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Abstract

In this paper we analyze the accuracy and efficiency of several radiative transfer models for inferring cloud parameters from radi-
ances measured by the Earth Polychromatic Imaging Camera (EPIC) on board the Deep Space Climate Observatory (DSCOVR).
The radiative transfer models are the exact discrete ordinate and matrix operator methods with matrix exponential, and the approx-
imate asymptotic and equivalent Lambertian cloud models. To deal with the computationally expensive radiative transfer calcula-
tions, several acceleration techniques such as, for example, the telescoping technique, the method of false discrete ordinate, the
correlated k-distribution method and the principal component analysis (PCA) are used. We found that, for the EPIC oxygen A-band
absorption channel at 764 nm, the exact models using the correlated k-distribution in conjunction with PCA yield an accuracy better
than 1.5 % and a computation time of 18 s for radiance calculations at 5 viewing zenith angles.
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1. Introduction

The Earth Polychromatic Imaging Camera (EPIC) on board
the Deep Space Climate Observatory (DSCOVR) was designed
to measure the atmosphere and surface properties over the
whole sunlit face of the Earth from the Lagrange point L1 (a
gravity-neutral position at 1.5 × 106 km away from the Earth).
DSCOVR is placed in a Lissajous orbit around the L1 point, and
provides a unique angular perspective at almost backward di-
rection with scattering angles approximately between 168◦ and
176◦ (Fig.1). EPIC scans the entire sunlit face of the Earth at a
2048×2048 pixel resolution, with a pixel size of 12×12 km2 at
the image center. The instrument has 10 spectral channels rang-
ing from the ultraviolet to the near-infrared. Four of them are
located in the oxygen A- and B- bands: two absorption chan-
nels centered at 688 nm and 764 nm with bandwidths of 0.8 nm
and 1.0 nm, respectively, and two continuum channels centered
at 680 nm and 780 nm with bandwidths of 3.0 nm and 2.0 nm
(Table 1). These channels are used for monitoring the vegeta-
tion condition [1], the aerosol layer height and optical depth [2],
and the cloud height [3].

The radiative transfer for retrieval of cloud parameters in-
volves, in addition to cloud scattering and absorption, gas ab-
sorption and molecular Rayleigh scattering. Usually, it is neces-
sary to consider spectral regions containing several overlapping
lines with intensities varying over many orders of magnitude.
An accurate method for computing the radiative transfer in a
molecular atmosphere relies on line-by-line (LBL) calculations.
However, LBL calculations are in most cases too computation-
ally expensive to be used directly in online and even sometimes
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Figure 1: Illustration of EPIC / DSCOVR geometry (distances are not to scale).

in offline retrieval algorithms. This prompts us to use exact or
approximate radiative transfer models endowed with accelera-
tion techniques. As approximate models, asymptotic [4–6] and
equivalent Lambertian cloud models [7–9] are frequently used.
In the category of acceleration techniques we include here the
correlated k-distribution method [10, 11], the radiance sampling
method [12], the optimal spectral mapping method [13] and di-
mensionality reduction techniques. In the latter case, principal
component analysis (PCA) is used to map the spectral radi-
ances into a lower-dimensional subspace in which the inversion
is performed [14, 15], or to reduce the dimensionality of the op-
tical properties [16–18]. In addition, the telescoping technique
[19, 20] and the method of false discrete ordinate [21–24] can
be used to speed up radiative transfer calculations.

For the EPIC instrument, the retrieval is more challenging
due to the singular geometry of the radiative transfer problem.
Given a particle with a certain size, the scattering phase func-
tion shows considerable structure and resonances. When aver-
aged over a size distribution of an ensemble of particles, these
features are almost smoothed out, but they are still present in

Preprint submitted to Journal of Quantitative Spectroscopy and Radiative Transfer March 24, 2018

https://doi.org/10.1016/j.jqsrt.2018.03.014
https://doi.org/10.1016/j.jqsrt.2018.03.014


Table 1: Description of EPIC channels, adapted from EPIC’s main website
(https://epic.gsfc.nasa.gov/epic).

Channel Central wavelength / nm Full width / nm Primary application

1 317.5 ± 0.1 1.0 ± 0.2 Ozone, sulfur dioxide

2 325.0 ± 0.1 2.0 ± 0.2 Ozone

3 340.0 ± 0.3 3.0 ± 0.6 Ozone, aerosols

4 388.0 ± 0.3 3.0 ± 0.6 Aerosols, clouds

5 443.0 ± 1.0 3.0 ± 0.6 Aerosols, clouds

6 551.0 ± 1.0 3.0 ± 0.6 Aerosols

7 680.0 ± 0.2 3.0 ± 0.6 Aerosols, clouds, vegetation

8 687.75 ± 0.20 0.80 ± 0.20 Aerosols, clouds, vegetation

9 764.0 ± 0.2 1.0 ± 0.2 Cloud height

10 779.5 ± 0.3 2.0 ± 0.4 Clouds, vegetation

the backward and forward glories, at scattering angles around
180◦ and 0◦, and in the rainbow region, at around 140◦ [25].
For an accurate description of the specific features of the single
scattering properties in the backward direction, a large number
of discrete ordinates is required, even when the delta-M method
[26] is used.

The aim of this paper is to analyze the accuracy and effi-
ciency of several radiative transfer models in regard to their ap-
plicability to the retrieval of cloud parameters from EPIC mea-
surements. The radiative transfer models, relying on the ma-
trix exponential formalism and endowed with acceleration tech-
niques, include the exact discrete ordinate and matrix operator
methods, as well as the approximate asymptotic and equivalent
Lambertian cloud models. By “exact” methods, we mean those
models used as the starting point to design approximate models
by imposing further assumptions.

The paper is organized as follows. In Section 2 we present
the exact and approximate radiative transfer models. In Sec-
tion 3 we summarize the acceleration techniques, focusing on
the description of a combined method incorporating the corre-
lated k-distribution and PCA. In Section 4 we analyze the ac-
curacy and efficiency of the radiative transfer models for sim-
ulated EPIC measurements in the oxygen A-band absorption
channel. Conclusions are formulated in Section 5. Some spe-
cific features of the radiative transfer models are outlined in the
appendices. Here, we give the main computation formulas of
the discrete ordinate and matrix operator methods with matrix
exponential, justify the equivalent Lambertian cloud model, and
describe the telescoping technique.

