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Abstract

In this paper, we describe several linearized radiative transfer models which can be used for the retrieval of cloud parameters from
EPIC (Earth Polychromatic Imaging Camera) measurements. The approaches under examination are (1) the linearized forward
approach, represented in this paper by the linearized discrete ordinate and matrix operator methods with matrix exponential, and
(2) the forward-adjoint approach based on the discrete ordinate method with matrix exponential. To enhance the performance of the
radiative transfer computations, the correlated k-distribution method and the Principal Component Analysis (PCA) technique are
used. We provide a compact description of the proposed methods, as well as a numerical analysis of their accuracy and efficiency
when simulating EPIC measurements in the oxygen A-band channel at 764 nm. We found that the computation time of the forward-
adjoint approach using the correlated k-distribution method in conjunction with PCA is approximately 13 s for simultaneously
computing the derivatives with respect to cloud optical thickness and cloud top height.
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1. Introduction

EPIC (Earth Polychromatic Imaging Camera) is a 10-channel
spectroradiometer (317–780 nm) onboard the spacecraft DS-
COVR (Deep Space Climate Observatory), and was designed to
measure the atmosphere and surface properties over the whole
sunlit half of the Earth from the Lagrange point L1. DSCOVR
provides observations of the Earth at near backward directions
with scattering angles ranging from 168◦ to 176◦. EPIC has
two pairs of reference and absorption channels in the oxygen
A-band (780 and 764 nm) and B-band (680 and 688 nm), which
are used for monitoring the vegetation condition [1], the aerosol
layer height and optical depth [2], as well as the cloud height
and optical depth [3]. A further description of EPIC/DSCOVR
geometry and their channels can be found in [4].

In [4], we analyzed exact and approximate radiative trans-
fer models regarding their applicability to the retrieval of cloud
parameters from EPIC measurements. It has been shown that
the exact Discrete Ordinate method with Matrix Exponential
(DOME) and the Matrix Operator method with Matrix Expo-
nential (MOME) using the correlated k-distribution method [5]
in conjunction with the Principal Component Analysis (PCA)
technique [6–9] fulfill the accuracy and efficiency requirements
for such kind of application.

However, the retrieval of atmospheric constituents from
satellite measurements also requires the knowledge of weight-
ing functions, i.e. the partial derivatives of the measured ra-
diance with respect to the atmospheric parameters being re-
trieved. The process of obtaining this set of partial derivatives,
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which constitute the matrix of weighting functions or Jacobian,
is commonly referred to as linearization analysis. There are two
common linearization approaches: the linearized forward ap-
proach and the forward-adjoint approach.

1. In the linearized forward approach, the partial derivatives
are computed analytically. Such linearized radiative trans-
fer models based on the conventional discrete ordinate
method and the matrix operator method have been devel-
oped by Spurr [10–13].

2. In the forward-adjoint approach, the measured radiance is
expressed as the scalar product of the solution of the ad-
joint problem and the source function of the forward prob-
lem. Using the linearization technique to the forward and
adjoint problems (i.e. using the differentiation operator by
means of the chain rule), analytical expressions for the
weighting functions have been derived in [14–20] and al-
so compared to other methods in [21, 22]. The forward-
adjoint approach is extremely efficient because only two
radiative transfer calculations are required for computing
the derivatives.

In this paper, we discuss the linearization of these radiative
transfer models for EPIC retrieval purposes. More precisely,
we will apply the linearized forward approach to DOME and
MOME, and design a forward-adjoint approach based on
DOME. As for the radiance calculations, the performances of
the derivative calculations will be enhanced using acceleration
techniques. The accuracy and efficiency of the linearized radia-
tive transfer models will be analyzed by performing simulations
which are pertinent to the retrieval of cloud parameters from
EPIC oxygen A- and B-band measurements.
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The paper is organized as follows. In Section 2 we review the
radiative transfer models DOME and MOME, in Section 3 we
discuss the linearized radiative transfer models, and in Section 4
we present runtime and error analyses for these models. The re-
sults are summarized in Section 5. Some specific features of the
linearization procedure are outlined in the appendices.

