = e−Âτ [̂id(0)− îp(0)]+ îp(τ), (61)

for 0 ≤ τ≤ τ. Using (30) and writing[
Γ(τ) 0

0 Γ(−τ)

]
=

[
Γ(τ) 0

0 Γ(−τ)

]

×
[

I 0
0 Γ

(
τ
) ][

I 0
0 Γ

(
τ
) ]−1

, (62)

we obtain

îd(τ) =
[

V̂+Γ (τ) V̂−Γ
(
τ−τ)

V̂−Γ (τ) V̂+Γ
(
τ−τ)

][
α

β

]
+ îp(τ), (63)

where the N -dimensional vectors α and β do not depend on
τ, and are given by[
α

β

]
=

[
V̂+ V̂−Γ

(
τ
)

V̂− V̂+Γ
(
τ
) ]−1

[̂id(0)− îp(0)]. (64)

The explicit form of (63), i.e.,

îd(τ) =
N∑

k=1
αk e−λkτ

[
v̂+k
v̂−k

]
+βk e−λk (τ−τ)

[
v̂−k
v̂+k

]
+ îp (τ) , (65)

is the solution representation in the Chandrasekhar’s discrete
ordinate method. Another representation can be obtained by
using the relation[
Γ (τ) 0

0 Γ (−τ)

]
=

[
Γ (τ) 0

0 Γ (−τ)

]
·

×
[

I −I
Γ(τ) Γ(τ)

][
I −I
Γ(τ) Γ(τ)

]−1

, (66)

which yields

îd(τ) =
[

V̂−Γ(τ−τ)+ V̂+Γ (τ) V̂−Γ(τ−τ)− V̂+Γ (τ)
V̂+Γ(τ−τ)+ V̂−Γ (τ) V̂+Γ(τ−τ)− V̂−Γ (τ)

]
×

[
α

β

]
+ îp(τ), (67)
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with[
α

β

]
=

[
V̂−Γ(τ)+ V̂+ V̂−Γ(τ)− V̂+
V̂+Γ(τ)+ V̂− V̂+Γ(τ)− V̂−

]−1

[̂id(0)− îp(0)]. (68)

From (67), we get

îd(τ) =
N∑

k=1
αk

(
e−λkτ

[
v̂+k
v̂−k

]
+e−λk (τ−τ)

[
v̂−k
v̂+k

])
+βk

(
−e−λkτ

[
v̂+k
v̂−k

]
+e−λk (τ−τ)

[
v̂−k
v̂+k

])
+ îp (τ) , (69)

where as before, the integration constants αk and βk do not
depend on τ.

Equations (63)-(64) and (67)-(68) are equivalent solution
representations in the matrix exponential method and will be
used in the next section to derive the reflection and transmis-
sion matrices. In both representations, the radiance vector at
optical depth τ is a superposition of eigenfields propagating
from the upper and lower boundaries, with the attenuation
factors exp(−λkτ) and exp[−λk (τ−τ)], respectively.

Although the classical and the matrix exponential version
of the discrete ordinate method are very similar, several dif-
ferences can be emphasized:

1. In the classical discrete ordinate method, the expan-
sion coefficients αk and βk are the unknowns of the dis-
cretized radiative transfer problem and are computed
by imposing the continuity condition for the radiances
across the layer interfaces. In the discrete ordinate
method with matrix exponential, the unknowns are the
level values of the radiances. Once they are computed,
the integration constants can be obtained from (64) or
(68).

2. In the classical discrete ordinate method, the compu-
tation of the particular solution requires the computa-
tion of the inverse (I−µ0Â)−1. This inversion step is not
present in the discrete ordinate method with matrix ex-
ponential. However, if the systems of normalized right
and left eigenvectors stay at our disposal, the constant
vector ĉ which enters in (23), can be calculated with a
less computational effort as

ĉ =µ0V̂
[

(I−µ0Λ)−1 0
0 (I+µ0Λ)−1

]
V

T
b̂ (70)

for µ0 ,λk , k = 1, ..., N .

5. Matrix operator method with matrix exponential

In a continuous setting, the interaction principle equation,
which is the central feature of the matrix operator method, re-
lates the outcoming radiances at the layer top Id(0,µ,−µ0,ϕ−
ϕ0) and layer bottom Id(τ,−µ,−µ0,ϕ−ϕ0) to the incoming ra-
diances Id(0,−µ,−µ0,ϕ−ϕ0) and Id(τ,µ,−µ0,ϕ−ϕ0) through
the reflection, total transmission and diffuse transmission
functions R(µ,µ′,ϕ−ϕ′;τ), T (µ,µ′,ϕ−ϕ′;τ) and Td(µ,µ′,ϕ−

ϕ′;τ), respectively, where µ,µ′ > 0. The transmission func-
tion for the diffuse radiance Td is related to the transmission
function for the total radiance by the relation

Td(µ,µ′,ϕ−ϕ′;τ) = T (µ,µ′,ϕ−ϕ′;τ)− π

µ′ δ(µ−µ′)δ(ϕ−ϕ′)e−τ/µ′ .

(71)

Considering the Fourier cosine expansions

Id(τ,µ,−µ0,ϕ−ϕ0) =
Mmax∑
m=0

Idm(τ,µ,−µ0)cos[m(ϕ−ϕ0)], (72)

X (µ,µ′,ϕ−ϕ′;τ) =
Mmax∑
m=0

(2−δm0)Xm(µ,µ′;τ)cos[m(ϕ−ϕ′)],

(73)

where X stands for R, T , and Td, and noting that

Tm(µ,µ′;τ) = Tdm(µ,µ′;τ)+ 1

2µ′ δ(µ−µ′)e−τ/µ′ , (74)

for any azimuthal mode m, yields the following representa-
tions of the interaction principle in the Fourier space:

Idm(0,µ,−µ0) = (2−δm0)
1

π
µ0F0Rm(µ,µ0;τ)

+2

ˆ 1

0
Rm(µ,µ′;τ)Idm(0,−µ′,−µ0)µ′dµ′

+2

ˆ 1

0
Tm(µ,µ′;τ)Idm(τ,µ′,−µ0)µ′dµ′ (75)

and

Idm(τ,−µ,−µ0) = (2−δm0)
1

π
µ0F0Tdm(µ,µ0;τ)

+2

ˆ 1

0
Tm(µ,µ′;τ)Idm(0,−µ′,−µ0)µ′dµ′

+2

ˆ 1

0
Rm(µ,µ′;τ)Idm(τ,µ′,−µ0)µ′dµ′. (76)

The plane albedo r , total transmission t , and the spherical
albedo rs of the layer are given by

r (µ,τ) = 2

ˆ 1

0
R0(µ,µ′;τ)µ′dµ′ = 2

ˆ 1

0
R0(µ′,µ;τ)µ′dµ′, (77)

t (µ,τ) = 2

ˆ 1

0
T0(µ,µ′;τ)µ′dµ′ = 2

ˆ 1

0
T0(µ′,µ;τ)µ′dµ′, (78)

rs (τ) = 4

ˆ 1

0

ˆ 1

0
R0(µ,µ′;τ)µ′µdµ′dµ, (79)

while for a homogeneous layer with an underlying Lamber-
tian surface of albedo A, the interaction principle is

Idm(0,µ,−µ0) = (2−δm0)
1

π
µ0F0RAm(µ,µ0;τ)

+2

ˆ 1

0
RAm(µ,µ′;τ)Idm(0,−µ′,−µ0)µ′dµ′ (80)
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and

Idm(τ,−µ,−µ0) = (2−δm0)
1

π
µ0F0TAdm(µ,µ0;τ)

+2

ˆ 1

0
TAm(µ,µ′;τ)Idm(0,−µ′,−µ0)µ′dµ′,

(81)

where

RAm(µ,µ′;τ) = Rm(µ,µ′;τ)+δm0
A

1− Ars
t (µ,τ)t (µ′,τ), (82)

TAm(µ,µ′;τ) = Tm(µ,µ′;τ)+δm0
A

1− Ars
r (µ,τ)t (µ′,τ), (83)

TAdm(µ,µ0;τ) = Tdm(µ,µ0;τ)+δm0
A

1− Ars
r (µ,τ)t (µ0,τ).

(84)

For a pertinent and mathematical elegant description of the
radiative transfer in a continuous setting including the defini-
tions of the reflection and transmission functions, as well as
the derivation of the interaction principle equation, we refer
to [32].

In a discrete setting, the interaction principle equation re-
lates the outcoming radiances î+

d
(0) and î−

d
(τ) to the incoming

radiances î−
d

(0) and î+
d

(τ) through the reflection and transmis-

sion matrices R̂ and T̂, respectively. Transforming the solu-
tion representations of the matrix exponential method into
a form which resembles the interaction principle equation,
equivalent expressions for the reflection and transmission
matrices can be obtained. This derivation can be regarded
as a conversion of the initial value problem of the matrix ex-
ponential method into a two-point boundary value problem
(the incoming radiances î−

d
(0) and î+

d
(τ) are specified). In

the framework of the matrix exponential formalism, the re-
flection and transmission matrices are introduced in a natu-
ral way, and as they are well behaved and bounded, the nu-
merical instability is avoided. In the matrix operator method
and for a multi-layered atmosphere, the reflection matrix of
the entire atmosphere is computed recursively from the re-
flection and transmission matrices of each layer by using the
adding algorithm.

5.1. Reflection and transmission matrices of a homogeneous
layer

First representations of the reflection and transmission
matrices can be obtained from layer equation (56). Express-
ing (56) in terms of the upward and downward radiance vec-
tors î±

d
(0) and î±

d
(τ), we obtain the interaction principle equa-

tion

[
î+
d

(0)
î−
d

(τ)

]
=

[
R̂ T̂
T̂ R̂

][
î−
d (0)

î+
d

(τ)

]
+

[
Σ̂+
Σ̂−

]
, (85)

where R̂ = R̂(τ), T̂ = T̂(τ), and[
R̂ T̂
T̂ R̂

]
=

[
−Γ(τ)V

T
+ −V

T
−

V
T
− Γ(τ)V

T
+

]−1 [
−Γ(τ)V

T
− −V

T
+

V
T
+ Γ(τ)V

T
−

]
,

(86)[
Σ̂+
Σ̂−

]
=

[
−Γ(τ)V

T
+ −V

T
−

V
T
− Γ(τ)V

T
+

]−1

DbV
T

b̂. (87)

By inspection of (86) it is apparent that the computation of
R̂ and T̂ requires an inversion and a multiplication of ma-
trices of dimension 2N × 2N . Similar expressions for R̂ and
T̂, which however do not use the right- and left-eigenvectors
technique, can be found in [23, 24]. The 2N × 2N matrix in
the left-hand side of (86) is called extinction matrix. The ex-
tinction matrix is expressed in terms of R̂ and T̂ , and as the
propagator, it depends only on the internal properties of the
homogeneous layer [22].

The computation of the reflection and transmission ma-
trices can be halved in order. These representations, corre-
sponding to the interaction principle equation[

î+
d

(0)
î−
d

(
τ
) ]

=
[

R̂ T̂
T̂ R̂

][
î−
d (0)− î−p (0)

î+
d

(
τ
)− î+p

(
τ
) ]

+
[

î+p (0)
î−p

(
τ
) ]

, (88)

can be derived from (63)-(64), and (67)-(68), and do not nec-
essarily require the use of the systems of normalized right and
left eigenvectors. In the first case, we use (63) with τ = τ and
(64) to express îd(τ) = [̂i+

d
(τ), î−

d
(τ)]T and îd(0) = [̂i+

d
(0), î−

d
(0)]T ,

respectively, in terms of α and β; from these representations,
we get[

î−
d

(0)
î+
d

(τ)

]
=

[
V̂− V̂+Γ(τ)

V̂+Γ(τ) V̂−

][
α

β

]
+

[
î−p (0)
î+p (τ)

]
(89)

and[
î+
d

(0)
î−
d

(τ)

]
=

[
V̂+ V̂−Γ(τ)

V̂−Γ(τ) V̂+

][
α

β

]
+

[
î+p (0)
î−p (τ)

]
, (90)

and further,[
î+
d

(0)
î−
d

(τ)

]
=

[
V̂+ V̂−Γ(τ)

V̂−Γ(τ) V̂+

][
V̂− V̂+Γ(τ)

V̂+Γ(τ) V̂−

]−1

×
[

î−
d

(0)− î−p (0)
î+
d

(τ)− î+p (τ)

]
+

[
î+p (0)
î−p (τ)

]
. (91)

Employing now the matrix identity[
A B
B A

]−1

=
[

C −A−1BC
−A−1BC C

]
, (92)

with

C = (A−BA−1B)−1, (93)

we end up with

R̂ = (V̂+− V̂−ΓV̂−1
− V̂+Γ)(V̂−− V̂+ΓV̂−1

− V̂+Γ)−1, (94)

T̂ = (V̂−Γ− V̂+V̂−1
− V̂+Γ)(V̂−− V̂+ΓV̂−1

− V̂+Γ)−1, (95)
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where Γ = Γ(τ). In the second case, we proceed analogously
and use the matrix identity[

A −B
A B

]−1

= 1

2

[
A−1 A−1

−B−1 B−1

]
, (96)

to conclude that

R̂ = 1

2
[(V̂++ V̂−Γ)(V̂−+ V̂+Γ)−1 + (V̂+− V̂−Γ)(V̂−− V̂+Γ)−1],

(97)

T̂ = 1

2
[(V̂++ V̂−Γ)(V̂−+ V̂+Γ)−1 − (V̂+− V̂−Γ)(V̂−− V̂+Γ)−1].

(98)

By making use on fundamental matrix identities it can be
shown that (94)-(95) and (97)-(98) are identical. On the other
hand, it is apparent that (94)-(95) require 2 matrix inversions
and 5 matrix multiplications, while (97)-(98) require 2 matrix
inversions and 2 matrix multiplications. In this regard, the
quantities which enter in the interaction principle equation
(85) may be computed as follows:

1. calculate the matrices R̂ and T̂ from (97) and (98), re-
spectively,

2. calculate the particular solution by means of (23) and
(70), and the particular solution source vector according
to[
Σ̂+
Σ̂−

]
=

[
î+p (0)
î−p

(
τ
) ]

−
[

R̂ T̂
T̂ R̂

][
î−p (0)
î+p

(
τ
) ]

.