2. Radiative transfer models

The radiative transfer equation for the diffuse radiance I(r,Ω)
at point r and in the direction Ω = (µ, ϕ) reads as

µ
dI
dr

(r,Ω)=−σext(r)I(r,Ω) + F0
σsct(r)

4π
P(r,Ω,Ω0)e−τ

0
ext(|r−rTOA |)

+
σsct (r)

4π

∫
4π

P(r,Ω,Ω′)I(r,Ω′) dΩ′, (1)

where σext and σsct are the extinction and scattering coeffi-
cients, respectively, F0 is the incident solar flux, P the scatter-
ing phase function, Ω0 = (−µ0, ϕ0) with µ0 > 0 the incident
solar direction, and τ0

ext(|r − rTOA|) the solar optical depth be-
tween a generic point r and the characteristic point at the top
of the atmosphere rTOA in a spherical atmosphere. The formal-
ism is pseudo-spherical, i.e. the multiple-scattering is treated
in a plane-parallel atmosphere, while the solar-beam attenua-
tion is computed in a spherical atmosphere [27]. For the phase
function P, we consider the conventional expansion in terms of
normalized Legendre polynomials Pn, i.e.

P(r,Ω,Ω′) = P(r, cos Θ) =

∞∑
n=0

cn χn(r) Pn(cos Θ), (2)

where cn =
√

(2n + 1) /2 and cos Θ = Ω · Ω′. The radiative
transfer equation (1) is subject to the top-of-atmosphere bound-
ary condition (r = rTOA),

I(rTOA,Ω−) = 0, (3)

and the surface boundary condition (r = rs),

I(rs,Ω+) = F0
A
π
µ0 ρ(Ω+,Ω0) e−τ

0
ext(|rs−rTOA |)

+
A
π

∫
2π

I(rs,Ω−) |µ−| ρ(Ω+,Ω−) dΩ−, (4)

where A and ρ are the surface albedo and the normalized bi-
directional reflection function, respectively, and the notations
Ω+ and Ω− stand for upward and downward directions, respec-
tively.

In the discrete ordinate method, we assume a cosine-
azimuthal expansion of the diffuse radiance (ϕ0 = 0),

I(r,Ω) =

∞∑
m=0

Im(r, µ) cos mϕ, (5)

and for each azimuthal component Im(r, µ) we discretize the
radiative transfer equation in the angular domain by consid-
ering a set of Gauss-Legendre quadrature points and weights
{µk,wk}

M
k=1 in the interval (0, 1); thus, M is the number of dis-

crete ordinates per hemisphere. The atmosphere is discretized
in N levels: r1 = rTOA > r2 > . . . > rN = rs, and a layer j,
bounded above by the level r j and below by the level r j+1, has
the geometrical thickness 4r j = r j − r j+1. The extinction and
scattering coefficients as well as the phase function coefficients
are assumed to be constant within each layer; their average val-
ues in layer j are σext j, σsct j and χn j, respectively. Also, we
must require the intensity to be continuous across the layer in-
terfaces. In layer j, we are led to the linear system of differential
equations

dim
dr

(r) = Am j im(r) + e−τ
0
ext(|r−rTOA |) bm j, r j+1 ≤ r ≤ r j, (6)

where (the abbreviation “not” stands for a notation definition)

im(r) =

[
i+m (r)
i−m (r)

]
not
= [i+m (r) ; i−m (r)]ᵀ (7)
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Figure 2: Illustration of DOME (a), the conventional matrix operator method (b), and MOME (c).

is the radiance vector in the discrete-ordinate space, and
[i±m (r)]k = Im(r,±µk), k = 1, . . . ,M. The layer matrix Am j has a
block structure

Am j =

[
A11

m j A12
m j

−A12
m j −A11

m j

]
, (8)

with entries

[A11
m j]kl =

1
2 µk

[wl σsct j pm j(µk, µl) − 2σext j δkl], (9)

[A12
m j]kl =

1
2 µk

wl σsct j pm j(µk,−µl), (10)

while the entries of the layer vector bm j = [b+
m j; b−m j]

ᵀ are given
by

[b±m j]k = ±
1
µk

(2 − δm0)
F0

4π
σsct j pm j(±µk,−µ0), (11)

where

pm j(µ, µ′) =

2M−1∑
n=m

χn j Pm
n (µ) Pm

n (µ′) (12)

are the azimuthal expansion coefficients of the phase functions.
In the following we describe the exact and approximate ra-

diative transfer models for the retrieval of cloud parameters.

2.1. Discrete ordinate method with matrix exponential

The Discrete Ordinate method with Matrix Exponential
(DOME) [20, 28] is illustrated in Fig.2a. The method relies on
the layer equation, which relates the level values of the radiance
field im j = [i+m j; i−m j]

ᵀ with [i±m j]k = Im(r j,±µk), k = 1, . . . ,M,
that is,

A1
m j im j + A2

m j im j+1 = bm j. (13)

The layer equation together with the boundary conditions at the
top and the bottom of the atmosphere, i.e. (cf. (3))

i−m1 = 0, (14)

and (cf. (4))
i+mN = RmN i−mN + rmN , (15)

with

[RmN]kl = 2 A wl µl ρm(µk,−µl), (16)

[rmN]k = A
F0

π
µ0 ρm(µk,−µ0) e−τ

0
ext(|rs−rTOA |), (17)

respectively, are assembled into the global matrix Am of the
entire atmosphere, and the solution of the resulting system of
equations Am im = bm yields the level values of the radiance
field. In (16) and (17), ρm are the azimuthal expansion coeffi-
cients of the normalized bi-directional reflection function, i.e.

ρ(Ω+,Ω−) =

2M−1∑
m=0

(2 − δm0) ρm(µ,−µ′) cos[m(ϕ − ϕ′)], (18)

for Ω = (µ, ϕ) and Ω′ = (−µ′, ϕ′) with µ, µ′ > 0. The matrix Am

of dimension 2MN×2MN has 3M−1 sub- and super-diagonals
and it may be compressed into band-storage and then inverted
using, for example, the LU factorization.

The layer quantities A1
m j, A

2
m j and bm j are expressed in terms

of the exponential of the layer matrix Am j, i.e. exp(−Am j 4r j).
The matrix exponential can be computed by using the eigen-
decomposition method or the Padé approximation; the result-
ing expressions for A1

m j, A
2
m j and bm j are listed in Appendix A.