2. Radiative transfer models

The radiative transfer equation for the total radiance I(r,Ω)
at point r and in the direction Ω = (µ, ϕ) reads as

µ
dI
dr

(r,Ω) = −σext(r) I(r,Ω)

+
σsct (r)

4π

∫
4π

P(r,Ω,Ω′) I(r,Ω′) dΩ′, (1)

where σext and σsct are the extinction and scattering coeffi-
cients, respectively, and P is the scattering phase function. The
phase function P is expanded in terms of normalized Legendre
polynomials Pn, i.e.

P(r,Ω,Ω′) = P(r, cos Θ) =

∞∑
n=0

cn χn(r) Pn(cos Θ), (2)

where cn =
√

(2n + 1) / 2 and cos Θ = Ω · Ω′. The differen-
tial equation (1) is endowed with the top-of-atmosphere (TOA)
boundary condition (r = rTOA),

I(rTOA,Ω−) = F0 δ(Ω− −Ω0), (3)

and the surface boundary condition (r = rs),

I(rs,Ω+) =
A
π

∫
2π
ρ(Ω+,Ω−) |µ−| I(rs,Ω−) dΩ−, (4)

where F0 is the incident solar flux, Ω0 = (−µ0, ϕ0) with µ0 > 0
is the incident solar direction, and A and ρ are the surface albedo
and the normalized bi-directional reflection function, respec-
tively. The notations Ω+ and Ω− stand for an upward and a
downward direction, respectively. The total radiance is decom-
posed into the diffuse radiance Id(r,Ω) and the direct solar beam
I�(r,Ω), i.e.

I(r,Ω) = Id(r,Ω) + I�(r,Ω), (5)

where
I�(r,Ω) = F0 δ(Ω −Ω0) T (r) , (6)

T (r) = exp[−τext(|r − rTOA|,Ω0)] is the solar transmission, and
τext(|r − rTOA|,Ω0) is the solar optical depth between a general
point r and the specific point at the top of the atmosphere rTOA
in a spherical atmosphere.

Assuming cosine-azimuthal expansions for the diffuse radi-
ance, the scattering phase function and the normalized bi-direc-
tional reflection function, we formulate a boundary-value prob-
lem for each Fourier component of the diffuse radiance Idm(r, µ)
by means of the discrete ordinate method. The angular varia-
tion of the phase function and radiance is discretized in M dis-
crete-ordinate directions per hemisphere, and the set of Gauss-
Legendre quadrature points and weights in the interval (0, 1) is

denoted by {µk,wk}
M
k=1. The atmosphere is discretized in N lev-

els: r1 = rTOA > r2 > . . . > rN = rs, and a layer j, bounded
above by the level r j and below by the level r j+1, has the geo-
metrical thickness 4r j = r j − r j+1. The extinction and scatter-
ing coefficients, as well as the phase function coefficients, are
assumed to be constant within each layer; their average values
on layer j are σext j, σsct j and χn j, respectively.

The radiative transfer models analyzed in [4] are DOME and
MOME. In summary, these models can be characterized as fol-
lows:

1. DOME [23, 24] relies on the layer equation, which relates
the level values of the radiance field im j = [i+m j; i−m j]

ᵀ with
[i±m j]k = Idm(r j,±µk), k = 1, . . . ,M, that is,

A1
m j im j + A2

m j im j+1 = bm j. (7)

The layer equation together with the boundary conditions
at the top and the bottom of the atmosphere, as well as the
continuity of the radiance across layers, are assembled into
the global matrix of the entire atmosphere, and the solution
of the resulting system of equations yields the level values
of the diffuse radiance field.

2. MOME applies to a molecular atmosphere containing a
homogeneous cloud placed between the top level r jmin and
the bottom level r jmax+1. The method is a combination of
the conventional matrix operator method and the discrete
ordinate method with matrix exponential, in the sense that
the reflection matrix and vector of the atmosphere below
the cloud top are computed in the framework of the con-
ventional matrix operator method, while the level values
of the diffuse radiance field above the cloud top are com-
puted in the framework of the discrete ordinate method
with matrix exponential. The conventional matrix operator
method, e.g. [25], uses the interaction principle equation[