Depending on the choice of the method for computing the
spectral decomposition of the layer matrix Â, specific rep-
resentations of R̂ and T̂ can be derived. In the square-root
method, the matrices Q̂+ and Q̂−, defined by V̂+ = (Q̂++Q̂−)/2
and V̂− = (Q̂+ − Q̂−)/2, are related through the relation (cf.
(344) of Appendix 1) Q̂− =−Q̂−T+ Λ, and it can bee shown that
R̂ and T̂ can be expressed in terms of Q̂−T+ only. On the other
hand, in the Cholesky method, the identity (cf. (351) of Ap-
pendix 1) Q̂−T+ = −Q̂−Λ can be used to express R̂ and T̂ in
terms of Q̂− only. These representations which play an im-
portant role in the asymptotic theory will be derived in Sec-
tion 5.4.

We conclude this section by presenting Waterman’s deriva-
tion of the reflection and transmission matrices. Considering
for simplicity, the interaction principle equation for the ho-
mogeneous solution (cf. (88))[

î+
h

(0)
î−
h

(
τ
) ]

=
[

R̂ T̂
T̂ R̂

][
î−
h (0)

î+
h

(
τ
) ]

, (99)

we obtain[
î+
h

(τ)
î−
h

(τ)

]
=

[
T̂−1 −T̂−1R̂

R̂ T̂−1 T̂− R̂ T̂−1R̂

][
î+
h

(0)
î−
h (0)

]
. (100)

On the other hand, from (cf. (26))[
î+
h

(τ)
î−
h

(τ)

]
= e−Âτ

[
î+
h

(0)
î−
h (0)

]
, (101)

it is apparent that the matrix exponential is identified as

e−Âτ =
[

T̂−1 −T̂−1R̂
R̂ T̂−1 T̂− R̂ T̂−1R̂

]
. (102)

Flatau and Stephens [22] called (102) the fundamental rela-
tionship connecting the propagator (matrix exponential) and
the extinction matrix. So basically, what we have to do is to
evaluate exp(−Âτ), to invert its upper-left-hand block to ob-
tain T̂, and finally, to postmultiply its lower-left-hand block
by T̂ in order to get R̂. By means of (41) in conjunction with
(28) and (37), we find

T̂−1 =−V̂+Γ(τ)V
T
+ + V̂−Γ(−τ)V

T
− , (103)

R̂ T̂−1 =−V̂−Γ(τ)V
T
+ + V̂+Γ(−τ)V

T
− . (104)

Equations (103)-(104) have been used by Waterman as a start-
ing point for deriving the expressions of the reflection and
transmission matrices for small and large values of the op-
tical thickness. Here, we use a different approach in order to
show the equivalences with (94)-(95), and so, with (97)-(98).
Let us define the quantity

T̂0 = V
−T
− Γ(τ)V̂−1

− , (105)

which is computationally stable, and let us construct the ma-
trix product

T̂−1T̂0 = I− V̂+Γ(τ)V
T
+V

−T
− Γ(τ)V̂−1

− . (106)

Then, we obtain

T̂−1
0 T̂ = [I− V̂+Γ(τ)V

T
+V

−T
− Γ(τ)V̂−1

− ]−1 (107)

and so,

T̂ = V
−T
− Γ(V̂−− V̂+ΓV

T
+V

−T
− Γ)−1, (108)

R̂ = (V̂+− V̂−ΓV
T
+V

−T
− Γ)(V̂−− V̂+ΓV

T
+V

−T
− Γ)−1, (109)

where, as before, Γ = Γ(τ). Equations (108)-(109) seems to
be new. However, employing (48) and (50) in (108)-(109),
yields (94)-(95), and the mathematical equivalence between
the various representations of the reflection and transmission
matrices is proved.

The analytical formulas derived so far are valid for non-
conservative scattering (ω, 1). The case of conservative scat-
tering, which is merely of theoretical interest, is treated in Ap-
pendix 3.

5.2. Discrete approximations of the reflection and transmis-
sion functions of a homogeneous layer

There are several applications, e.g., asymptotic theory, in
which discrete approximations of the reflection and trans-
mission functions of a homogeneous layer are of particular
interest. Considering the interaction principle (88) and pass-
ing from the scaled diffuse radiance vector îd to the diffuse
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radiance vector id according to the transformation rule (cf.

(14)) î±
d
= W

1
2 M− 1

2 i±
d

, we obtain

[
i+
d

(0)
i−
d

(
τ
) ]

=
[

R T
T R

][
i−
d (0)−c2

i+
d

(
τ
)−e−τ/µ0 c1

]
+

[
c1

e−τ/µ0 c2

]
,

(110)

where

R = M
1
2 W− 1

2 R̂W
1
2 M− 1

2 , (111)

T = M
1
2 W− 1

2 T̂W
1
2 M− 1

2 , (112)

and c = [c1,c2]T = µ0(I − µ0A)−1 b, or blockwise, c1,2 =
W− 1

2 M
1
2 ĉ1,2. Further, from (75), (76) and (110) we find the re-

lations

[Rm(µk ,µl )] =R, (113)

[Tm(µk ,µl )] =T, (114)

[Rm(µk ,µ0)] = c1 −Rc2 −e−τ/µ0 Tc1, (115)

[Tdm(µk ,µ0)] = e−τ/µ0c2 −Tc2 −e−τ/µ0 Rc1, (116)

where the matrices R and T, given by

R= 1

2
RMW−1 = 1

2
M

1
2 W− 1

2 R̂W− 1
2 M

1
2 , (117)

T= 1

2
TMW−1 = 1

2
M

1
2 W− 1

2 T̂W− 1
2 M

1
2 , (118)

are the discrete approximations of the reflection and trans-
mission functions, respectively, and the vector c= [c1,c2]T is
defined through the relation c = (2−δm0)(F0/π)µ0c. In addi-
tion, the matrix

Td =T−D, (119)

with

[D]kl =
1

2wkµk
e−τ/µkδkl , (120)

is the discrete approximation of the diffuse transmission
function, i.e.,

[Tdm(µk ,µl )] =Td. (121)

Equations (117) and (118) show how to convert the scaled re-
flection and transmission matrices into physical functions.
As the interaction principle has been formulated for the dif-
fuse radiance, relations (115) and (116) corresponding to the
incident direction can be used for checking the reflection and
transmission matrix calculations. The computational pro-
cess of some reflective and transmissive characteristics of the
layer involves the following steps:

1. For the azimuthal mode m = 0, compute the plane
albedo vector r and the transmission vector t of the layer

r = 2RWM−11 = R1, (122)

t = 2TWM−11 = T1, (123)

together with the spherical albedo

rs = 4vTRv = 2vT R1, (124)

where v = WM−11 and 1 = [1, . . . ,1]T .
2. Compute the reflection and transmission matrices of the

layer with an underlying Lambertian surface

RA =R+ A

1− Ars
δm0ttT , (125)

TA =T+ A

1− Ars
δm0rtT . (126)

3. For the azimuthal mode m = 0, compute the plane
albedo vector of the homogeneous layer with an under-
lying Lambertian surface

rA = 2RAWM−11 (127)

and the spherical albedo

rs A = 4vTRAv. (128)

According to (74), the total transmission function is a gener-
alized function, or a distribution. In a discrete setting this
means that in contrast to the diffuse transmission matrix
[Tdm(µk ,µl ;τ)], the total transmission matrix [Tm(µk ,µl ;τ)],
regarded as a function of µl , has a jump at µl =µk .

The discrete approximations of the reflection and trans-
mission functions R(µ,µ′,ϕ − ϕ′;τ), T (µ,µ′,ϕ − ϕ′;τ) and
Td(µ,µ′,ϕ−ϕ′;τ) are obtained by summing up the Fourier se-
ries in the azimuth, i.e.,

X=
Mmax∑
m=0

(2−δm0)Xm cos[m(ϕ−ϕ′)], (129)

where X stands for R, T, and Td. The number of azimuthal
modes Mmax is whether Mmax = 2N −1, or Mmax < 2N −1. In
the second case, an azimuthal convergence test over the diag-
onal elements of R and Td is performed. A stronger test may
involve the convergence of the Frobenius norms of R and Td.

For highly peaked phase functions the delta-M method [33]
can be used. In this case, the matrices S±, and hence, the ma-
trices V̂± in (97)-(98) are altered by modifying the Legendre
expansion coefficientsχn of the phase function p(µ,µ′,ϕ−ϕ′)
and the single scattering albedo ω according to

χ?n = 1

1− f
(χn −2 f ) (130)

and

ω? = 1− f

1− f ω
ω, (131)

respectively, while the diagonal matrix Γ = [e−λkτ] in (97)-
(98) is altered by modifying the optical thickness τ accord-
ing to τ? = (1− f ω)τ. Here, the truncation factor f is defined
by f = (1/2)χ2N . The delta-M method enhances the conver-
gence of R and Td when compared with the corresponding
results obtained in the absence of truncation.
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The delta-M method can be used in conjunction with the
truncated-plus-single-scattering (TMS) method [34]. The ap-
plication of the TMS correction to the reflection matrix of a
semi-infinite atmosphere was discussed in [35]. For a layer of
finite optical thickness, the TMS corrections of the reflection
and transmission matrices use the corresponding functions
in the single-scattering approximation

Rss(µ,µ0,ϕ−ϕ0;τ) = 1

4(µ+µ0)
ωp(µ,−µ0,ϕ−ϕ0) (132)

×
[

1−e−(1/µ0+1/µ)τ
]

,

Tssd(µ,µ0,ϕ−ϕ0;τ) = 1

4(µ−µ0)
ωp(−µ,−µ0,ϕ−ϕ0) (133)

×
(
e−τ/µ−e−τ/µ0

)
,

For example, the TMS correction of the reflection function is

4R(µ,µ0,ϕ−ϕ0;τ) = Ress(µ,µ0,ϕ−ϕ0;τ)−Rtss(µ,µ0,ϕ−ϕ0;τ),

(134)

where,

Ress(µ,µ0,ϕ−ϕ0;τ) = 1

4(µ+µ0)

ω

1− f ω
p(µ,−µ0,ϕ−ϕ0) (135)

×
[

1−e−(1/µ0+1/µ)τ?
]

,

p(µ,−µ0,ϕ−ϕ0) =
Nmax∑
n=0

√
2n +1

2
χnPn(cosΘ),

and

Rtss(µ,µ0,ϕ−ϕ0;τ) = 1

4(µ+µ0)
ω?p?(µ,−µ0,ϕ−ϕ0) (136)

×
[

1−e−(1/µ0+1/µ)τ?
]

,

correspond to the “exact” and truncated phase functions, re-
spectively. In (135), Pn are the normalized Legendre poly-

nomials, cosΘ=−µµ0 +
√

1−µ2
√

1−µ2
0 cos(ϕ−ϕ0), Nmax >

2N −1 is the number of all expansion coefficients, and τ? is
the delta-M scaled optical thickness. The truncated phase
function p?(Θ) in (136) can be computed in two different
ways. If an azimuthal convergence test is performed (Mmax <
2N −1), p?(Θ) is computed as

p?(µ,−µ0,ϕ−ϕ0) =
Mmax∑
m=0

(2−δm0)p?m(µ,−µ0)cos[m(ϕ−ϕ0)],

(137)

p?m(µ,−µ0) =
2N−1∑
n=m

χ?n P m
n (µ)P m

n (−µ0),

where P m
n are the normalized Legendre functions, and other-

wise, as

p?(Θ) =
2N−1∑
n=0

√
2n +1

2
χ?n Pn(cosΘ). (138)

To analyze the accuracy of the TMS method in computing
the reflection and transmission functions we perform numer-
ical simulations of the Earth Polychromatic Imaging Camera
(EPIC) measurements in the oxygen A-band absorption chan-
nel at 764 nm (Channel 9). Note that this channel is used for
cloud parameters retrieval, and that the EPIC instrument, on-
board the Deep Space Climate Observatory (DSCOVR), mea-
sures from the L1 Lagrangian point, at which the satellite re-
mains near the Sun–Earth line. For an atmospheric layer con-
sisting of oxygen molecules and a water cloud, we assume
that the radiative transfer in the layer involves, in addition
to cloud scattering and absorption, oxygen absorption. More
precisely, we neglect the molecular Rayleigh scattering, that
is, for the homogenized layer, we use the approximations
σext ≈ σcext +σgabs, σsct ≈ σcsct, χn ≈ χcn , where σcext, σcsct
and χcn are the extinction coefficient, scattering coefficient
and the phase function expansion coefficients of the cloud,
whileσg

abs
is the absorption coefficient of the oxygen gas. Per-

haps it should be pointed out that the high oxygen absorption
(computed by line-by-line calculations), yields a large inter-
val of variation of the single scattering albedo of the homog-
enized layer (between 0.2 and 0.999) As the Sun is in the back
of the instrument, the observed scattering angle is close to
the backscattering direction. To model the scattering in the
backward region, we take µ = µ0, and as in [36], we choose
ϕ−ϕ0 = 176◦. In Table 1 we show the relative errors in R and
Td, defined by

εR =
√√√√´ 1

0 [R(µ,µ,ϕ−ϕ0;τ)−Rref(µ,µ,ϕ−ϕ0;τ)]2dµ´ 1
0 R2
ref

(µ,µ,ϕ−ϕ0;τ)dµ
(139)

and similarly for εT, for the delta-M method and the delta-M
method with TMS correction. The optical thickness is τ = 5,
the single scattering albedo is ω = 0.85, and the phase func-
tion corresponds to a water-cloud model with a Gamma size
distribution

P (a) ∝ aα exp

[
−α

(
a

amod

)]
(140)

of parameters amod = 10 µm and α = 6. The droplet size
ranges between 0.02 and 50.0 µm, and the reference val-
ues Rref and Tdref correspond to Nrank = 565. The results
demonstrate that the TMS method requires less discrete or-
dinates N as the standard delta-M method. This observation
implies that the TMS method improves the accuracy of reflec-
tion and transmission functions calculations.