The Padé approximation to the matrix exponential is less time-
consuming than the eigendecomposition method, but it is only
applicable to optically thin layers, for which the condition
||Am j 4r j|| ≤ 1 is satisfied. In practice, if ||Am j 4r j||1 ≤ 1, the
matrix exponential is computed by means of the Padé approxi-
mation; otherwise, the eigendecomposition method is used. By
this procedure, the computation speed is enhanced.
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2.2. Matrix operator method with matrix exponential

The Matrix Operator method with Matrix Exponential
(MOME) is a combination of the conventional matrix operator
method, e.g. [21], and the discrete ordinate method with matrix
exponential. The method is dedicated to modeling the radiative
transfer in a molecular atmosphere containing a homogeneous
cloud placed between the top level r jmin and the bottom level
r jmax+1. Note that the cloud homogeneity assumption is only re-
quired by the approximate models (in particular, by the asymp-
totic model) to be introduced in the next subsection.

Before describing MOME, we briefly review the basic con-
cepts of the conventional matrix operator method. The method,
which is illustrated in Fig. 2b, uses the interaction principle
equation[

i+m j
i−m j+1

]
=

[
Rm j Tm j

Tm j Rm j

] [
i−m j

i+m j+1

]
+

[
Σ+

m j
Σ−m j

]
, (19)

where Rm j and Tm j are the reflection and transmission matrices
of layer j, and Σ±m j is the source vector. As in DOME, Rm j, Tm j

and Σm j are given in terms of the exponential of the layer ma-
trix Am j; their expressions computed by using the matrix eigen-
decomposition method and the Padé approximation are given
in Appendix B. The computation process is an upward recur-
rence over the atmospheric layers, and uses the concept of a
“stack” [29]. The stack j + 1, i.e. the group of contiguous lay-
ers bounded above by the level r j+1 and below by the surface
level rN , is characterized by the reflection matrix Rm j+1 and the
reflection vector rm j+1, so that the interaction principle equation
for the stack j + 1 reads as

i+m j+1 = Rm j+1 i−m j+1 + rm j+1. (20)

From (19) and (20), we obtain the interaction principle equation
for stack j , i.e. the group of contiguous layers bounded above
by the level r j and below by the surface level rN ,

i+m j = Rm j i−m j + rm j, (21)

where Rm j and rm j are computed by using the adding formulas

Rm j = Rm j + Tm j Rm j+1 (I − Rm j Rm j+1)−1 Tm j, (22)
rm j = Σ+

m j + Tm j rm j+1

+ Tm j Rm j+1 (I − Rm j Rm j+1)−1 (Rm j rm j+1 + Σ−m j). (23)

The procedure is initialized with (15) and it is repeated until the
last layer is added to the stack. In the matrix operator method,
the dimension of the problem is small, because the dimension of
the matrices that have to be inverted is 2M×2M. In spite of this
fact, its efficiency is reduced because of the considerable num-
ber of matrix inversions and matrix multiplications required by
the adding algorithm. Another disadvantage is that the compu-
tation of the radiance in an arbitrary viewing direction by the
source function integration method requires the storage of the
reflection and transmission matrices of all individual layers. Al-
ternatively, and to keep the memory usage low, we may inter-
polate the radiance field in the discrete ordinate space by cubic

splines, or we may use the method of false discrete ordinate
(see Section 2.3).

The combined model MOME, which is illustrated in Fig.2c,
involves two computation steps:

1. compute the reflection matrix Rm jmin and the reflection vec-
tor rm jmin of stack jmin (containing all layers below the
cloud top height) in the framework of the conventional ma-
trix operator method;

2. compute the level values of the radiance im j for 1≤ j≤ jmin,
in the framework of the discrete ordinate method with ma-
trix exponential, by using as surface boundary condition
the interaction principle equation

i+m jmin = Rm jmin i−m jmin + rm jmin . (24)

Taking this model as a starting point, several approximate and
less time-consuming models have been designed. These are de-
scribed in the next subsection.

2.3. Approximate models
The approximate models are based on some preliminary sim-

plifications which we now describe. Firstly, the atmosphere be-
low the cloud bottom height is replaced by an equivalent Lam-
bertian surface. The resulting model corresponding to a cloud
with an underlying Lambertian surface can be summarized as
follows:

1. for the azimuthal mode m = 0, compute the reflection ma-
trix Rm jmax+1 and the reflection vector rm jmax+1 of stack jmax
containing all layers below the cloud bottom height;

2. compute the spherical albedo at the cloud bottom

Acb = 2 vᵀ Rm jmax+1 1, (25)

where [v]k = wk µk, k = 1, . . . ,M and 1 = [1, . . . , 1]ᵀ;
3. use the surface boundary condition

i+m jmax+1 = RAcb i−m jmax+1 + rAcb for m = 0, (26)

with

[RAcb ]kl = 2 Acb wl µl, (27)

[rAcb ]k = Acb
F0

π
µ0 e−τ

0
ext(|rcb−rTOA |), (28)

to initialize the adding procedure for computing the reflec-
tion matrix Rm jmin and the reflection vector rm jmin of stack
jmin containing all layers below the cloud top height;

4. compute the radiance field of the atmosphere above the
cloud top height using as surface boundary condition the
interaction principle equation (24).

Secondly, the atmosphere within the cloud (between the layers
jmin and jmax) is homogenized. The equivalent homogeneous
layer jmin is characterized by

σhomext jmin=

∑ jmax
j= jmin

σext j 4r j∑ jmax
j= jmin
4r j

, σhomsct jmin=

∑ jmax
j= jmin

σsct j 4r j∑ jmax
j= jmin
4r j

, (29)
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Figure 3: Illustration of a homogeneous cloud layer with an underlying Lambertian surface (a) and of an equivalent Lambertian cloud (b).

and

σhomsct jmin χ
hom
n jmin=

∑ jmax
j= jmin

σsct j χn j 4r j∑ jmax
j= jmin
4r j

, n = m, . . . , 2M−1. (30)

The resulting model, corresponding to a homogeneous cloud
layer with an underlying Lambertian surface and being illus-
trated in Fig. 3a, requires only one adding step. The homoge-
nization accounts for the scattering and absorption in the cloud,
the Rayleigh scattering, as well as the gas absorption between
the layers jmin and jmax. Strictly speaking, the equivalent ho-
mogeneous extinction coefficient σhom

ext jmin
should be computed,

for example, by minimizing the mismatch between the radi-
ance corresponding to an inhomogeneous atmosphere within
the cloud and the radiance corresponding to a homogeneous at-
mosphere. Although the homogenization formula (29) is a po-
tential source of error (especially for strong gas absorption), it
has been adopted in our analysis because of its simplicity.