i+m j
i−m j+1

]
=

[
Rm j Tm j

Tm j Rm j

] [
i−m j

i+m j+1

]
+

[
Σ+

m j
Σ−m j

]
, (8)

where Rm j and Tm j are the reflection and transmission
matrices of layer j, respectively, and Σ±m j is the source
vector. The computation process is an upward recurrence
over the atmospheric layers [13]: If Rm j+1 and rm j+1 are re-
spectively the reflection matrix and the reflection vector of
stack j + 1 (the group of layers bounded above by the level
r j+1 and below by the surface level rN), the interaction
principle equation for stack j (the group of layers bounded
above by the level r j and below by the surface level rN)
reads as

i+m j = Rm j i−m j + rm j, (9)

where Rm j and rm j are computed with the adding formulas

Rm j = Rm j + Tm j Rm j+1 (I − Rm j Rm j+1)−1 Tm j, (10)
rm j = Σ+

m j + Tm j rm j+1

+ Tm j Rm j+1(I − Rm j Rm j+1)−1(Rm j rm j+1 + Σ−m j). (11)
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The two methods are combined by considering the interac-
tion principle equation at the cloud top, i.e.

i+m jmin = Rm jmin i−m jmin + rm jmin , (12)

as the surface boundary condition for the discrete ordinate
method with matrix exponential.

The layer quantities A1
m j, A

2
m j and bm j in (7), as well as Rm j, Tm j

and Σ±m j in (8), are expressed in terms of the exponential of the
layer matrix

Am j =

[
A11

m j A12
m j

−A12
m j −A11

m j

]
, (13)

with entries

[A11
m j]kl =

1
2 µk

[wl σsct j pm j(µk, µl) − 2σext j δkl], (14)

[A12
m j]kl =

1
2 µk

wl σsct j pm j(µk,−µl). (15)

Note that the product σsct j pm j(µ, µ′) in (14) and (15) is com-
puted as

σsct j pm j(µ, µ′) =

2M−1∑
n=m

ξn j Pm
n (µ) Pm

n (µ′), (16)

ξn j = σsct j χn j, (17)

so that the optical input parameters of the radiative transfer mod-
els are σext j and ξn j for j = 1, . . . ,N−1 and n = 0, . . . , 2M−1.
DOME and MOME rely on the same matrix exponential for-
malism. The matrix exponential can be computed by employ-
ing the eigendecomposition method or the Padé approxima-
tion. In the first case, the layer quantities depend on the in-
verse of the eigenvector matrix Vm j and the eigenvalue matrix
Λm j = diag[λ1, . . . , λM] of Am j, while, in the second case, the
layer quantities are expressed in terms of the layer matrix Am j

[4]. In the layer j, the matrix exponential is computed by means
of the Padé approximation if ||Am j 4r j|| ≤ 1, and by the eigende-
composition method if this is not the case. For radiance calcu-
lations in the EPIC oxygen A-band absorption channel, DOME
and MOME have been used in [4] together with the following
acceleration techniques:

1. the delta-M [26] and the truncated-plus-single-scattering
(TMS) method [27];

2. the telescoping technique [12, 23], which consists of the
solution of a (reduced) boundary-value problem for the
cloud layers and azimuthal modes m > 2;

3. the method of false discrete ordinate [25, 28–30], which
eliminates the source integration in the post-processing
step of the discrete ordinate method;

4. the correlated k-distribution method [5] and the PCA tech-
nique [6–9] (independently and together).

3. Linearized radiative transfer models

The radiance measured by the instrument is a function of var-
ious atmospheric and surface parameters of interest. In the first
category we include, for example, the layer values of the trace
gas extinction coefficient and the cloud parameters, while in the
second category we include the surface albedo and parameters
characterizing the normalized bi-directional reflection function.
In the following, we consider the computation of the partial
derivatives of the measured radiance with respect to a set of at-
mospheric parameters ςi, i = 1, . . . ,Np, since the basic concepts
are fully represented in this case. Before proceeding, we men-
tion that the optical input parameters of the linearized radiative
transfer models are ∂σext j/∂ςi and ∂ξn j/∂ςi for i = 1, . . . ,Np,
j = 1, . . . ,N − 1, and n = 0, . . . , 2M − 1.