This model based on an eigendecomposition method for
computing the matrix exponential is used as a reference for
testing the approximate representations of the reflection and
transmission matrices in the cases of thin and thick layers. In
particular, for the EPIC instrument, we compute the relative
errors

εX =
√√√√∑N

k=1([X]kk − [Xref]kk )2∑N
k=1[Xref]2

kk

, (141)

where as before, X stands for R and T, and ϕ−ϕ0 = 176◦.
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Table 1: Relative errors εR and εT for the delta-M method and the delta-M
method with TMS correction, and for different values of the number of dis-
crete ordinates per hemisphere N .

N Delta-M Delta-M and TMS
εR εT εR εT

128 3.80e-4 4.44e-4 3.53e-4 4.44e-4
64 1.64e-2 2.06e-3 1.41e-3 1.91e-3
56 1.97e-2 2.81e-3 1.61e-3 2.56e-3
48 2.28e-2 4.24e-3 2.21e-3 3.70e-3
32 4.34e-2 8.63e-3 3.76e-3 7.73e-3
16 6.12e-2 2.85e-2 2.42e-2 2.66e-2
8 1.95e-1 1.05e-1 6.71e-2 8.97e-2

5.3. Reflection and transmission matrices of a homogeneous
thin layer

For optically thin layers, the Padé and Taylor series approx-
imations to the matrix exponential can be used for comput-
ing the reflection and transmission matrices and so, to avoid
the solution of an eigenvalue problem. The interest in such
small values of τ stems from the possibility of using these
approximations to generate starting values for the doubling
method. Parenthetically, we note that the basic recursion re-
lations of the doubling method can be obtained by using the
matrix exponential formalism. Indeed, setting R̂1 = R̂(τ) and
T̂1 = T̂(τ) for the layer of optical thickness τ, and R̂2 = R̂(2τ)
and T̂2 = T̂(2τ) for the layer of optical thickness 2τ, we express
(102) for the layers τ and 2τ, as

e−Âτ =
[

T̂−1
1 −T̂−1

1 R̂1

R̂1T̂−1
1 T̂1 − R̂1T̂−1

1 R̂1

]
, (142)

and

e−2Âτ =
[

T̂−1
2 −T̂−1

2 R̂2

R̂2T̂−1
2 T̂2 − R̂2T̂−1

2 R̂2

]
, (143)

respectively, and use the identity exp(−2Âτ) = [exp(−Âτ)]2, to
obtain

[
T̂−1

2 −T̂−1
2 R̂2

R̂2T̂−1
2 T̂2 − R̂2T̂−1

2 R̂2

]
=

[
T̂−1

1 −T̂−1
1 R̂1

R̂1T̂−1
1 T̂1 − R̂1T̂−1

1 R̂1

]2

.

(144)

Solving for R̂2 and T̂2, we get

R̂2 = R̂1 + T̂1R̂1(I− R̂2
1)−1T̂1, (145)

T̂2 = T̂2(I− R̂2
1)−1T̂1, (146)

which are the recursion relations of the doubling method.

5.3.1. Padé approximation

In radiative transfer, the Padé approximation has been sug-
gested by Flatau and Stephens [22] for computing the extinc-
tion matrix and the source function integral of a layer. More

recently, McGararagh and Gabriel [37] used this approxima-
tion in connection with the matrix operator method. Essen-
tially, the nth diagonal Padé approximation to the exponen-
tial of the matrix Âτ is defined as [38]

e−Âτ ≈ [Dn(Âτ)]−1Nn(Âτ), (147)

where Dn(Âτ) and Nn(Âτ) are polynomials in Âτ of degree n,
given by

Dn(Âτ) =
n∑

k=0
ckτ

k Âk , (148)

Nn(Âτ) =
n∑

k=0
(−1)k ckτ

k Âk , (149)

and

ck = (2n −k)!n!

(2n)!k !(n −k)!
. (150)

From (148) and (149) it is readily seen that Nn(Âτ) = Dn(−Âτ).
To compute Dn(Âτ) and Nn(Âτ) we have to compute powers
of Â. By taking advantage of the block symmetries within Â
(cf. (6)), we find

Âk =
[

Xk Yk

(−1)k Yk (−1)k Xk

]
, (151)

where for k ≥ 2, the matrices Xk and Yk are computed recur-
sively as

Xk = Xk−1Â11 −Yk−1Â12, (152)

Yk = Xk−1Â12 −Yk−1Â11, (153)

with the initial values

X1 = Â11, (154)

Y1 = Â12. (155)

The coefficients ck are also computed recursively by means
of

ck = n −k +1

k(2n −k +1)
ck−1, (156)

with the initial value c1 = 1/2. Accounting of (151), the matri-
ces Dn(Âτ) and Nn(Âτ) of (148) and (149), respectively, can be
written as

Dn(Âτ) =
[

I+X+
n Y+

n
Y−

n I+X−
n

]
, (157)

Nn(Âτ) =
[

I+X−
n Y−

n
Y+

n I+X+
n

]
, (158)

where

X±
n =

n∑
k=1

(±1)k ckτ
k Xk , (159)

Y±
n =

n∑
k=1

(±1)k ckτ
k Yk . (160)

12



Inserting (147) together with (157) and (158) into the homo-
geneous solution representation (26) yields

R̂n = Hn(I+X+
n )−Gn Y−

n , (161)

T̂n = Gn(I+X+
n )−Hn Y−

n , (162)

with

Gn = (En −Fn E−1
n Fn)−1, (163)

Hn = E−1
n Fn Gn , (164)

and

En = I+X−
n , (165)

Fn = Y+
n . (166)

Equations (161) and (162) give the nth-order Padé approxi-
mations to the reflection and transmission matrices. In the
case n = 1, we find X±

1 = ±(τ/2)Â11 and Y±
1 = ±(τ/2)Â12. As a

result, we obtain E1 = I− (τ/2)Â11 and F1 = (τ/2)Â12, and so,

R̂1 = H1(I+ τ

2
Â11)+ τ

2
G1Â12, (167)

T̂1 = G1(I+ τ

2
Â11)+ τ

2
H1Â12. (168)

Further, approximating E−1
1 ≈ I+ (τ/2)Â11, and retaining only

the first-order terms in the Neumann series of the inverse
in (163), gives G1 = I+ (τ/2)Â11 and H1 = (τ/2)Â12, and ulti-
mately

R̂1 = τÂ12 and T̂1 = I+τÂ11. (169)

This is the infinitesimal generator initialization scheme of
Grant and Hunt [39] (see (181) below).

5.3.2. Taylor series approximation
The Taylor series approximation uses the definition of the

matrix exponential, namely

e−Âτ ≈ I+
n∑

k=1
(−1)k 1

k !
τk Âk . (170)

Accounting of (151), we obtain

e−Âτ ≈ I+
n∑

k=1
(−1)k 1

k !
τk

[
Xk Yk

(−1)k Yk (−1)k Xk

]
, (171)

while from (142) we get

T̂−1 ≈ T̂−1
n = I+

n∑
k=1

τk Ek , (172)

R̂ T̂−1 ≈ R̂n T̂−1
n =

n∑
k=1

τk Fk , (173)

where the matrices Ek and Fk are now given by

Ek = (−1)k

k !
Xk and Fk = 1

k !
Yk , (174)

respectively. Using (172) and (173), and seeking for expan-
sions of the form

T̂n = I+
n∑

k=1
τk Gk , (175)

R̂n =
n∑

k=1
τk Hk , (176)

we find that the matrices Gn and Hn in (175) and (176) can be
computed recursively as

G1 =−E1, (177)

Gn =−En −
n−1∑
k=1

En−k Gk , n ≥ 2, (178)

and

H1 = F1, (179)

Hn = Fn +
n−1∑
k=1

Fn−k Gk , n ≥ 2, (180)

respectively. Equations (175) and (176) give the nth-order
Taylor series approximations to the transmission and reflec-
tion matrices. In the case n = 1, we obtain the infinitesimal
generator initialization scheme of Grant and Hunt [39],

T̂1 = I+τÂ11, R̂1 = τÂ12, (181)

in the case n = 2, we obtain the expanded diamond initializa-
tion scheme of Wiscombe [40],

T̂2 = T̂1 + 1

2
τ2(Â2

11 + Â2
12), (182)

R̂2 = R̂1 + 1

2
τ2(Â11Â12 + Â12Â11), (183)

and finally, in the case n = 3, we obtain the scheme of Water-
man [21],

T̂3 = T̂2 + 1

6
τ3(Â3

11 +2Â2
12Â11 +2Â11Â2

12 + Â12Â11Â12), (184)

R̂3 = R̂2 + 1

6
τ3(2Â3

12 + Â2
11Â12 + Â12Â2

11 +2Â11Â12Â11). (185)

The Padé and Taylor series approximations are based on
the computation of powers of Â, for which we used (151)-
(155). An alternative approach for computing Âk , which ex-
ploits more efficiently the symmetries of the matrix Â, has
been proposed by Waterman [21], and can also be found in
Flatau and Stephens [22], and McGarragh and Gabriel [37].
The idea is to consider the similarity transformation Ã =
L−1ÂL, with

L =
√

1

2

[
I I
I −I

]
and L−1 =

√
1

2

[
I I
I −I

]
, (186)

yielding exp(−Âτ) = Lexp(−Ãτ)L−1, Dn(Âτ) = LDn(Ãτ)L−1,
and Nn(Âτ) = LNn(Ãτ)L−1. Thus, by this similarity transfor-
mation, we have to compute powers of Ã, for which we find

Ã2k =
[

U 0
0 UT

]k

=
[

Uk 0
0 (UT )k

]
, (187)

Ã2k+1 = Ã2k Ã =
[

0 Uk Â−
(UT )k Â+ 0

]
, (188)
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Table 2: Relative errors εR and εT for the series approximations (Padé and
Taylor approximations with n = 5) and the exponential infinitesimal genera-
tor initialization (EIGI).

Series approximations EIGI
τ ||Âτ||2 εR εT εR εT

5.0e-4 0.30 2.12e-3 1.85e-3 1.16e-2 1.18e-2
1.0e-3 0.66 4.38e-3 3.87e-3 2.15e-2 2.29e-2
2.0e-3 1.22 9.47e-3 1.14e-2 3.65e-2 4.48e-2
3.0e-3 1.83 1.54e-2 2.85e-2 4.58e-2 6.91e-2
4.0e-3 2.44 2.23e-2 6.15e-2 5.12e-2 9.79e-2
5.0e-3 3.05 2.98e-2 9.18e-2 5.45e-2 1.31e-1

where U = Â−Â+, and Â± = Â11 ± Â12.
The accuracy of the reflection and transmission matrices

computed by the Padé and Taylor series approximations is
high if ||Âτ|| ≤ 1; thus, for small values of τ. Therefore, the
series approximations can be used for the initialization of the
doubling method in radiative transfer. The doubling method
is equivalent to the so-called scaling and squaring technique
for reducing the norm of a matrix and exploits a fundamental
property unique to the exponential function, namely

e−Âτ = (e−Âτ/2s
)2s

.

In practice, we choose s as the smallest power of 2 for which
||Âτ||/2s ≤ 1, evaluate the reflection and transmission matri-
ces of the layer of optical thickness τ/2s by means of series
approximations, and use the doubling equations to build up
the reflection and transmission matrices of the layer of opti-
cal thickness τ. As compared to other initialization methods
based on the single scattering approximation, e.g., the expo-
nential infinitesimal generator initialization (EIGI) given by
[41]

[R̂EIGI]kl =µk (1−e
− 1
µk
τ

)[Â12]kl ,

[T̂EIGI]kl =µk (1−e
− 1
µk
τ

)[Â0
11]kl +δkl e

− 1
µk
τ

,

with Â0
11 = Â11 +M (see (292) below), the series approxima-

tions are more accurate and so, reduce the number of dou-
bling needed. This result can be inferred from Table 2, in
which the relative errors in the discrete approximations to the
reflection and transmission functions for different values of
||Âτ||2 are illustrated. Note that the Padé and Taylor approx-
imations yield the same relative errors, and that the relative
errors are of about 1% for ||Âτ||2 ≤ 1.

It is a simple exercise to combine the Padé approximation
with the Taylor series approximation to derive an approxi-
mation of the layer equation in the discrete ordinate method
with matrix exponential. Starting from the solution represen-
tation (18) and using the Padé approximation for exp(−Âτ)
and the Taylor series approximation for exp[−Â(τ−τ)], gives
the nth-order approximation of the layer equation (compare
to (56))

Dn(Âτ) îd(τ) = Nn(Âτ) îd (0)−Bn(τ) b̂, (189)

where

Bn(τ) = Dn(Âτ)

ˆ τ

0
e−Â(τ−τ)e−τ/µ0 dτ

= I0(τ)I+
n∑

k=1

[
ckτ

k I0(τ)+ (−1)k

k !
Ik (τ)

+
min(k−1,n)∑

l=1
(1−δk1)

(−1)k−l

(k − l )!
clτ

l Ik−l (τ)
]

Âk , (190)

and

I0(τ) =
ˆ τ

0
e−τ/µ0 dτ= 1−e−τ/µ0

(1/µ0)
, (191)

Ik (τ) =
ˆ τ

0
(τ−τ)k e−τ/µ0 dτ′ = τk

(1/µ0)
− ke−τ/µ0

(1/µ0)
Ik−1(τ), k ≥ 1.

(192)

Note that because of

Ik (τ) =O
( τk+1

k +1

)
, τ< 1,

each term in the sum (190) behaves as O(τk+1Âk ). The
first-order approximation of (189) is equivalent to the finite-
difference method described by Lenoble [5], and used in at-
mospheric remote sensing by Rozanov et al. [42].

5.4. Reflection and transmission matrices of a homogeneous
thick layer

When the optical thickness is sufficiently large, the reflec-
tion and transmission matrices can be expressed by sim-
ple analytical expressions known as the asymptotic theory
of thick layers. This analytical model is much faster and
more convenient for theoretical considerations than numer-
ical models based on discrete ordinate schemes.