We come now to the first approximate model. When the op-
tical thickness is sufficiently large, the reflection and transmis-
sion matrices Rm jmin and Tm jmin in (22) and (23) can be expressed
by simple analytical expressions deriving from the asymptotic
theory of thick layers. In the classical asymptotic theory, the re-
flection and transmission matrices for optically thick layers are
given by (we omit the dependency on the layer index jmin) [30]

Rm = R∞m − δm0
m l e−2kτ

1 − l2 e−2kτ kmM kᵀ
mM , (31)

Tm = δm0
m e−kτ

1 − l2 e−2kτ kmM kᵀ
mM , (32)

where Rm = (1/2) Rm M W−1 and Tm = (1/2) Tm M W−1 are the
discrete-ordinate approximations of the reflection and trans-
mission functions of the homogeneous layer Rm(µ, µ′) and
Tm(µ, µ′), respectively, R∞m = (1/2)R∞m MW−1 is the discrete-

ordinate approximation of the reflection function of a semi-infi-
nite atmosphere R∞m(µ, µ′), [W]kl =wkδkl, and [M]kl = (1/µk)δkl,
k, l = 1, . . . ,M. Furthermore, in (31) and (32), k = λM is the
diffusion exponent describing the attenuation of the radiation
in the diffusion domain, λM is the smallest eigenvalue of the
layer matrix Am, τ is the optical thickness of the homogeneous
layer, m and l are the constants defined in [30], and k0M is a
discrete-ordinate approximation of the escape function K(µ).
From (31) and (32) we see that Rm depends on the azimuthal
index m through the reflection matrix of a semi-infinite atmo-
sphere R∞m, while Tm is azimuthally independent (it depends
only on the azimuthal mode m = 0). A discrete-ordinate model
for computing Rm and Tm, and so Rm and Tm, is described
in [31]. In this model, the azimuthal independent parts of Rm

and Tm are derived by neglecting the azimuthal modes m > 0,
and the contributions of the terms corresponding to eigenvalues
larger than the smallest eigenvalue λM of Am. A more accurate
asymptotic model, the so-called P-order asymptotic model, has
been introduced in [32]. This model accounts for all azimuthal
modes m, and the contributions of the terms corresponding to
eigenvalues

λM−P ≥ λM−(P−1) ≥ · · · ≥ λM ,

where P is the order of approximation. The case P = 0 corre-
sponds in some sense to the classical asymptotic model, as it
accounts for all azimuthal modes m. It should be pointed out
that, in the classical asymptotic theory, the computation of the
reflection and transmission matrices can be speeded up by us-
ing parametrizations of the constants and functions appearing in
(31) and (32) [32, 33]. In our numerical analysis we are mainly
concerned about the accuracy of the approximate models and,
for this reason, we do not use any parametrization in (31) and
(32); we simulate a P-order asymptotic model by simply setting

Γm j = diag[0, . . . , 0, exp(−λM−P 4r j), . . . , exp(−λM 4r j)]

in place of (60) in Appendix B.
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The second approximate model to be discussed is the Equiv-
alent Lambertian Cloud (ELC) model (see Fig.3b). In the ELC
model, the atmosphere below the cloud top height is replaced
by an equivalent Lambertian surface with a ground albedo equal
to the spherical albedo of the atmosphere. The mathematical
background of the ELC model is discussed in Appendix C. In
the framework of MOME, this model can be simulated as fol-
lows:

1. for the azimuthal mode m = 0, compute the reflection ma-
trix Rm jmin and the reflection vector rm jmin of stack jmin con-
taining all layers below the cloud top height;

2. compute the spherical albedo at the cloud top

Act = 2 vᵀ Rm jmin 1;

3. compute the radiance field of the atmosphere above the
cloud top height by using the surface boundary condition

i+m jmin = RAct i−m jmin + rAct for m = 0.

The ELC model ensures the conservation of radiative flux if the
plane albedo r(µ) is almost constant with respect to µ. Note that
in a discrete-ordinate setting, the plane albedo r(µ) is modeled
by the plane albedo vector r = Rm jmin 1.

3. Acceleration techniques

In addition to the Padé approximation, the standard delta-M
method [11], which expands the original phase function into
a delta-function forward peak plus a new less anisotropic
phase function, and the truncated-plus-single-scattering (TMS)
method [34], several acceleration techniques are implemented
in the radiative transfer models. These are summarized below.

3.1. The telescoping technique

The telescoping technique relies on the following result [19,
20]: For an atmosphere consisting of gas molecules (Rayleigh
layers) and a group of contiguous cloud layers, the azimuthal
expansion coefficients of the phase functions pm j vanish for all
m > 2, and all Rayleigh layers j. Consequently, the layer matrix
Am j becomes a diagonal matrix and the layer vector bm j van-
ishes. The main idea of the telescoping technique is to solve
a reduced boundary-value problem for the cloud layers, and
to compute the radiances at the remaining levels recursively
by means of the extinction law. The telescoping technique for
DOME and MOME is outlined in Appendix D.

3.2. The method of false discrete ordinate

The method of false discrete ordinate has been discussed in
connection with the matrix operator method in [21–23] and the
discrete ordinate method with matrix exponential in [24]. For a
single viewing direction, an additional stream (directional co-
sine) is introduced as an extra Gaussian quadrature point with
zero weight. The upward radiance at the false discrete ordinate
is exactly the upward radiance in the direction of the line of
sight computed by the source function integration method. The

method of false discrete ordinate eliminates the source function
integration step, but increases the dimension of the layer equa-
tion. As a result, for applications involving one or two viewing
zenith angles, the method of false discrete ordinate does not in-
crease significantly the computation time of the forward model.

3.3. The correlated k-distribution method and the PCA tech-
nique

The correlated k-distribution method [10] involves grouping
spectral intervals according to absorption coefficient strength,
while PCA is used here as a dimensionality reduction technique
of the optical properties [16–18]. Although these methods have
been applied separately in the literature, they can work together.
To show this, we briefly summarize their basic concepts.