5.4.1. Asymptotic theory
In the classical asymptotic theory, the reflection and trans-

mission functions for optically thick atmospheres are given
by [32]:

Rm(µ,µ′;τ) = R∞m(µ,µ′)−δm0
mle−2kτ

1−l2e−2kτ
K (µ)K (µ′), (193)

Tm(µ,µ′;τ) = δm0
me−kτ

1−l2e−2kτ
K (µ)K (µ′). (194)

Here, k is the diffusion exponent describing the attenuation
of the radiation in the diffusion domain and being defined as
the smallest positive eigenvalue of the equation

(1−kµ)i (µ) = ω

2

ˆ 1

−1
p0(µ,µ′)i (µ′)dµ′, (195)

while i (µ) is the corresponding eigenfunction, or the diffu-
sion pattern, satisfying the Sobolev-van de Hulst relation

i (−µ) = 2

ˆ 1

0
R∞0(µ,µ′)i (µ′)µ′dµ′ (196)
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and the normalization condition

1

2

ˆ 1

−1
i (µ)dµ= 1. (197)

From (195), (197), and the normalization condition of the
phase functions

´ 1
−1 p0(µ,µ′)dµ′ = 2, we find the following ex-

pression for the diffusion exponent,

k= 2(1−ω)´ 1
−1 i (µ)µdµ

. (198)

The escape function K (µ) is given by the relation

mK (µ) = i (µ)−2

ˆ 1

0
R∞0(µ,µ′)i (−µ′)µ′dµ′ (199)

and satisfies the normalization condition

2

ˆ 1

0
K (µ)i (µ)µdµ= 1, (200)

where the constant m is defined by

m= 2

ˆ 1

−1
i 2(µ)µdµ. (201)

Finally, the constant l, also known as the negative internal
reflection coefficient, is computed as

l= 2

ˆ 1

0
K (µ)i (−µ)µdµ. (202)

Relations (193) and (194) show that R depends on the az-
imuthal angle through the reflection function of a semi-
infinite atmosphere R∞, and that T is azimuthally inde-
pendent. For a layer with an underlying Lambertian sur-
face of albedo A, the reflection and transmission functions
RAm(µ,µ′;τ) and TAm(µ,µ′;τ) are given by (82) and (83), re-
spectively, with

r (µ,τ) = r∞(µ)− mnl

1−l2e−2kτ
e−2kτK (µ), (203)

t (µ,τ) = mn

1−l2e−2kτ
e−kτK (µ), (204)

rs (τ) = rs∞− mn2l

1−l2e−2kτ
e−2kτ. (205)

Here, r∞ and rs∞ are the plane albedo and spherical albedo
of a semi-infinite atmosphere, respectively, and n is the µ-
weighted mean of the escape function

n= 2

ˆ 1

0
K (µ)µdµ. (206)

In a discrete ordinate setting, the reflection matrix of a
semi-infinite atmosphere can be obtained by solving the Am-
bartsumian nonlinear integral equation by simple iteration
[35], while the diffusion pattern and the diffusion exponent
can be obtained by solving the integral equation (195) in con-
junction with (197) and (198) [43]. The constant m is then

computed from (201), while K (µ), l, and n follow from (199),
(202), and (206), respectively. A different discrete ordinate ap-
proach, which is based on an eigendecomposition method
for computing the reflection and transmission matrices has
been proposed by Nakajima and King [27]. Here, we ap-
ply this approach to estimate R̂ and T̂, given respectively by
(97) and (98), in the limit of large τ. Choosing the square-
root method for computing the spectral decomposition of the
layer matrix Â, we begin by estimating the matrix product
(V̂+ + V̂−Γ)(V̂− + V̂+Γ)−1 for large values of the optical thick-
ness. Using the identity (cf. (344)) Q̂− = −Q̂−T+ Λ, where
Q̂+ = V̂++ V̂−, Q̂− = V̂+− V̂−, andΛ= [λk ], and setting

Q̂−T
+

not= Q = [q1, . . . ,qN ], (207)

we obtain

(V̂++ V̂−Γ)(V̂−+ V̂+Γ)−1

= (A−1 − I)+A−1Q[Λ(I−Π+BΛ)−1Π+]QTA−1, (208)

where

A= 1

2
(I+QΛQT ), (209)

B= QTA−1Q, (210)

and

Π+ = 1

2
[I− (I−Γ)(I+Γ)−1] = [π+

k ], (211)

π+
k = e−λkτ

1+e−λkτ
, k = 1, ..., N . (212)

Note that all information about the eigenvectors of Â are en-
capsulated in the matrix Q. Two comments are in order:

1. AsA and B are symmetric, we see that

Λ(I−Π+BΛ)−1Π+ = [(ΛΠ+)−1 −B]−1 (213)

and so, that (V̂++ V̂−Γ)(V̂−+ V̂+Γ)−1 are symmetric.

2. If the eigendecomposition of Â is computed by the
Cholesky method, the key quantity is the matrix Q̂−; we
use the identity (cf. (351)) Q̂−T+ =−Q̂−Λ , set

Q̂−
not= Q = [q1, . . . ,qN ], (214)

and obtain

(V̂++ V̂−Γ)(V̂−+ V̂+Γ)−1

= (A−1 − I)+A−1Q[(I−Π+ΛB)−1Π+Λ]QTA−1 (215)

Then, from (213) and the relation

(I−Π+ΛB)−1Π+Λ= [(ΛΠ+)−1 −B]−1, (216)

we deduce that both methods are equivalent.
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Considering (211) and (212), we assume that for large τ, we
may approximate

Π+ ≈π+
N

 0 · · · 0

0 · · · 1

 , (217)

where π+
N corresponds to the smallest eigenvalue λN in the

set {λ1,λ2, ...,λN }. As a result, we obtain

(V̂++ V̂−Γ)(V̂−+ V̂+Γ)−1

≈ (A−1 − I)+ ke−kτ

1+le−kτ
k̂N k̂T

N as τ→∞, (218)

where k=λN is the diffusion exponent,

l= 1−λN bN N = 1−kq, (219)

is the negative internal reflection coefficient, q = bN N =
[B]N N is the extrapolation length, and

k̂N =A−1qN , (220)

is a discrete approximation to the scaled escape function. The
matrix product (V̂+− V̂−Γ)(V̂−− V̂+Γ)−1 is estimated in a sim-
ilar manner. We get

(V̂+− V̂−Γ)(V̂−− V̂+Γ)−1

= (A−1 − I)+A−1Q
[
Λ(I−Π−BΛ)−1Π−

]
QTA−1, (221)

with

Π− = 1

2
[I− (I+Γ) (I−Γ)−1] = [π−

k ], (222)

π−
k =− e−λkτ

1−e−λkτ
, k = 1, ..., N , (223)

whence, under the assumption

Π− ≈π−
N

 0 · · · 0

0 · · · 1

 as τ→∞, (224)

we end up with

(V̂+− V̂−Γ)(V̂−− V̂+Γ)−1

≈ (A−1 − I)− ke−kτ

1−le−kτ
k̂N k̂T

N as τ→∞. (225)

Inserting (218) and (225) in (97) and (98), we obtain

R̂ = R̂∞− r̂ k̂N k̂T
N , (226)

T̂ = t̂ k̂N k̂T
N , (227)

where

R̂∞ =A−1 − I, (228)

is the scaled reflection matrix of a semi-infinite atmosphere,
and

r̂= kle−2kτ

1−l2e−2kτ
, (229)

t̂= ke−kτ

1−l2e−2kτ
. (230)
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Figure 1: The phase functions for amod = 8 µm and amod = 16 µm.

By numerical simulation it can be shown that the diffusion
exponent k = λN increases as the azimuthal mode m in-
creases. In this limit, the scalars r̂ and t̂ become very small,
and the contributions of the terms r̂ k̂N k̂T

N and t̂ k̂N k̂T
N in

the expressions of R̂ and T̂, respectively, are damped. In the
asymptotic theory, these terms are neglected for m > 0, in
which case, (226) and (227) simplifies to

R̂ = R̂∞−δm0r̂ k̂N k̂T
N , (231)

T̂ = δm0t̂ k̂N k̂T
N . (232)

Thus, the diffusion exponent k and the constant l in (193)
and (194) correspond to the azimuthal mode m = 0. As a fi-
nal step, we compute the discrete approximations of the re-
flection and transmission functions given by (193) and (194),
respectively, by means of (117) and (118), respectively. The
remainder functions and constants that occur in the asymp-
totic theory can be obtained by following strictly the deriva-
tion of Nakajima and King [27]. Their expressions are given in
Appendix 1.

As an application of the discrete ordinate model of the
asymptotic theory we derive parameterizations of the escape
function K and the asymptotic constants m, l, n, rs∞ and k.
Such kind of parameterizations, which speed up the compu-
tations, are used in the MODIS algorithm for the retrieval of
cloud optical thickness and the droplet/crystal size [44], and
in the SemiAnalytical CloUd Retrieval Algorithm (SACURA)
for the retrieval of cloud top height and cloud geometrical
thickness from measurements in the oxygen A band [45, 46].
For the EPIC instrument, we consider a discrete set of water-
cloud models characterized by a Gamma size distribution of
parameter α = 6 and different modal radii amod. The phase
functions for amod = 8 µm and amod = 16 µm are illustrated
in Figure 1.

For the escape function, the parameterization parame-
ters are ω and amod. We look for polynomial parameteri-
zations of the form K (µ,ω, amod) = PK(µ,ω, amod)K0(µ) with
PK(µ,ω, amod) = ∑NK

k=0 Hk (ω, amod)µk , and K0(µ) = ∑NK
k=0 H 0

kµ
k ,

where K0 is the escape function for conservative scattering
(ω = 1), and NK is the order of the approximation polyno-
mial. The parameterizations of K (µ,ω, amod) do not change
significantly with amod; the coefficients Hk (ω, amod), which
are stored in a look-up table, are illustrated in Figure 2 for

16



Table 3: Coefficients H0
k

k 0 1 2 3 4
H0

k 0.362 1.196 -0.5352 0.349 -0.09368

amod = 8 µm, and amod = 16 µm, while the coefficients H 0
k

are given in Table 3. The approximations error is smaller than
10−3 for K (µ,ω, amod), and smaller than 10−5 for K0(µ). Com-
ing to the asymptotic constants m, l, n, rs∞ and k, we note
that for a Henyey-Greenstein phase function, King [47] de-
rived parameterizations of these quantities in terms of the
similarity parameter

s =
√

1−ω
1−ωg

,

where g is the asymmetry parameter. In this regard, we take
s and amod as parameterization parameters (s reproduces the
variability in ω for a given amod). As for the escape function,
we found that the parameterizations of the asymptotic con-
stant are almost insensitive to amod, but are slightly different
from those of King [47], especially for m, n, and k. The results
in Figure 3, corresponding to amod = 8 µm (g = 0.853) and
amod = 16 µm (g = 0.867), certify this statement. For amod = 8
µm, the parameterizations read as

m(s) = (1+1.268s) ln
[1+1.31s −5.694s2 +3.73s3

(1−1.070s)(1− s)2

]
,

l(s) = (1−0.7616s)(1− s)

1+0.5897s
,

n(s) =
√

(1+0.0031s)(1− s)

1+1.4267s
,

rs∞(s) = (1−0.1239s)(1− s)

1+1.1867s
,

k(s)

1− g
= (1+0.3977s) ln

[
1+8.4924s

(1+7.2543s)(1−1.0265s)

]
.

5.4.2. Higher-order corrections
The azimuthal independent parts of R̂ and T̂ have been

derived by neglecting the azimuthal modes m > 0, and the
contributions of the terms corresponding to the eigenvalues
larger than λN . Higher-order corrections can be obtained by
considering all azimuthal modes, and by approximating

Π± ≈



0 · · · 0 · · · 0 0

0 · · · π±
N−K · · · 0 0

0 · · · 0 · · · π±
N−1 0

0 · · · 0 · · · 0 π±
N

 , (233)
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where π+
k and π−

k are given by (212) and (223), respectively,
and the integer K ≥ 0 (not to be confused with the escape
function K (µ)) gives the order of the approximation. For Π±
of (233), the inverse (I−Π±BΛ)−1 cannot be computed ana-
lytically, and an additional assumption has to be met. Setting

I−Π±BΛ=C0
±−C±,

where C0
± are the matrices I−Π±BΛ of the asymptotic model

(with Π+ and Π− given by (217) and (224), respectively), we
approximate the Neumann series of the inverse up to the first
order as follows:

(I−Π±BΛ)−1 = (C0
±−C±)−1 ≈ (C0

±)−1[I+C±(C0
±)−1].

In this context, the reflection and transmission matrices
can be written as

R=R0 +RK , (234)

T=T0 +TK , (235)
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where R0 and T0 correspond to K = 0 and are the reflection
and transmission matrices of the asymptotic model as given
by (231) and (232), respectively. The higher-order correction
matrices RK and TK correspond to K ≥ 1, and are expressed
in terms of the scaled matrices

R̂K = 1

2
λN e−λNτ

( 1

1+le−λNτ
E+N−K − 1

1−le−λNτ
E−N−K

)
+ 1

2
λN

K∑
k=1

e−λN−kτ
( 1

1+e−λN−kτ
F+N−k −

1

1−e−λN−kτ
F−N−k

)
,

(236)

T̂K = 1

2
λN e−λNτ

( 1

1+le−λNτ
E+N−K + 1

1−le−λNτ
E−N−K

)
+ 1

2
λN

K∑
k=1

e−λN−kτ
( 1

1+e−λN−kτ
F+N−k +

1

1−e−λN−kτ
F−N−k

)
,

(237)

as follows:

RK = 1

2
M

1
2 W− 1

2 R̂K W− 1
2 M

1
2 , (238)

TK = 1

2
M

1
2 W− 1

2 T̂K W− 1
2 M

1
2 . (239)

The derivation of (236) and (237) is lengthy but straightfor-
ward. Here, we give only the final expressions. The matrices
E+N−K and F+N−k , corresponding toΠ+, are computed as

E+N−K = E+
N N k̂N k̂T

N +
K∑

k=1
E+

N−kN k̂N−k k̂T
N (240)

and

F+N−k = F+
N N−k k̂N k̂T

N−k +
K∑

l=1
F+

N−l N−k k̂N−l k̂T
N−k , (241)

respectively, with

k̂N−k =A−1qN−k , (242)

for k = 1, . . . ,K . The scalars E+
N−kN , E+

N N , F+
N−l N−k , and

F+
N N−k are

E+
N−kN = f +

N gN−k X +
N−kN ,

E+
N N = f +

N

K∑
k=1

x+
N−k X +

N−kN , (243)

and

F+
N−l N−k = gN−l X +

N−l N−k ,

F+
N N−k =

K∑
l=1

x+
N−l X +

N−l N−k , (244)

respectively, where

X +
N−kN−l = δN−kN−l +Y +

N−kN−l ,

X +
N−kN = δN−kN +Y +

N−kN , (245)

and

Y +
N−kN−l =π+

N−k bN−kN−lλN−l +x+
N−lπ

+
N−k bN−kNλN ,

Y +
N−kN = π+

N−k bN−kNλN

f +
N

, (246)

for k, l = 1, ...,K . In (243)-(246), π+
N−k are given by (212), and

x+
N−k = π+

N bN N−kλN−k

f +
N

,

f +
N = 1−π+

N bN NλN ,

gN−k = λN−k

λN
, (247)

for k = 1, . . . ,K . The matrices E−N−K and F−N−k , corresponding
to Π−, are computed by using (240)-(247), but with π−

N−k of
(223) in place of π+

N−k .
Although the discrete ordinate model of the asymptotic

theory is still based on an eigendecomposition method, the
computation of the reflection and transmission matrices by
means of (226), (227), (236), and (237) avoids the matrix in-
versions and matrix multiplications of (97) and (98).

5.4.3. Waterman’s approximation

In [21], Waterman derived analytical solutions for the
transmission and reflection matrices in the limiting case τÀ
1. The starting point of Waterman’s derivation are (108) and
(109), which we will write as

T̂ = T̂0(I− V̂+ΓV
T
+V

−T
− ΓV̂−1

− )−1, (248)

R̂ = (V̂+Γ−1V
T
− − V̂−ΓV

T
+)T̂, (249)

with

T̂0 = V
−T
− ΓV̂−1

− . (250)

Considering the Neuman series for the inverse in (248), we
obtain

T̂ = T̂0[I+ V̂+ΓV
T
+V

−T
− ΓV̂−1

− + ...], (251)

R̂ = (V̂+Γ−1V
T
− − V̂−ΓV

T
+)T̂. (252)

Accounting of (50), we set (not to be confused withA of (209))

A= V
T
+V

−T
− = V̂−1

− V̂+ (253)

and use the identity (cf. (50))

V̂+V̂−1
− V̂+ = V̂−−V

−T
− , (254)

to obtain the zeroth- and first-order approximations, namely

T̂0 = V
−T
− ΓV̂−1

− , (255)

R̂0 = V̂+V̂−1
− , (256)
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Figure 4: Relative errors in the discrete approximations to the reflection and
transmission functions computed by using (234)-(237) with K = 5, K = 1,
and K = 0 (asymptotic model), and the first-order Waterman’s approxima-
tion (WA) given by (257)-(258).

and

T̂1 = V
−T
− ΓV̂−1

− +V
−T
− (ΓAΓAΓ)V̂−1

− , (257)

R̂1 = V̂+V̂−1
− −V

−T
− (ΓAΓ)V̂−1

− − V̂−(ΓAΓAΓAΓ)V̂−1
− , (258)

respectively. Note that in Waterman’s derivation, the last
term in the expression of R̂1 is not present. In (255)-(258),
Γ includes all exponential terms exp(−λkτ) and not only the
dominant one exp(−λNτ). For large τ, relations (257) and
(258) are similar to (227) and (226), respectively. To show this,
we use the relation V− = V̂−S, where S is a diagonal matrix
of plus and minus ones, set V̂−T− = [ṽ1, ..., ṽN ], approximate
Γ ≈ diag[0, ...,0,exp(−λNτ)], and neglect the second term in
the expression of T̂1 as well as the third term in the expres-
sion of R̂1. We obtain

T̂1 = sN e−λNτ ṽN ṽT
N , (259)

R̂1 = R̂∞− sN aN N e−2λNτ ṽN ṽT
N , (260)

where sN = [S]N N , aN N = [A]N N , and R̂∞ = V̂+V̂−1− . Compar-
ing (259) and (260) with (227) and (226) under the assump-
tions r̂ ≈ klexp(−2kτ) and t̂ ≈ kexp(−kτ) for τÀ 1 (the Tay-
lor expansions in x = exp(−kτ) of (229) and (230) for small x),
we see that for the azimuthal mode m = 0, we must have that
sN = 1, λN = k, ṽN = p

k k̂N , and aN N = l. Thus, by using
Waterman’s technique we were able to derive new represen-
tations for R̂∞, k̂N and l.

In Figure 4 we show the relative errors in the discrete ap-
proximations to the reflection and transmission functions
computed by using (234)-(237) with K = 5, K = 1, and K = 0
(asymptotic model), and the first-order Waterman’s approx-
imation (257)-(258). Obviously, Waterman’s approximation
yields the smallest errors in the transmission matrix, and suf-
ficiently small errors in the reflection matrix.

6. Matrix Riccati equations

Bellman et al. [20] formulated the radiative transfer prob-
lem as an initial value problem via a pair of nonlinear ma-
trix differential equations (matrix Riccati equations) which
describe the reflection and transmission matrices in a plane-
parallel geometry. The derivation of Bellman et al. [20] is
based on the invariant imbedding technique, and for this rea-
son, the invariant imbedding is usually a synonym for the
matrix Riccati equations method.

Flatau and Stephens [22], showed that for an inhomoge-
neous atmosphere, the matrix Riccati equations can be de-
rived by means of an approach based on the propagator op-
erator, that is, by an approach which is close related to the
matrix exponential method. The main problem which arises
in the case of an inhomogeneous atmosphere is that in view
of

d

dτ
(eX(τ)),X′(τ)eX(τ), (261)

the homogeneous solution of radiative transfer equation

d̂ih
dτ

(τ) =−Â(τ)̂ih(τ), (262)

with the initial condition îh(0) and a continuous matrix Â(τ)
on 0 ≤ τ ≤ τ, cannot be expressed in terms of the matrix ex-
ponential, i.e.,

îh(τ), e−
´ τ

0 Â(τ′)dτ′ îh(0). (263)

This fact should not be discouraged because in the matrix
Riccati equation method we need only a formal solution rep-
resentation of (262). The formal solution is [22]

îh(τ) = P−(τ,0)̂ih(0), (264)

where the downward propagator P−(τ,0) is a generalization
of the propagator P(τ) = exp(−Âτ) in the case of an inhomo-
geneous atmosphere. Inserting (264) in (262), we find that the
downward propagator solves the differential equation

dP−
dτ

(τ,0) =−Â(τ)P−(τ,0), (265)

with the initial condition P−(0,0) = I2N . The subscript -
means that the propagation of the solution occurs from
the level 0 (second argument of P−) downward to the level
τ (first argument of P−). The propagation of the solu-
tion from the bottom to the top of the atmosphere is de-
scribed by the upward propagator P+(τ,τ) which is defined
by îh(τ)=P+(τ,τ)îh(τ), and solve (265) with the initial condi-
tion P+(τ,τ) = I2N .

In an inhomogeneous atmosphere, the radiation com-
ing from above will be reflected and transmitted differently

19



than the radiation incident from below, so that in the down-
ward scheme, the interaction principle for an inhomoge-
neous layer extending from the level 0 downward to the level
τ, reads as[

î+
h

(0)
î−
h (τ)

]
=

[
R̂−(τ,0) T̂+(τ,0)
T̂−(τ,0) R̂+(τ,0)

][
î−
h (0)

î+
h

(τ)

]
. (266)

The notation R̂−(τ,τ0) stands for the reflection matrix of
a layer of optical thickness τ illuminated from above, and
whose top is placed at τ0. Note that in the upward scheme,
the interaction principle equation relates the outcoming ra-
diances î+

h
(τ) and î−

h
(τ) to the incoming radiances î−

h
(τ) and

î+
h

(τ) through the reflection and transmission matrices R̂±(τ−
τ,τ) and T̂±(τ−τ,τ), respectively. From (264) and (266), we
find

P−(τ,0)

=
[

T̂−1+ (τ,0) −T̂−1+ (τ,0)R̂−(τ,0)
R̂+(τ,0)T̂−1+ (τ,0) T̂−(τ,0)− R̂+(τ,0)T̂−1+ (τ,0)R̂−(τ,0)

]
,

(267)

which is an extension of the matrix exponential representa-
tion (102) to the inhomogeneous case.

Taking the derivative of (267) and accounting of (265), that
is,

d

dτ

[
T̂−1+ −T̂−1+ R̂−

R̂+T̂−1+ T̂−− R̂+T̂−1+ R̂−

]
=−

[
Â11 Â12

−Â12 −Â11

][
T̂−1+ −T̂−1+ R̂−

R̂+T̂−1+ T̂−− R̂+T̂−1+ R̂−

]
, (268)

gives

d

dτ
R̂+ = Â12 + Â11R̂++ R̂+Â11 + R̂+Â12R̂+, (269)

d

dτ
T̂− = Â11T̂−+ R̂+Â12T̂−, (270)

and

d

dτ
R̂− = T̂+Â12T̂−, (271)

d

dτ
T̂+ = T̂+Â11 + T̂+Â12R̂+, (272)

From P−(0,0) = I2N and (267), we find the initial conditions

R̂+(0,0) = R̂−(0,0) = 0, (273)

T̂−(0,0) = T̂+(0,0) = IN . (274)

By inspection of (269)-(272), it is apparent that equation (269)
can be solved independently for R̂+, equation (270) as well
as equation (272), must be solved along with (269) to find T̂−
and T̂+, respectively, while equation (271) must be solved to-
gether with (269), (270) and (272) to find R̂−. In summary,
for an inhomogeneous atmosphere we started with the in-
teraction principle equation (266), used relation (267) con-
necting the downward propagator and the extinction matrix,

and then, by making use on the differential equation solved
by the downward propagator (265), derived the matrix Ric-
cati equations (269)-(272). Essentially, we replaced the prob-
lem of computing the downward propagator by the problem
of computing the reflection and transmission matrices.

6.1. Reflection and transmission matrices of a homogeneous
layer

For a homogeneous layer, the propagator P−(τ,0) = P(τ) =
exp(−Âτ) solves the differential equation

d(e−Âτ)

dτ
=−Âe−Âτ, (275)

and (269)-(272) simplify to

d

dτ
R̂ = Â12 + Â11R̂+ R̂Â11 + R̂Â12R̂, (276)

d

dτ
T̂ = Â11T̂+ R̂Â12T̂, (277)

and

d

dτ
R̂ = T̂Â12T̂, (278)

d

dτ
T̂ = T̂Â11 + T̂Â12R̂. (279)

where R̂+(τ,0) = R̂−(τ,0) = R̂(τ) and T̂+(τ,0) = T̂−(τ,0) = T̂(τ)
. From (276)-(279), we see that the following identities must
hold

T̂Â12T̂ = Â12 + Â11R̂+ R̂Â11 + R̂Â12R̂, (280)

T̂Â11 + T̂Â12R̂ = Â11T̂+ R̂Â12T̂. (281)

It should perhaps be pointed out that (276)-(279) may follow
directly from (102) and (275).

The solutions of the matrix Riccati equations for a homo-
geneous layer must be identical with the representations of
the reflection and transmission matrices derived by the ma-
trix exponential method of Section 5. Let us prove this result.
The initial value problem for the reflection matrix (276) and
(273) is equivalent with the following 2nth order linear initial
value problem

d

dτ

[
P (τ)
Q(τ)

]
=−

[
Â11 Â12

−Â12 −Â11

][
P (τ)
Q(τ)

]
, (282)[

P (0)
Q (0)

]
=

[
IN

0

]
,

where

R̂(τ) =Q(τ)P −1(τ). (283)

Making the change of variable

[
P̂ (τ)
Q̂(τ)

]
=

[
−V

T
+ V

T
−

V
T
− −V

T
+

][
P (τ)
Q(τ)

]
, (284)
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the linear differential equation (282) becomes

d

dτ

[
P̂ (τ)
Q̂(τ)

]
=−

[
Λ 0
0 −Λ

][
P̂ (τ)
Q̂(τ)

]
, (285)

with the initial condition[
P̂ (0)
Q̂ (0)

]
=

[
−VT+
V

T
−

]
. (286)

In terms of P̂ and Q̂, the expression of the reflection matrix
reads as

R̂(τ) = [V̂−P̂ (τ)Q̂−1(τ)+ V̂+][V̂+P̂ (τ)Q̂−1(τ)+ V̂−]−1. (287)

The solution of the differential equation (285) is given by
P̂ (τ) = [e−λkτ]P̂ (0) and Q̂(τ) = [eλkτ]Q̂ (0), so that the ma-
trix product P̂ (τ)Q̂−1(τ) in (287) can be expressed as

P̂ (τ)Q̂−1(τ) =Γ(τ)P̂ (0)Q̂−1 (0)Γ(τ) =−Γ(τ)V
T
+V

−T
− Γ(τ).

(288)

Then, employing the identity (cf. (48)) V
T
+V

−T
− = V̂−1− V̂+, in

(288), and inserting the resulting expression in (287), we ob-
tain

R̂(τ) = [V̂+− V̂−Γ(τ)V̂−1
− V̂+Γ(τ)][V̂−− V̂+Γ(τ)V̂−1

− V̂+Γ(τ)]−1,
(289)

which is exactly the reflection matrix representation (94) for
τ= τ.

6.2. Approximations based on matrix Riccati equations

A benefit of the matrix Riccati equation formalism is that
for small values of the optical thickness and/or single scatter-
ing albedo, several approximation methods can be derived.
These methods are summarized below.