Let g(λ) be the slit function of the instrument, s the slit width,
and {λk}

Nλ

k=1 a discrete set of Nλ equally-spaced wavelengths in
the interval [λ − s/2, λ + s/2] with

λ1 −
4λ

2
= λ −

s
2

and λNλ
+
4λ

2
= λ +

s
2
,

where 4λ is the discretization step. The signal received by the
instrument is the convolution of the slit function and the mono-
chromatic radiance, and can be approximated by

I(λ) =

∫ λ+s/2

λ−s/2
g(λ − λ′) I(λ′) dλ′

≈

Nλ∑
k=1

g(λ − λk)
∫ λk+4λ/2

λk−4λ/2
I(λ′) dλ′. (33)

As gas absorption has greater spectral variation than molecu-
lar and particulate scattering, we may write I(λ) = I(σgas

abs
(λ)).

The most accurate method for computing the integral in (33)
involves a detailed line-by-line (LBL) calculation of the gas
absorption coefficient versus wavelength. On the other hand,
the correlated k-distribution method is based on the observation
that, for a homogeneous atmosphere, the transmission within a
spectral interval is independent of the LBL variation of the gas
absorption coefficientσgas

abs
with respect to the wavelength λ, but

depends only on the distribution ofσgas
abs

within the interval [35].
In this regard, let F = F(σgas

absk) be the cumulative density func-
tion ofσgas

abs
(λ) in the spectral interval [λk−4λ/2, λk+4λ/2], and

σgas
absk(F) the quantile function or the inverse distribution func-

tion. The signal received by the instrument can then be com-
puted as

I(λ) = 4λ

Nλ∑
k=1

g(λ − λk)
∫ 1

0
I(σgas
absk(F)) dF

= 4λ

Nλ∑
k=1

g(λ − λk)
Nc∑
l=1

ωl I(σgas
absk(Fl)), (34)

where (Fl, ωl) are a set of Nc quadrature points and weights
within the interval [0, 1]. The σgas

absk(Fl) can be computed by in-
verting the cumulative density functions of the LBL gas ab-
sorption coefficients or, in the case of the “exponential-sum
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fitting of transmittance” method [11], by solving a nonlinear
least squares problem of dimension Nc × M. Let us define
a new set of wavelengths {λp}

Nλ

p=1 and weights {ωp}
Nλ

p=1 with

Nλ = Nλ Nc, through the relations λp = λk and ωp = 4λωl,
where p = l + (k − 1) Nc for k = 1, . . . ,Nλ, l = 1, . . . ,Nc, and
set accordingly σgas

abs
(λp) = σgas

absk(Fl). Note that {λp}
Nλ

p=1 con-
tains Nλ groups of Nc identical wavelengths. By this construc-
tion, (34) becomes

I(λ) =

Nλ∑
p=1

ωp g(λ − λp) I(σgas
abs

(λp)), (35)

and it is apparent that (35) is a quadrature rule for (33) in the
case of the correlated k-distribution method.

We come now to the PCA technique. A general approximate
model for computing the radiance I at the wavelength λ is of
the form

ln
I(λ)
Ia(λ)

= fI(λ), (36)

where Ia is the radiance computed by an approximate radiative
transfer model, and fI is a correction factor. An efficient and
accurate method for computing the radiance correction factor
fI(λ) has been given by Natraj et al. [16, 17]. This approach,
which increases the computational efficiency of the radiative
transfer calculations in an absorbing and scattering atmosphere,
has the following attributes:

1. The exact model is the multi-stream DOME model, while
the approximate model is a two-stream version of DOME,
in which the eigenvalues and the eigenvectors of the layer
matrix are computed analytically, and the system of equa-
tions for the entire atmosphere is solved by means of a
pentadiagonal linear algebra solver.

2. The principal component analysis (PCA) is used to re-
duce the dimensionality of the optical parameters of the
atmospheric system. In particular, PCA is performed on
the logarithms of the layer values of the gas absorption
coefficient lnσgas

abs
(λ) and the molecular scattering coeffi-

cient lnσmolsct(λ); for each λk, k = 1, . . .Nλ, we define the
(2N − 2)-dimensional vector

x(λk) not
= xk = [lnσgas

abs j(λk); lnσmolsct j(λk)]ᵀ,

j = 1, . . . ,N − 1, so that the wavelength variability of the
optical parameters is encapsulated in xk.

3. The dependency of the correction factor on the optical pa-
rameters is modeled by a second-order Taylor expansion
about the mean value of the optical parameters.

Parenthetically, we note that in [18] the PCA-based radiative
transfer model of Natraj et al. [16, 17] has been generalized
to include several dimensionality reduction techniques as, for
example, linear embedding methods and discrete orthogonal
transforms. The PCA formalism remains valid if instead of
the set {λk}

Nλ

k=1 we consider the set {λp}
Nλ

p=1 of the correlated
k-distribution method (the wavelength variability is encapsu-
lated in x(λp)). This claim is checked in the next section.

4. Numerical simulations

In this section we analyze the accuracy and efficiency of the
exact and approximate radiative transfer models in the oxygen
(O2) A-band absorption channel at 764 nm (channel 9 of the
EPIC instrument). For this purpose, simulations are performed
for a water-cloud model with a Gamma size distribution

P (a) ∝ aα exp
[
−α

(
a

amod

)]
(37)

with parameters amod = 8 µm and α = 6. The droplet size ranges
between 0.02 and 50.0 µm. The cloud top height is ht = 4 km,
and the cloud geometrical thickness 4h is chosen as

4h =


1.0 km, τc ≤ 4
1.5 km, 4 < τc ≤ 8
2.0 km, 8 < τc ≤ 14
2.5 km, 14 < τc ≤ 20
3.0 km, τc > 20

,

where τc is the cloud optical thickness. The atmosphere is dis-
cretized with a step of 0.5 km between 0 and 16 km, a step of
2 km between 16 km and 20 km, a step of 5 km between 20 km
and 30 km, and, finally, a step of 10 km between 30 km and
50 km. The ground surface is Lambertian with albedo A = 0.06,
and, as in [3], the solar and viewing zenith angles are taken to
be equal, i.e. θ = θ0, while the relative azimuthal angle be-
tween the solar and viewing directions is chosen as 4ϕ = 176◦.
The azimuthal convergence test is the standard DISORT dou-
ble convergence test [36] with a tolerance of 10−6. The O2 ab-
sorption cross sections are computed by using LBL calculations
[37] with optimized rational approximations for the Voigt line
profile [38]. The wavenumber grid point spacing is chosen as
a fraction (e.g. 1/4) of the minimum half-width of the Voigt
lines taken from HITRAN database [39]. The Rayleigh cross-
sections and depolarization ratios are computed as in [40],
while the pressure and temperature profiles correspond to the
US standard model atmosphere [41], and this atmosphere is
considered free of aerosols. The radiances are solar-flux nor-
malized, and are computed by means of the delta-M approx-
imation in conjunction with the TMS correction. If not stated
otherwise the simulations are based on LBL calculations. The
instrument spectral response functions (ISRF) for the different
EPIC channels are available from NASA public servers.1

4.1. Exact models

In Fig. 4 we show the DOME radiances as functions of the
cloud optical thickness τc and for different values of the view-
ing zenith angle θ. The simulations are performed by using a
large number of discrete ordinates, namely M = 128. The plots
show that, for a fixed value of θ, the radiance is an increasing
function of τc. The reason is that the multiple-scattering con-
tribution, which is an increasing function of τc, dominates the

1https://avdc.gsfc.nasa.gov/pub/DSCOVR/EPIC_Filter_Data/

EPIC_Filters_Original_Data.xlsx.