6.2.1. Successive orders of scattering

In the matrix Riccati equations for a homogeneous layer

d

dτ
R̂ = Â12 + Â11R̂+ R̂ Â11 + R̂ Â12R̂, (290)

d

dτ
T̂ = Â11T̂+ R̂ Â12T̂, (291)

we separate the attenuation terms from the multiple-
scattering terms, by defining the matrix Â0

11 through the re-
lation

Â0
11 = Â11 +M, (292)

and indicate explicitly the dependency of the matrices Â0
11

and Â12 on the single scattering albedo ω by writing

Â0
11 =ωÃ0

11 and Â12 =ωÃ12. (293)

The resulting matrix Riccati equations, namely

d

dτ
R̂+MR̂+ R̂M =ωÃ12 +ωÃ0

11R̂+ωR̂ Ã0
11 +ωR̂ Ã12R̂, (294)

d

dτ
T̂+MT̂ =ωÃ0

11T̂+ωR̂ Ã12T̂, (295)

endowed with the initial conditions R̂ (0) = 0 and T̂ (0) = I, are
usually referred to as the discrete invariant imbedding equa-
tions. As pointed out by Waterman, the “Padé and Taylor
series expansions are fundamentally different from those in-
volving successive orders of scattering; in the later, ω is em-
ployed as the expansion parameter”. Along this line, we as-
sume the nth-order approximations

R̂n(τ,ω) =
n∑

k=0
ωk Ĥk (τ), (296)

T̂n(τ,ω) =
n∑

k=0
ωk Ĝk (τ). (297)

Inserting (296) and (297) into (294) and (295) and equating
the coefficients of ωn , yields the iterative schemes

d

dτ
Ĥ0(τ)+MĤ0(τ)+ Ĥ0(τ)M = 0, Ĥ0 (0) = 0, (298)

d

dτ
Ĥn(τ)+MĤn(τ)+ Ĥn(τ)M = δn1Ã12 + Ã0

11Ĥn−1(τ)

+ Ĥn−1(τ)Ã0
11 +

n−1∑
k=0

Ĥk (τ)Ã12Ĥn−k−1(τ), Ĥn (0) = 0, n ≥ 1,

(299)

and

d

dτ
Ĝ0(τ)+MĜ0(τ) = 0 Ĝ0 (0) = I, (300)

d

dτ
Ĝn(τ)+MĜn(τ) = Ã0

11Ĝn−1(τ)

+
n−1∑
k=0

Ĥk (τ)Ã12Ĝn−k−1(τ), Ĝn (0) = 0, n ≥ 1. (301)

For n ≥ 1, the solutions of the initial value problems (299) and
(301) are

[Ĥn(τ)]kl =
ˆ τ

0
e
−
(

1
µk

+ 1
µl

)
(τ−τ′)

[Hn(τ′)]kl dτ′, (302)

Hn(τ) = δn1Ã12 + Ã0
11Ĥn−1(τ)+ Ĥn−1(τ)Ã0

11 (303)

+
n−1∑
k=0

Ĥk (τ)Ã12Ĥn−k−1(τ),

and

[Ĝn(τ)]kl =
ˆ τ

0
e
− 1
µk

(τ−τ′)
[Gn(τ′)]kl dτ′, (304)

Gn(τ) = Ã0
11Ĝn−1(τ)+

n−1∑
k=0

Ĥk (τ)Ã12Ĝn−k−1(τ), (305)

respectively, with Ĥ0(τ) = 0 and [Ĝ0(τ)]kl = δkl exp(−τ/µk ).
Accordingly, the zeroth- and first-order scattering solutions
are

R̂0(τ) = 0, [T̂0(τ)]kl = δkl e
− 1
µk
τ

, (306)
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and

[R̂1(τ)]kl = (
1

µk
+ 1

µl
)−1[1−e

−
(

1
µk

+ 1
µl

)
τ]

[Â12]kl , (307)

[T̂1(τ)]kl = δkl e
− 1
µk
τ+ (

1

µk
− 1

µl
)−1(e

− 1
µl
τ−e

− 1
µk
τ

)[Â0
11]kl ,

(308)

respectively. Analytical formulas for the first three orders of
scattering, which for most applications are sufficient, have
been derived by Kawabata and Ueno [48]. However, the re-
sulting expressions are too complex, so that even in the case
n = 2, it is more efficient to use the Gaussian quadrature
method to compute Ĥ2 and Ĝ2 by means of (302) and (304),
respectively. It should be pointed out that the errors in R̂2

are considerably smaller than the errors in T̂2. For example,
we found that for τ = 20 and ω = 0.2, the relative errors in
the second-order reflection and transmission functions are
8.14 ·10−3 and 6.07 ·10−2, respectively. This can be explained
by the fact that in the case of strong absorption, the refection
is determined by the (relatively thin) skin layer, while trans-
mission is determined by the whole layer and requires more
scattering.

Alternative recurrence relations for Ĥn(τ) and Ĝn(τ), which
do not involve an integration over the optical depth, can be
obtained by considering the identities (280) and (281) which,
by means of (292) and (293), can be written as

MR̂+ R̂M =ωÃ12 +ωÃ0
11R̂+ωR̂ Ã0

11 (309)

+ωR̂ Ã12R̂−ωT̂ Ã12T̂,

MT̂− T̂M =ωÃ0
11T̂−ωT̂ Ã0

11 +ωR̂ Ã12T̂−ωT̂ Ã12R̂. (310)

Substituting (296) and (297) into (309) and (310), and equat-
ing the coefficients of ωn gives for n ≥ 1,

MĤn(τ)+ Ĥn(τ)M = δn1Ã12 + Ã0
11Ĥn−1(τ)+ Ĥn−1(τ)Ã0

11

+
n−1∑
k=0

Ĥk (τ)Ã12Ĥn−k−1(τ)−
n−1∑
k=0

Ĝk (τ)Ã12Ĝn−k−1(τ) (311)

and

MĜn(τ)− Ĝn(τ)M = Ã0
11Ĝn−1(τ)+ Ĝn−1(τ)Ã0

11

+
n−1∑
k=0

Ĥk (τ)Ã12Ĝn−k−1(τ)−
n−1∑
k=0

Ĝk (τ)Ã12Ĥn−k−1(τ), (312)

with Ĥ0(τ) = 0 and [Ĝ0(τ)]kl = δkl exp(−τ/µk ). Equations
(311) and (312) have been derived by Hansen and Travis [3]
using the invariance principle. Note that (312) is indetermi-
nate for µk =µl , and that approximate results for that special
case can be obtained by interpolation.

6.2.2. Iterative approximation

For thin layers, the Taylor series approximations to the
transmission and reflection matrices (175) and (176), can be
rediscover by using the matrix Riccati equation method. In
this regard, we mention that Chang and Wu [49] solved (290)

and (291) with the initial conditions R̂ (0) = 0 and T̂ (0) = I by
means of the iterative scheme

R̂1(τ) =
ˆ τ

0
Â12 dτ′, (313)

R̂n(τ) =
ˆ τ

0
[Â12 + Â11R̂n−1(τ′)

+ R̂n−1(τ′)Â11 + R̂n−1(τ′)Â12R̂n−1(τ′)]dτ′, n ≥ 2, (314)

and

T̂1(τ) = I+
ˆ τ

0
Â11 dτ′, (315)

T̂n(τ) = I+
ˆ τ

0
[Â11T̂n−1(τ′)+ R̂n−1(τ′)Â12T̂n−1(τ′)]dτ′, n ≥ 2.

(316)

It is not hard to see that the first-order solutions T̂1 and
R̂1 correspond to the infinitesimal generator initialization
scheme of Grant and Hunt [39], while the second-order solu-
tions T̂2 and R̂2 (excepting the terms in τ3) correspond to the
expanded diamond initialization scheme of Wiscombe [40].
To design a procedure for computing higher-order correction
terms, we assume the finite Taylor expansions (175) and (176)
for T̂n and R̂n , respectively. Then, from (314) and (316) we ob-
tain for n ≥ 2,

Ĥn = 1

n
(Â11Ĥn−1 + Ĥn−1Â11)+ 1

n

n−1∑
k=0

Ĥk Â12Ĥn−k−1, (317)

Ĝn = 1

n
Â11Ĝn−1 + 1

n

n−1∑
k=0

Ĥk Â12Ĝn−k−1, (318)

with Ĥ0 = 0, Ĥ1 = Â12, Ĝ0 = I, and Ĝ1 = Â11. Equations (317)
and (318) are the counterparts of (180) and (178) in the matrix
Riccati equation formalism.

For optical depths much less than unity, (290) and (291)
can be also solved numerically by using an nth-order Runge-
Kutta scheme. As shown in [49], the fourth-order Runge-
Kutta scheme has a higher computational cost than the
fourth-order iterative method but is more accurate.

7. Conclusions

This paper provides a description of the matrix exponen-
tial formalism in radiative transfer. The solution of the initial
value problem of the discrete radiative transfer is expressed
in terms of the matrix exponential. Although, the matrix ex-
ponential solution is computationally unstable it is used as
a starting point in deriving a computationally stable equa-
tion, the layer equation, which is the heart of the discrete or-
dinate method, the interaction principle equation, which is
the heart of the matrix operator method, and finally, the ma-
trix Riccati equations. Thus, the matrix exponential formal-
ism gives the framework for the unification of the discrete or-
dinate method, the matrix operator method, and the matrix
Riccati equations method. In our analysis,
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1. we provided an interpretation of the matrix exponential
solution in terms of homogeneous and particular solu-
tions, as well as in terms of total and direct radiance vec-
tors,

2. we used the right- and left eigenvector technique of Wa-
terman [21] to compute the matrix exponential, and de-
rived a set of matrix identities for proving the mathemat-
ical equivalence between the different solution meth-
ods,

3. we established the layer equation of the discrete ordi-
nate method with matrix exponential, compared this
method with the classical discrete ordinate method, de-
rived equivalent solution representations, and estab-
lished the link between the matrix exponential solution
and the Chandrasekhar’s discrete ordinate solution,

4. we derived equivalent expressions for the reflection and
transmission matrices by converting the layer equation
and the solution representations of the matrix exponen-
tial method into the interaction principle equation,

5. for optically thin layers, we used the nth-order Padé and
Taylor series approximations to the matrix exponential
to compute the reflection and transmission matrices,
and to derive an nth-order approximation to the layer
equation,

6. for optically thick layers, we derived the asymptotic ex-
pressions of the reflection and transmission matrices
by adapting the discrete ordinate approach of Naka-
jima and King [27] to our framework, obtained higher-
order corrections of the reflection and transmission ma-
trices for moderate values of the optical thickness, re-
considered Waterman’s approximation by including an
additional term in the expression of the reflection ma-
trix, and computed parametrizations of the asymptotic
functions and constants for a water-cloud model with a
Gamma size distribution,

7. we reviewed the approach of Flatau and Stephens [22]
for obtaining the matrix Riccati equations in the case of
an inhomogeneous atmosphere, proved the equivalence
between the matrix Riccati equations method and the
eigendecomposition method in computing the reflec-
tion matrix of a homogeneous layer, and discussed the
successive order of scattering approximation for small
values of the single-scattering albedo, as well as, an nth-
order iterative approximation for small values of the op-
tical thickness.

Some additional results are given in appendices. In Appendix
1, we justify the choice of Gaussian quadrature in the discrete
ordinate method. In Appendix 2 we review several eigende-
composition methods for computing the matrix exponential
in a common framework. In this context it should be pointed
out that the direct decomposition method is preferable for
numerical implementations, while the square-root method
is an important tool for theoretical studies, e.g., conserva-
tive scattering and asymptotic theory. In Appendix 3, we ex-
tend the analytical formulas for non-conservative scattering
to conservative scattering, and prove that the system of char-

acteristic solutions proposed by Nakajima and Tanaka [18]
can be used for both non-conservative and conservative scat-
tering.

The practical conclusion of our analysis is that the ma-
trix exponential formalism enables the design of a radiative
transfer code incorporating the discrete ordinate method, the
matrix operator method and approximate models. For each
homogeneous layer of a multi-layered atmosphere, a spec-
tral decomposition of the layer matrix is performed, and then
either the layer equation is derived and assembled into the
system matrix of the entire atmosphere (discrete ordinate
method), or the reflection and transmission matrices of the
layer are computed and the adding formula is used to obtain
the reflection matrix of the entire atmosphere (matrix oper-
ator method). Moreover, a combined model can be also de-
signed.

To speed up the computational process, approximate
models can be used. An efficient radiative transfer code
should incorporate built-in routines that automatically work
when the optical thickness of a homogeneous (sub)layer be-
comes too small or too large. On the other hand, the nth-
order Padé and Taylor series approximations and the nth-
order iterative approximation can be used for the initializa-
tion of the doubling method in radiative transfer, while the
asymptotic form of the reflection function can be used in a
cloud parameter retrieval algorithm. In the latter case, the
computational process is organized as follows [50]: (I) re-
place the atmosphere below the cloud bottom by an equiva-
lent Lambertian surface of albedo A, (II) compute the reflec-
tion function of a layer with an underlying Lambertian sur-
face of albedo A by means of the asymptotic theory, and (III)
use the cloud reflection function as a bidirectional reflection
function in a discrete ordinate model to compute the radi-
ance field of the atmosphere above the cloud top.

Appendix 1. Gauss quadrature

In radiative transfer, the phase function p is usually ex-
pressed through a finite series of normalized Legendre poly-
nomials Pn , i.e.,

p(µ,µ′,ϕ−ϕ′) =
Nmax∑
n=0

√
2n +1

2
χnPn(cosΘ), (319)

where cosΘ = µµ′ +
√

1−µ2
√

1−µ′2 cos(ϕ−ϕ′), χn are the
expansion coefficients, and Nmax is the number of expansion
coefficients. Making use on the addition theorem for the
Legendre polynomials, we obtain an expansion in terms of
spherical harmonics

p(µ,µ′,ϕ−ϕ′) =
Mmax∑
m=0

Nmax∑
n=m

(2−δm0)χnP m
n (µ)P m

n (µ′)cos[m(ϕ−ϕ′)],

(320)

with Mmax ≤ Nmax. We are now in the favorable situation
that the kernel of the radiative transfer integral equation is
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expanded in an orthogonal and complete system of func-
tions. Further on, we argue in connection with the spheri-
cal harmonics method. On the unit sphere, the diffuse ra-
diance Id(τ,µ′,−µ0,ϕ′ −ϕ0) can be also expanded in terms
of spherical harmonics, so that after integrating the multi-
ple scattering term with respect to the azimuthal angle, we

are led to an integral of the form
´ 1
−1 P m

n (µ′)P m
n′ (µ

′)dµ′, with
n,n′ = 0, . . . , Nmax. For n, n′ ≤ Nmax, P m

n (µ′)P m
n′ (µ

′) = P (µ′) is
a polynomial of degree at most 2Nmax. This can be seen by
making use on the explicit construction of the associated Leg-
endre functions in terms of Jacobi polynomials. The integral

then reduces to
´ 1
−1 P (µ′)dµ′, and the task is to find an exact

quadrature for this integral. If this is done, the mathemat-
ical equivalence between the spherical harmonics and the
discrete ordinate method is established. In general, a Gauss
quadrature using Nq nodes is an exact quadrature for polyno-
mials of degree 2Nq−1 or less [51]. In our case, this condition
translates into Nmax < Nq−1/2, and for the choice Nq = 2N , it
follows that Nmax < 2N −1/2. Thus, using 2N Gaussian nodes
and weights, we need Nmax = 2N −1 expansion terms in (319)
and Mmax ≤ 2N −1 azimuthal modes. In [52] it is shown that

1. a Gauss quadrature guarantees that the phase function is

correctly normalized, i.e.,
´ 2π

0

´ 1
−1 p(µ,µ′,ϕ−ϕ′)dµ′dϕ′ =

4π, and so, that the energy is conserved in the computa-
tion,

2. a double Gauss quadrature, in which the Gaussian for-
mula is applied separateley to the half ranges (−1,0) and
(0,1), is preferable that a Gauss quadrature for the com-
plete range (−1,1).

It is a fact that Gauss quadrature has a factor-of-2 advan-
tage in its efficiency as compared to equidistant quadrature
methods. A method wich has almost the same performances
and can be implemented effortlessly by the fast Fourier trans-
form is the Clenshaw-Curtis scheme [53]. However, as it has
been shown in [54], when the number of nodes Nq increases,
the error of the Clenshaw-Curtis quadrature does not de-
cay to zero evenly but in two distinct stages; for Nq smaller
than a critical value, the error decreases by the rate O(ρ−2Nq ),
where ρ > 1, and afterwards by the rate O(ρ−Nq ). This means
that initially (for small Nq), Clenshaw-Curtis quadrature con-
verges about as fast as the Gauss quadrature. The outlook for
a future work is to focus on the efficiency of the Clenshaw-
Curtis quadrature in radiative transfer.

Appendix 2. Spectral decomposition of the layer matrix

Let us consider the layer matrix

Â =
[

Â11 Â12

−Â12 −Â11

]
, (321)

with

Â11 = M
1
2 W

1
2 (S+−W−1)M

1
2 W

1
2 ,

Â12 = M
1
2 W

1
2 S−M

1
2 W

1
2 , (322)

and let us introduce the symmetric matrices

Â+ = Â11 + Â12 = M
1
2 W

1
2 (S++S−)M

1
2 W

1
2 −M,

Â− = Â11 − Â12 = M
1
2 W

1
2 (S+−S−)M

1
2 W

1
2 −M. (323)

Further, let us define the matrices Q̂+ and Q̂− through the fac-
torizations

Â−Q̂− = Q̂+Λ, (324)

Â+Q̂+ = Q̂−Λ, (325)

yielding

(Â−Â+)Q̂+ = Q̂+Λ2, (326)

and

(Â+Â−)Q̂− = Q̂−Λ2, (327)

for Λ= [λk ]. If Q̂+, Q̂− and Λ are known, the desired eigende-
composition is

Â =
[

V̂+ V̂−
V̂− V̂+

][
Λ 0
0 −Λ

][
V̂+ V̂−
V̂− V̂+

]−1

, (328)

where

V̂+ = 1

2
(Q̂++ Q̂−),

V̂− = 1

2
(Q̂+− Q̂−). (329)

If the systems of normalized right and left eigenvectors are re-
quired, we first compute ak = ||v̂−k ||2 −||v̂+k ||2, and then apply
the transformation rules

1√∣∣ak
∣∣ v̂±k → v̂±k and v±k = sign(ak )v̂±k ,

to construct the matrices V̂± and V±.
The spectral decomposition of Â can be obtained by one

of the following methods: direct decomposition of the asym-
metric matrix Â−Â+ [14], the square-root decomposition [18],
and the Cholesky decomposition [30]. Before proceeding, we
make the change of variables

A− =−Â−, (330)

A+ =−Â+, (331)

and note that by virtue of (330) and (331), the matrix A− is
symmetric and positive definite, while the matrix A+ is sym-
metric and non-negative definite.

Direct decomposition method

The direct decomposition method involves the following
steps:

1. Compute A+ = A−A+, and determine the eigensystem
{µk , q̂+

k }k=1,N of the matrix A+, i.e., A+q̂+
k =µk q̂+

k .
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2. If a linearization of the radiative transfer model is re-
quired, normalize the vectors q̂+

k for k = 1, ..., N .

3. For the nonconservative case (µN , 0), compute the
eigenvectors of the matrix A− = A+A−, i.e.,

q̂−
k =− 1p

µk
A+q̂+

k , k = 1, ..., N . (332)

4. Set

Λ= [λk ], λk = p
µk , (333)

and

Q̂+ = [q̂+
k ], (334)

Q̂− = [q̂−
k ]. (335)

Square-root method

The square-root method involves the following steps:

1. Compute a singular value decomposition of the sym-
metric and positive definite matrix A−, i.e.,

A− = UΣaUT , (336)

and the square root matrices

A
1
2− = UΣ

1
2
aUT , (337)

A
− 1

2− = UΣ
− 1

2
a UT . (338)

2. Construct the matrix

Z = A
1
2−A+A

1
2− , (339)

and compute a singular value decomposition of the
symmetric and non-negative definite matrix Z, i.e.,

Z = VΣzVT . (340)

3. Set

Λ=Σ
1
2
z , (341)

and compute

Q̂+ = A
1
2−V, (342)

Q̂−T
+ = A

− 1
2− V, (343)

Q̂− =−Q̂−T
+ Λ. (344)

To justify this algorithm we note that

A−A+ = A
1
2−(A

1
2−A+A

1
2−)A

− 1
2− = A

1
2−VΣzVT A

− 1
2− = Q̂+Λ2Q̂−1

+ ,

which is equivalent to (326).

Cholesky method

The Cholesky method involves the following steps:

1. Compute the Cholesky factorization of the symmetric
and non-negative definite matrix A+, i.e.,

A+ = RT R. (345)

2. Construct the matrix

Z = RA−RT , (346)

and compute a singular value decomposition of the
symmetric and non-negative definite matrix Z, i.e.,

Z = VΣzVT . (347)

3. Set

Λ=Σ
1
2
z , (348)

and for the nonconservative case (Λ−1 and R−1 exist),
compute

Q̂− =−RT VΛ−1, (349)

and

Q̂+ = R−1V, (350)

Q̂−T
+ =−Q̂−Λ. (351)

To justify the algorithm, we note that

Q̂+Λ2 = R−1VΣz = R−1ZV = R−1RA−RT RR−1V = A−A+Q̂+,

which is equivalent to (326).
In summary,

1. in the direct decomposition method, only one eigen-
value problem for the asymmetric matrix Â−Â+ is solved,

2. in the square-root method, two eigenvalue problems for
the symmetric and positive definite matrix A− and the
symmetric and non-negative definite matrix A1/2− A+A1/2−
are solved, and

3. in the Cholesky method, the matrix A+ is first factorized
as A+ = RT R, and then, an eigenvalue problem for the
symmetric and non-negative definite matrix RA−RT is
solved.

Although the computation of the eigendecomposition of Â
by the square-root method is more time consuming than the
other two methods, it is computationally stable in the limit
ω→ 1, and even in the conservative case ω= 1.

Appendix 3. Conservative scattering

In the conservative case and the azimuthal mode m = 0,
the smallest eigenvalues ±λN vanish. The two correspond-
ing eigenvectors merge into one, which is not normalizable.
The idea is to introduce two additional terms to replace those
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that are lost in expansion (40) when k = N . In fact, the case
of conservative scattering is only of pure theoretical interest.
The reason is that in practical numerical simulations, a con-
servative scattering problem can be modeled by considering
the limit ω → 1, i.e., by setting ω = 1− ε, with ε sufficiently
small. Even in the case ω = 1, the smallest computed eigen-
value is not exactly zero (due to rounding errors), and the
computation of the spectral decomposition of the layer ma-
trix be means of the square root method of Appendix 2 is a
stable process. In spite of these practical arguments we de-
cide to include this case in our analysis.

Before proceeding we make some general comments. Let A
be a matrix with n −2 real eigenvalues λk with the geometric
multiplicities mk = 1, k = 1, ...,n −2, and let λn be an eigen-
value with the geometric multiplicity mn = 2. For the eigen-
value λn , the solution of the differential equation

di

dτ
(τ) =−Ai (τ) (352)

is seek as a linear combination of characteristic solutions

i (τ) =αw0e−λnτ+β(w1 +w0τ)e−λnτ, (353)

where w0 and w1 are determined by inserting each character-
istic solution into the differential equation. By doing this, we
obtain

(A−λn In)w0 = 0, (354)

(A−λn In)w1 =−w0, (355)

(A−λn In)2w1 = 0. (356)

Defining the null spaces N 1
λn

= N (A − λn In) and N 2
λn

=
N ((A −λn In)2), and noting that N 1

λn
⊂ N 2

λn
= Mλn , where

Mλn is the main space of the eigenvalue λn so that Rn =
Mλ1 ⊕Mλ2 ...Mλn−2 ⊕Mλn , we see that (354) and (356) give

w0 ∈N (A−λn In), (357)

w1 ∈N ((A−λn In)2) \N (A−λn In), (358)

and further, N 1
λn

= span{w0} and N 2
λn

= span{w0,w1}.

Basic results

In the conservative case and the azimuthal mode m = 0, we
have λN = 0, and so, λN = 0 is an eigenvalue with the geomet-
ric multiplicity mN = 2. The right and left eigenvectors of the
matrix Â are constructed as follows:

1. We assume that the null spaces N (Â) and N (Â2) \

N (Â) are spanned by the right eigenvectors

[
w0

w0

]
and[

w1

−w1

]
, respectively, i.e.,

N (Â) = span
{[

w0

w0

]}
, (359)

N (Â2) \N (Â) = span
{[

w1

−w1

]}
, (360)

and that the null-spaces N (ÂT ) and N ((Â2)T ) \ N (ÂT )

are spanned by the left eigenvectors

[
w0

−w0

]
and[

w1

w1

]
, respectively, i.e.,

N (ÂT ) = span
{[

w0

−w0

]}
, (361)

N ((Â2)T ) \N (ÂT ) = span
{[

w1

w1

]}
. (362)

Thus, we have

N (Â2) = span
{[

w0

w0

]
,

[
w1

−w1

]}
, (363)

N ((Â2)T ) = span
{[

w0

−w0

]
,

[
w1

w1

]}
. (364)

2. We impose that the vectors w0 and w1 are related
through the relation (cf. (355))

Â
[

w1

−w1

]
=−

[
w0

w0

]
. (365)

Let us normalize the vectors w0 and w1 according to the
transformations

1

a0
w0 → w0 and

1

a0
w1 → w1,

where the normalization constant a0 is given by a0 =√
2wT

0 w1. Then, the following results hold:

1. The right eigenvector spanning N (Â) is orthogonal to
the right eigenvector spanning N (Â2)\N (Â). The same
result is valid for the left eigenvectors spanning N (ÂT )
and N ((Â2)T ) \N (ÂT ), i.e.,

[
w0

w0

]T [
w1

−w1

]
=

[
w0

−w0

]T [
w1

w1

]
= 0. (366)

2. The right eigenvector spanning N (Â) is orthogonal to
the left eigenvector spanning N (ÂT ). The same re-
sult is valid for the right and left eigenvectors spanning
N (Â2) \N (Â) and N ((Â2)T ) \N (ÂT ), respectively, i.e.,

[
w0

w0

]T [
w0

−w0

]
=

[
w1

−w1

]T [
w1

w1

]
= 0. (367)

3. The right eigenvector spanning N (Â) is co-linear with
the left eigenvector spanning N ((Â2)T ) \ N (ÂT ). The
same result is valid for the left and right eigenvectors
spanning N (ÂT ) and N (Â2) \N (Â), respectively, i.e.,

[
w0

w0

]T [
w1

w1

]
=

[
w0

−w0

]T [
w1

−w1

]
= 1. (368)
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4. The left eigenvectors

[
w0

−w0

]
and

[
w1

w1

]
spanning

N ((Â2)T ) are orthogonal to the right eigenvectors[
v̂+k
v̂−k

]
corresponding to λk , i.e.,

[
w0

−w0

]T [
v̂+k
v̂−k

]
=

[
w1

w1

]T [
v̂+k
v̂−k

]
= 0, (369)

and to the right eigenvectors

[
v̂−k
v̂+k

]
corresponding to

−λk , i.e.,[
w0

−w0

]T [
v̂−k
v̂+k

]
=

[
w1

w1

]T [
v̂−k
v̂+k

]
= 0 (370)

Computation of the vectors w0nd w1

A method for computing the vectors w0 and w1 uses the
equations solved by the flux H and the K integral in the case
of conservative scattering [32]:

dH

dτ
(τ,µ0) = 0,

dK

dτ
(τ,µ0) =

(
1− χ1

2

)
H(τ,µ0),

where

H(τ,µ0) = 2π

ˆ 1

−1
I0(τ,µ,−µ0)µdµ−F0µ0e−τ/µ0 ,

K (τ,µ0) = 2π

ˆ 1

−1
I0(τ,µ,−µ0)µ2dµ+F0µ

2
0e−τ/µ0 .