7

https://avdc.gsfc.nasa.gov/pub/DSCOVR/EPIC_Filter_Data/EPIC_Filters_Original_Data.xlsx
https://avdc.gsfc.nasa.gov/pub/DSCOVR/EPIC_Filter_Data/EPIC_Filters_Original_Data.xlsx


0 10 20 30 40 50
0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

τc

I
[n

.u
.]

θ = 5◦

θ = 15◦

θ = 30◦

θ = 45◦

θ = 60◦

1
Figure 4: Reference DOME radiances as functions of τc for M = 128. In the
y-axis, [n.u.] stands for normalized units.

single-scattering contribution, which is a decreasing function
of τc. Moreover, for a fixed value of τc, the radiances decrease
as the viewing zenith angle θ increases (if θ increases, the path
through the atmosphere increases, the amount of oxygen ab-
sorption increases, and so, the single-scattering contribution de-
creases). These results are taken as the “exact” reference values
for the rest of the simulations that follow.

In Fig.5 we illustrate the relative errors in DOME radiances
for different values of the number of discrete ordinates M. The
plots show that, for a fixed value of θ, the absolute values of
the relative errors decrease with τc. The reason is that, now, the
relative error in the single-scattering contribution dominates the
relative error in the multiple-scattering contribution. The results
in Fig.5 can be summarized as follows:

1. for M = 8 and M = 16, the relative errors are smaller than
0.015 for τc ≥ 10, and lie roughly between 0.015 and 0.03
for τc < 10;

2. for M = 24 and M = 32, the relative errors are smaller
than 0.008 for τc ≥ 10, and lie between 0.008 and 0.015
for τc < 10;

3. for M = 48, the relative errors are smaller than 0.01 over
the entire range of τc;

4. for M = 64, the relative errors are smaller than 0.003 over
the entire range of τc.

The computation times for these simulations are given in Ta-
ble 2. Note that the simulations were performed on a server In-
tel(R) Xeon(R) CPU E5-2695 v3 @ 2.30 GHz using up to 56
threads, and that the computation times in Table 2 correspond
to the accumulated time over all threads. Thus, even though the
delta-M scaling is used, an accurate description of the backscat-
tering region requires M ≥ 48, although a compromise between
speed and accuracy can be reached by the choice 24 ≤ M ≤ 32.
Note also that for M ≥ 24 more than 30 azimuthal modes are
required to reach convergence with an accuracy of 10−6.

Fig.6 illustrates the relative errors in MOME radiances using
DOME as a reference. Taking into account that the relative er-
rors are smaller than 5 · 10−4, and that the MOME computation
user time is 1660 minutes for M = 32, we infer that DOME and
MOME yield similar results from the point of view of accuracy
and efficiency.
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Figure 5: Relative errors in DOME radiances as functions of τc and for differ-
ent values of M.
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Table 2: Computation user times in minutes for the results in Fig.5, and speed-
up factors with respect to the case M = 128.

M t / min Speed-up factor

8 67 2389.8

16 284 563.8

24 760 210.7

32 1711 93.6

48 5698 28.1

64 14548 11.0

128 160116 –
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Figure 6: Relative errors in MOME radiances with respect to DOME radiances
for M = 32.
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Figure 7: Relative errors in radiances as functions of τc when using the approximate models. The results correspond to M = 32 (top panels) and M = 64 (bottom
panels), and are computed by using the fourth-order asymptotic model, the zeroth-order asymptotic model and the ELC model.

4.2. Approximate models

The relative errors of the asymptotic (fourth- and zeroth-
order) and ELC models are shown in Fig.7. A general finding is
that an increase of the number of discrete ordinates does not sig-
nificantly improve the accuracy of the results; a real improve-
ment is apparent only for the fourth-order asymptotic model.
The relative errors of the fourth-order asymptotic model are
smaller than 0.02 for τc ≥ 10, and smaller than 0.04 for τc < 10.
For the zeroth-order asymptotic model, the relative errors have
a similar behaviour when τc ≥ 10, but they can reach 0.24 when
τc < 10.

The relative errors of the ELC model are excessively large;
they can reach 0.4 for small τc, and are 0.1 for large τc. The
main reason for this is that the plane albedo r(µ) varies signifi-
cantly with µ, and so, the radiative flux is not conserved (Fig.8).
Note that, even in the limit of large τc, the flux conservation
does not imply an accurate description of the radiance field
(the radiative flux description involves only the azimuthal mode
m = 0). Also note that the spherical albedo Act changes with
τc, a fact which contradicts the common assumption of a con-
stant cloud albedo [9]. The following result is a consequence
of the low accuracy of the ELC model. Let I(Act0, ht0) be the
radiance computed by an exact model corresponding to a cloud
with top height ht0 and a spherical albedo Act0 = Act0(τc0, ht0),
where τc0 is the optical thickness. Further, let h?t solve the min-
imization problem

h?t = arg min
ht

[IELC(Act0, ht) − I(Act0, ht0)]2,

where IELC(Act0, ht) is the radiance computed by the ELC
model. The minimizer h?t that yields a small residual, and so,
an acceptable accuracy, is different from ht0. Thus, the physi-
cal significance of the cloud top height is lost.
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Figure 9: Relative errors in DOME radiances as functions of τcwhen the ac-
celeration techniques are used. The results correspond to M = 32, and are
computed by using LBL calculations, correlated k-distribution, PCA technique
and correlated k-distribution plus PCA. Note that the first plot is the same one
as the fourth plot of Fig.5.

Table 3: Computation user times in minutes for the results in Fig.9, and speed-
up factors with respect to the case of LBL calculation.