Another method is the square-root method of Appendix 2,
which we will now describe. In the conservative case and the
azimuthal mode m = 0, the singular value σN of the matrix
Z = VΣzVT is zero. Thus, we have λN = p

σN = 0 and N (Z) =
span{vN }, where vN is the N th column vector of V. From the
relation ZvN = 0 and the definition Z = A1/2− A+A1/2− , we obtain
A1/2− A+A1/2− vN = 0. Since A− is positive definite, it follows that
A+A1/2− vN = 0. Further, setting q̂+

N = A1/2− vN (cf. (342)), we get
A+q̂+

N = 0, or equivalently, q̂+
N ∈ N (A+). On the other hand,

from Q̂− = −A−1− Q̂+Λ, we obtain q̂−
N = −λN A−1− q̂+

N = 0, yield-
ing

v̂+N = v̂−N = 1

2
q̂+

N . (371)

Thus, the right eigenvectors of Â corresponding to λN and
−λN merge into one, i.e.,[

v̂+N
v̂−N

]
=

[
v̂−N
v̂+N

]
= 1

2

[
q̂+

N
q̂+

N

]
. (372)

From q̂+
N ∈N (A+), it follows that

Â
[

q̂+
N

q̂+
N

]
=

[ −A+q̂+
N

A+q̂+
N

]
= 0, (373)

and for the first eigenvector[
w0

w0

]
∈N (Â),

we infer that w0 is given by

w0 = q̂+
N . (374)

For the second eigenvector[
w1

−w1

]
∈N (Â2) \N (Â),

we compute w1 such that the equation

Â
[

w1

−w1

]
=−

[
w0

w0

]
(375)

is fullfield. Accounting of

Â
[

w1

−w1

]
=

[ −A−w1

−A−w1

]
, (376)

and taking into account that A− is invertible, we deduce that
for

w1 = A−1
− w0 = A−1

− q̂+
N , (377)

equation (375) holds true. Thus, w0 and w1 are given by (374)
and (377), respectively.

Analytical formulas for conservative scattering

Using (365)-(370), we find that the Jordan form representa-
tion of the layer matrix is

Â = V̂


[
Λ 0
0 −Λ

]
0(2N−2)×1 0(2N−2)×1

01×(2N−2) 0 −1
01×(2N−2) 0 0

V
T

(378)

with

V̂ =
[[

V̂+ V̂−
V̂− V̂+

]
,

[
w0

w0

]
,

[
w1

−w1

]]
, (379)

V =
[[ −V+ V−

V− −V+

]
,

[
w1

w1

]
,

[
w0

−w0

]]
, (380)

Λ = diag[λ1, ...,λN−1] ∈ R(N−1)×(N−1), V̂± = [v̂±1 , ..., v̂±N−1] ∈
RN×(N−1), and V± = [v±1 , ...,v±N−1] ∈ RN×(N−1), while by virtue
of the matrix identity

e
−τ

[
0 −1
0 0

]
=

[
1 τ

0 1

]
, (381)

the Jordan form representation of the matrix exponential is

e−Âτ = V̂


[
Γ(τ) 0

0 Γ(−τ)

]
0(2N−2)×1 0(2N−2)×1

01×(2N−2) 1 τ

01×(2N−2) 0 1

V
T

,
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(382)

with Γ(τ) = diag[e−λ1τ, ...,e−λN−1τ] ∈R(N−1)×(N−1).
Insertion of (379) and (380) in (378) and (382), gives a reso-

lution of the layer matrix

Â =−
[

w0

w0

][
w0

−w0

]T

+
N−1∑
k=1

λk

[
v̂+k
v̂−k

][ −v+k
v−k

]T

−λk

[
v̂−k
v̂+k

][
v−k
−v+k

]T

, (383)

and of the matrix exponential

e−Âτ =
[

w0

w0

][
w1

w1

]T

+
[

w1

−w1

][
w0

−w0

]T

+τ
[

w0

w0

][
w0

−w0

]T

+
N−1∑
k=1

e−λkτ

[
v̂+k
v̂−k

][ −v+k
v−k

]T

+eλkτ

[
v̂−k
v̂+k

][
v−k
−v+k

]T

,

(384)

respectively. Setting τ = 0 in (384) we obtain a resolution of
the identity matrix

I2N =
[

w0

w0

][
w1

w1

]T

+
[

w1

−w1

][
w0

−w0

]T

+
N−1∑
k=1

[
v̂+k
v̂−k

][ −v+k
v−k

]T

+
[

v̂−k
v̂+k

][
v−k
−v+k

]T

, (385)

which further, gives

w0wT
1 +w1wT

0 +
N−1∑
k=1

v̂−k v−T
k − v̂+k v+T

k = IN ,

w0wT
1 −w1wT

0 +
N−1∑
k=1

v̂+k v−T
k − v̂−k v+T

k = 0. (386)

Equations (378), (382), (383), and (384) are the counterparts
of (27), (30), (40) and (42), respectively, for the conservative
case. It should be pointed out that equations (383) and (384)
have been derived by Waterman by employing different argu-
ments.

By means of (382) and (384), the analytical formulas for
nonconservative scattering can be extended to conservative
scattering as follows:

1. The matrices D1, D0 and Db which enter in the layer
equation (56) are given by

D1 =


[

IN−1 0
0 Γ(τ)

]
0(2N−2)×1 0(2N−2)×1

01×(2N−2) 1 0
01×(2N−2) 0 1

 ,

D0 =


[
Γ(τ) 0

0 IN−1

]
0(2N−2)×1 0(2N−2)×1

01×(2N−2) 1 τ

01×(2N−2) 0 1

 ,

Db =



 e−λk τ−e−τ/µ0

1/µ0−λk
0

0 1−e−τ(λk+1/µ0)

1/µ0+λk

 0(2N−2)×1 0(2N−2)×1

01×(2N−2)
1−e−τ/µ0

1/µ0

τ/µ0−1+e−τ/µ0

(1/µ0)2

01×(2N−2) 0 1−e−τ/µ0

1/µ0

 .

(387)

2. The solution representations (65) and (69) translate into

îd(τ) =αN

[
w0

w0

]
+βN

([ w1

−w1

]
+τ

[
w0

w0

])
+

N−1∑
k=1

αk e−λkτ

[
v̂+k
v̂−k

]
+βk e−λk (τ−τ)

[
v̂−k
v̂+k

]
+ îp (τ) (388)

and

îd(τ) =αN

[
w0

w0

]
+βN

([ w1

−w1

]
+τ

[
w0

w0

])
+

N−1∑
k=1

αk

(
e−λkτ

[
v̂+k
v̂−k

]
+e−λk (τ−τ)

[
v̂−k
v̂+k

])
+βk

(
−e−λkτ

[
v̂+k
v̂−k

]
+e−λk (τ−τ)

[
v̂−k
v̂+k

])
+ îp (τ) , (389)

respectively.
3. The analogues of (108) and (109) which give the ex-

pressions of the transmission and reflection matrices, respec-
tively, are

T̂ = V
−T
− Γ(V̂0

−− V̂1
+ΓV

T
+V

−T
− Γ)−1, (390)

R̂ = (V̂0
+− V̂1

−ΓV
T
+V

−T
− Γ)(V̂0

−− V̂1
+ΓV

T
+V

−T
− Γ)−1, (391)

where now

Γ=


e−λ1τ ... 0 0

...
0 ... e−λN−1τ 0
0 ... 0 1

 , (392)

and

V̂0
± = [v̂±1 , ..., v̂±N−1,w0],

V̂1
± = [v̂±1 , ..., v̂±N−1,±w1],

V+ = [v+1 , ...,v+N−1,−w0],

V− = [v−1 , ...,v−N−1,w1 +τw0]. (393)

A special system of characteristic solutions

We conclude this appendix by presenting a system of char-
acteristic solutions which can be used for nonconservative
and conservative scattering. It is of the form

îd(τ) =
N∑

k=1
αk ak (τ)+βk bk (τ)+ îp (τ) , (394)
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with

ak (τ) = e−λkτ

[
v̂+k
v̂−k

]
+e−λk (τ−τ)

[
v̂−k
v̂+k

]
, (395)

bk (τ) = 1

λk

(
−e−λkτ

[
v̂+k
v̂−k

]
+e−λk (τ−τ)

[
v̂−k
v̂+k

])
. (396)

Obviously, (394)-(396) are equivalent to (69) if we consider the
transformation βk → (1/λk )βk . As a result, the reflection and
transmission matrices R̂ and T̂ are given by (97) and (98), re-
spectively. In the conservative case, bN is singular and so is
V̂− − V̂+Γ together with R̂ and T̂. However, these singulari-
ties are removable if we compute the eigenvectors v̂±k by the
square-root method of Appendix 2. To show this, we consider

(342)-(344), set V = [vk ], Q̂+ = [q̂+
k ] and Q

not= Q̂−T+ = [qk ], and

write in component form q̂+
k = A1/2− vk , qk = A−1− q̂+

k = A−1/2− vk ,
and q̂−

k =−λk qk . As a result, (396) becomes

ak = 1

2
[e−λkτ+e−λk (τ−τ)]

[
q̂+

k
q̂+

k

]
− 1

2
λk [e−λkτ−e−λk (τ−τ)]

[
qk

−qk

]
,

bk =− 1

2λk
[e−λkτ−e−λk (τ−τ)]

[
q̂+

k
q̂+

k

]
+ 1

2
[e−λkτ+e−λk (τ−τ)]

[
qk

−qk

]
. (397)

In the limit λN → 0, we have q̂+
N ,qN , 0, and q̂−

N = 0. Account-
ing of w0 = q̂+

N , w1 = A−1− q̂+
N = qN , and

lim
λN→0

[
−e−λNτ−e−λN (τ−τ)

2λN

]
= τ− τ

2
, (398)

we get

lim
λN→0

[αN aN (τ)+βN bN (τ)] = (αN − τ

2
βN )

[
w0

w0

]
(399)

+βN

(
τ

[
w0

w0

]
+

[
w1

−w1

])
,

which is equivalent to the first two terms in (389). Coming
to the reflection and transmission matrices, we use (329) and
(344) with Q = Q̂−T+ , to compute the matrix products which
enter in (97) and (98) as

(V̂++ V̂−Γ)(V̂−+ V̂+Γ)−1

= [Q̂+(I+Γ)−QΛ(I−Γ)][Q̂+(I+Γ)+QΛ(I−Γ)]−1 (400)

and

(V̂+− V̂−Γ)(V̂−− V̂+Γ)−1

= [(V̂+− V̂−Γ)Λ−1][(V̂−− V̂+Γ)Λ−1]−1

= [Q̂+(I−Γ)Λ−1 −Q(I+Γ)][Q̂+(I−Γ)Λ−1 +Q(I+Γ)]−1. (401)

In the limit λN → 0, the singularity in (I−Γ)Λ−1 is removable,
i.e.,

lim
λN→0

1−e−λNτ

λN
= τ,

so that (97), (98), (400), and (401) give the expressions of R̂
and T̂ for nonconservative and conservative scattering. The
system of characteristic solutions (394)-(396), as well as the
reflection and transmission matrices of (97), (98), (400), and
(401) have been used by Nakajima and Tanaka in their matrix
formulation of the radiative transfer.

Appendix 4. Asymptotic functions and constants

We define the scaled diffusion pattern vectors by

ι̂+ =λN (I− R̂2
∞)−1k̂N , (402)

ι̂− = R̂∞ι̂+, (403)

and note that for

Q̂+ = [q̂+
1 , ..., q̂+

N ], (404)

we have the representations

ι̂+ = 1

2
(q̂+

N +λN q+
N ), (405)

ι̂− = ι̂+−λN q+
N , (406)

and the orthogonality relations

k̂T
N ι̂+ = 1, (407)

k̂T
N ι̂− = l. (408)

To derive the expressions of the functions that occur in the
asymptotic theory, we introduce the discrete approximation
to the escape function kN by

kN =
√
k

2m
M

1
2 W− 1

2 k̂N , (409)

and the diffusion pattern vectors ι± by

ι± =
√
m

2k
M

1
2 W− 1

2 ι̂±. (410)

As a result, the orthogonality relations for ι̂+ and ι̂− yield

2kT
N WM−1ι+ = 1, (411)

2kT
N WM−1ι− = l. (412)

Essentially, the vectors ι+ and ι−are the discrete approxima-
tions of the diffusion patterns i (µ) and i (−µ), µ > 0, respec-
tively. The constant m in (409) and (410) is obtained by nor-
malizing the diffusion pattern (cf. (197))

1

2

ˆ 1

−1
i (µ)dµ= 1

2
1T W(ι++ ι−) = 1

2

√
m

2k
1T W

1
2 M

1
2 q̂+

N = 1,

(413)

that is,

m= 8k

(1T W
1
2 M

1
2 q̂+

N )2
, (414)
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where 1 is the vector of all ones. Obviously, (411) and (412) are
the discrete approximations of the normalization conditions
(200) and (202), respectively.

In terms of the escape function kN , the reflection and
transmission matrices are given by

R=R∞−δm0rkN kT
N , (415)

T= δm0tkN kT
N , (416)

R∞ = 1

2
M

1
2 W− 1

2 R̂∞W− 1
2 M

1
2 , (417)

where

r= r̂ m
k
= mle−2kτ

1−l2e−2kτ
, (418)

t= t̂ m
k
= me−kτ

1−l2e−2kτ
. (419)

Moreover, for the azimuthal mode m = 0, we have

r∞ = 2R∞v, (420)

rs∞ = 4vTR∞v, (421)

and

r = r∞−nrkN , (422)

t = ntkN , (423)

rs = 4vTRv, (424)

where r∞ and rs∞ are the plane albedo vector and the spher-
ical albedo of the semi-infinite atmosphere, respectively, r,
t and rs are the plane albedo vector, the transmission vec-
tor, and the spherical albedo of the layer, respectively, and
v = WM−11. The µ-weighted mean of the escape function is
given by

n= 2kT
N v, (425)

which is the discrete approximation of (206).
The reflection and transmission matrices of the homoge-

neous layer with an underlying Lambertian surface RA and
TA , respectively, as well as the plane albedo rA and the spher-
ical albedo rs A are computed as

RA =R+ A

1− Ars
δm0ttT , (426)

TA =T+ A

1− Ars
δm0rtT , (427)

rA = 2RAWM−11 (428)

rs A = 4vTRAv. (429)

where A is the ground albedo.
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