Acceleration technique t / min Speed-up factor

LBL calculation 1711 –

Correlated k-distribution 159 10.8

PCA technique 22 77.8

Corr. k-distribution plus PCA technique 5 342.2

Table 4: Computation times in seconds for the approximate models using the
combined correlated k-distribution plus PCA technique. The simulations cor-
respond to the same scenario as in Fig.9.

Forward model t / s Speed-up factor

DOME 285.0 –

Fourth-order asymptotic 221.8 1.3

Zeroth-order asymptotic 222.2 1.3

ELC 188.7 1.5

4.3. Acceleration techniques

In Fig. 9 we illustrate the relative errors in DOME radian-
ces when LBL calculations are replaced with the correlated
k-distribution method, the PCA technique, and the combined
correlated k-distribution plus PCA method. The correspond-
ing computation times are given in Table 3. Note that almost
identical relative errors and computation times are obtained for
MOME (not shown here). The general observation is that the
relative error curves are practically unchanged when these ac-
celeration techniques are used. The computation time using the
combined correlated k-distribution plus PCA method is 5 times
smaller than that for the PCA technique alone, and 40 times
smaller than that for the correlated k-distribution method alone.
Taking into account that the results in Table 3 correspond to 16
values of τc, the average time to simultaneously compute the
radiances at 5 viewing zenith angles is 17.8 seconds.

In Table 4 we show the computation times of the approximate
models using the combined correlated k-distribution plus PCA
method. As in Fig.9, the radiances are computed for 16 values
of τc and at 5 viewing zenith angles. Note that the relative error
curves are very similar to those plotted in the top panels of Fig.7
(for M = 32). The conclusion is that the computation times of
the approximate models are lower, but not significantly lower
than those of DOME.

5. Conclusions

We analyzed several radiative transfer models which can be
used for the retrieval of cloud parameters from EPIC measure-
ments. The radiative transfer models are the exact DOME and
MOME models, and the approximate asymptotic and equiva-
lent Lambertian cloud models. MOME is a combination of the
conventional matrix operator method and DOME. Essentially,
the matrix exponential formalism enabled us to combine the
two methods in a simple way and to introduce the higher-order
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asymptotic and equivalent Lambertian cloud models in a natu-
ral manner. The radiative transfer models used several accelera-
tion techniques such as the Padé approximation, the telescoping
technique, the method of false discrete ordinate, the correlated
k-distribution method and the PCA technique. We computed
the radiances also by combining the correlated k-distribution
method with the PCA technique.

We analyzed the accuracy and efficiency of the radiative
transfer models when simulating radiances for the channel 9
of the EPIC instrument. In summary, the following conclusions
can be drawn:

1. The exact DOME and MOME models using correlated
k-distribution in conjunction with PCA yield an accuracy
better than 0.015 and a computation time of approximately
18 seconds for radiance calculations at 5 viewing zenith
angles.

2. The approximate models are slightly more efficient than
the exact models but their accuracy leaves much to be de-
sired. In particular, the relative errors of the zeroth-order
asymptotic model are large for cloud optical thicknesses
smaller than 10, while the relative errors of the ELC model
are large for all cloud optical thicknesses.

Thus, it appears that the exact DOME and MOME models could
fulfill the accuracy and efficiency requirements of an offline
processor for retrieval of cloud parameters from EPIC measure-
ments. For online (i.e. operational) retrieval algorithms, the in-
version is frequently performed by using look-up table (LUT)
approaches [4, 5, 42, 43]. The size of such a LUT is extremely
large, and so the time for computing a LUT by using exact ra-
diative transfer models is normally too high. Even though the
inversion is performed by neural network techniques [7, 8, 44],
the time for neural network training by using exact radiative
transfer models is high. In this regard, the above radiative trans-
fer models are an efficient tool for LUTs computation and neu-
ral network training.
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Appendix A

In this appendix we give the expressions for the layer quan-
tities A1

m j, A
2
m j and bm j in (13) computed by the eigendecompo-

sition method and the Padé approximation.
The eigendecomposition method for computing the matrix

exponential is based on a spectral decomposition of the matrix
Am j given by (8). This can be obtained by one of the following
methods: direct decomposition of an asymmetric matrix [45],
square-root decomposition [46], and Cholesky decomposition

[47]. Here, we use the direct decomposition method. Exploit-
ing the block symmetry of Am j, we find

Am j = Vm j

 Λm j 0
0 −Λm j

 V−1
m j, (38)

with

Vm j =

 V+
m j V−m j

V−m j V+
m j

 , (39)

V±m j = [v±1 , . . . , v
±
M], (40)

and
Λm j = diag[λ1, . . . , λM] not

= diag[λk]. (41)

Note that

 v+
k

v−k

 are the right eigenvectors of Am j correspond-

ing to the eigenvalue λk, and

 v−k
v+

k

 are the right eigenvectors

of Am j corresponding to the eigenvalue −λk. As a result, the
layer matrices can be expressed in compact form as

A1
m j = D1

m jV
−1
m j, (42)

A2
m j = −D2

m jV
−1
m j, (43)

where the diagonal scaling matrices D1
m j and D2

m j are given by

D1
m j = diag[a0(λk4r j); 1], (44)

D2
m j = diag[1; a0(λk4r j)], (45)

with a0 (x) = e−x. The layer vector is computed as

bm j = Bm j V−1
m j (4r j bm j), (46)

where, in the secant approximation of the solar beam, the diag-
onal scaling matrix Bm j is given by

Bm j = diag[b1(λk4r j); b2(λk4r j)], (47)

with

b1 (x) =
e−(τ0

ext j+x)
− e−τ

0
ext j+1

τ0
ext j+1 − τ

0
ext j − x

, (48)

b2 (x) =
e−(τ0

ext j+1+x)
− e−τ

0
ext j

τ0
ext j − τ

0
ext j+1 − x

. (49)

In (48) and (49), τ0
ext j and τ0

ext j+1 are the solar optical depths at
the boundary levels j and j + 1, respectively.

In the first-order Padé approximation to the matrix exponen-
tial, the layer equation reads as

A1
m j = I −

4r j

2
Am j, (50)

A2
m j = −

(
I +
4r j

2
Am j

)
, (51)

bm j = Bm j (4r j bm j) e−τ
0
ext j , (52)
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where Bm j is now given by

Bm j = I0(τ0) I +
[1
2

I0(τ0) − I1(τ0)
]
4r j Am j, (53)

with τ0 = τ0
ext j+1 − τ

0
ext j and

I0(x) =
1 − e−x

x
, (54)

I1(x) =
1
x

[
1 −

e−x

x
(1 − e−x)

]
. (55)

Appendix B

In this appendix we give the expressions of Rm j, Tm j and
Σm j in (19) computed by the eigendecomposition method and
the Padé approximation.

The reflection and transmission matrices of layer j can be
derived by representing the layer equation (13) as i+m j

i−m j+1

 =

 Rm j Tm j

Tm j Rm j

  i−m j

i+m j+1

 +

 Σ+
m j

Σ−m j

 , (56)

from which we find that Rm j Tm j

Tm j Rm j

 = −

 Γm j V11
m j −V12

m j

V21
m j −Γm j V22

m j

−1

×

 Γm j V12
m j −V11

m j

V22
m j −Γm j V21

m j

 , (57)

 Σ+
m j

Σ−m j

 =

 Γm j V11
m j −V12

m j

V21
m j −Γm j V22

m j

−1

bm j, (58)

with

V−1
m j =

 V11
m j V12

m j

V22
m j V22

m j

 , (59)

and
Γm j = diag[exp(−λk 4r j)]. (60)

By inspection of (57) and (58) it is apparent that the computa-
tion of Rm j, Tm j and Σm j requires an inversion and a multipli-
cation of matrices of dimension 2M × 2M. Other methods in
which the computation of Rm j and Tm j can be halved in order
are discussed in [32].

In the first-order Padé approximation to the matrix exponen-
tial, we have Rm j Tm j

Tm j Rm j

=−

 I − 1
24r jA11

m j − 1
24r jA12

m j
1
24r jA12

m j −(I − 1
24r jA11

m j)

−1

×

 − 1
24r jA12

m j −(I + 1
24r jA11

m j)

I + 1
24r jA11

m j
1
24r jA12

m j

 , (61)

 Σ+
m j

Σ−m j

=

 I − 1
24r jA11

m j − 1
24r jA12

m j
1
24r jA12

m j −(I − 1
24r jA11

m j)

−1

bm j. (62)

Appendix C

In this appendix we give a justification of the ELC model.
For the azimuthal mode m, the reflection law at the cloud top

height is (we omit the r jmin dependency)

Im(µ) = 2
∫ 1

0
Rm(µ, µ′) Itm(−µ′) µ′ dµ′, m ≥ 0, (63)

where Im(µ) is the upward diffuse radiance in the direction µ,
Rm(µ, µ′) is the reflection function of the atmosphere below the
cloud, and Itm(−µ′) is the downward total radiance. The upward
flux is

E↑ =

∫ 2π

0

∫ 1

0
I(µ, ϕ) µ dµ dϕ = 2π

∫ 1

0
r(µ′) It0(−µ′) µ′ dµ′, (64)

where

r(µ) = 2
∫ 1

0
R0(µ, µ′) µ′ dµ′ = 2

∫ 1

0
R0(µ′, µ) µ′ dµ′ (65)

is the plane albedo of the atmosphere below the cloud. Let us
assume that the plane albedo r(µ) is almost constant with re-
spect to µ, so that we can write r(µ) = r0. Then, the spherical
albedo of the atmosphere below the cloud is

Act = 2
∫ 1

0
r(µ) µ dµ = r0, (66)

and the upward flux is

E↑ = 2π Act

∫ 1

0
It0(−µ′) µ′ dµ′. (67)

The upward flux given by (67) is that of a Lambertian surface
with a ground albedo equal to the spherical albedo Act. By re-
placing the atmosphere below the cloud by a Lambertian sur-
face with the reflection function Rm(µ, µ′) = Act δm0, we try to
ensure the conservation of radiative flux. However, this is possi-
ble only when the plane albedo r(µ) does not vary significantly
with µ.

Appendix D

In this appendix we describe the telescoping technique for
DOME and MOME.

Let us make the assumption that for all layers j, with j < jmin
and j > jmax, and all azimuthal modes m > 2, the azimuthal ex-
pansion coefficients of the phase functions vanish. In this case,
Am j is a diagonal matrix,

Am j = diag
[
−
σext j

µk
;
σext j

µk

]
, (68)

and the solar layer vector bm j vanishes. The layer equation sim-
plifies to

im j+1 = e−Am j4r j im j, (69)
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which further implies that

i+m j = diag
[
exp

(
−
σext j 4r j

µk

)]
i+m j+1, (70)

i−m j+1 = diag
[
exp

(
−
σext j 4r j

µk

)]
i−m j. (71)

In the matrix operator method, we have

Rm j = 0, Tm j = diag
[
exp

(
−
σext j 4r j

µk

)]
, Σ±m j = 0, (72)

and the adding formula becomes

Rm j = Tm j Rm j+1 Tm j, (73)
rm j = Tm j rm j+1. (74)

Let

T = diag
[
exp

(
−

1
µk

N−1∑
j= jmax+1

σext j 4r j

)]
be the transmission matrix of the layers below the cloud. The
DOME telescoping technique can be summarized as follows.
For m > 2,

1. solve the radiative transfer equation for the cloud layers
with the top and bottom boundary conditions

i−m, jmin = 0, (75)

and

i+m jmax+1 = Rm jmax+1 i−m jmax+1 + rm jmax+1, (76)

Rm jmax+1 = T RmN T, (77)
rm jmax+1 = T rmN , (78)

respectively;
2. set i−m j = 0 for jmin − 1 ≤ j ≤ 1, and compute the radi-

ances above the cloud and in the upward directions i+m j for
jmin − 1 ≤ j ≤ 1, by using recurrence (70);

3. compute the radiances below the cloud and in the down-
ward directions i−m j+1 for jmax + 1 ≤ j ≤ N − 1, by using
recurrence (71);

4. compute the upward radiance at the surface i+mN from the
boundary condition (15);

5. compute the radiances below the cloud and in the upward
directions i+m j for jmax+ 2 ≤ j ≤ N −1, by using recurrence
(70).

The MOME telescoping technique involves the following steps.
For m > 2,

1. compute the reflection matrix Rm jmax+1 and the reflection
vector rm jmax+1 at the cloud bottom by means of (77) and
(78), respectively;

2. compute Rm jmin and rm jmin by using the adding algorithm;
3. set i−m j = 0 for jmin ≤ j ≤ 1, and i+m jmin

= rm jmin (boundary
condition at the cloud top);

4. compute the radiances above the cloud and in the upward
directions i+m j for jmin − 1 ≤ j ≤ 1, by using recurrence
(70).
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