3.1. Linearized forward approach
A detailed description of the linearized forward approach

can be found in [10–12]. In our case, the linearized forward ap-
proach is applied to DOME and MOME. To compute the partial
derivative with respect to the atmospheric property ςi, we pro-
ceed as follows:

1. InDOME,we linearize the layerequation (7)andobtain[22]

A1
m j
∂im j

∂ςi
+A2

m j
∂im j+1

∂ςi
=
∂bm j

∂ςi
−
∂A1

m j

∂ςi
im j−

∂A2
m j

∂ςi
im j+1. (18)

As for radiance calculations, the linearized layer equations
(18) are assembled into a global system of equations for
the entire atmosphere. It is worth noticing that the system
matrix for derivative calculations coincides with the sys-
tem matrix for radiance calculations; only the right-hand
sides are different. In order to increase the efficiency of the
method we compute the partial derivatives with respect to
all atmospheric parameters ςi, i = 1, . . . ,Np, that is, we
solve a system of equations with multiple right-hand sides.

2. In MOME, we linearize the interaction principle equation
in (12), and compute the partial derivatives ∂Rm jmin/∂ςi and
∂rm jmin/∂ςi recursively by linearizing the adding formulas
(10) and (11). From (10) and (11), it is apparent that the re-
cursion relation involves the partial derivatives ∂Rm j/∂ςi,
∂Tm j/∂ςi and ∂Σ±m j/∂ςi.

To compute ∂A1
m j/∂ςi, ∂A2

m j/∂ςi and ∂bm j/∂ςi aswell as ∂Rm j/∂ςi,
∂Tm j/∂ςi and ∂Σ±m j/∂ςi, we apply the chain rule. In the case of
the Padé approximation, the derivative calculations are trivial,
but in the case of the eigendecomposition method we face the
calculation of the partial derivatives of the inverse of the eigen-
vector matrix V−1

m j and of the eigenvalues λk. This computation
step is outlined in Appendix A.

3.2. Forward-adjoint approach
The steps of the adjoint radiative transfer approach consist

of the formulation of the boundary-value problem for radiative
transfer as an operator equation with homogeneous boundary
conditions, the derivation of the adjoint radiative transfer oper-
ator, and the representation of the measured radiance in terms
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of the solution of the adjoint radiative transfer problem and the
forward source function. In our analysis, the forward and the
adjoint radiative transfer problem are solved by using DOME.

Essentially, the forward-adjoint approach relies on the fol-
lowing basic result: If the (total) radiance field I(r,Ω) solves the
forward problem

LI(r,Ω) = Q(r,Ω), (19)
I(rTOA,Ω−) = I(rs,Ω+) = 0, (20)

and the radiance field I†(r,Ω) solves the adjoint problem

L†I†(r,Ω) = Q†(r,Ω), (21)

I†(rTOA,Ω+) = I†(rs,Ω−) = 0, (22)

then the measured radiance at the top of the atmosphere and in
the direction Ωm = (µm, ϕm) with µm > 0, can be computed as

Im =
〈
Q†, I

〉
=

〈
I†,Q

〉
. (23)

The forward radiative transfer operator L and the forward
source function Q are given by

LI(r,Ω) = µ
dI
dr

(r,Ω) + σext(r) I(r,Ω)

−
σsct (r)

4π

∫
4π

P(r,Ω,Ω′) I(r,Ω′) dΩ′

−
A
π
δ(r−rs) H(µ)µ

∫
4π
ρ(Ω,Ω′) H(−µ′) |µ′| I(r,Ω′) dΩ′ (24)

and

Q(r,Ω) = F0 µ0 δ(r − rTOA) δ(Ω −Ω0), (25)

respectively, where δ is the Dirac delta function and H is the
Heaviside step function. In this context, the forward problem
consisting of the operator equation (19) and the homogeneous
boundary conditions (20) is equivalent to the radiative trans-
fer equation (1) with the boundary conditions (3) and (4). The
adjoint radiative transfer operator L† is defined through the La-
grange identity 〈

LI, I†
〉

=
〈
I,L†I†

〉
, (26)

where the scalar product of fields I1 and I2 is given by

〈
I1, I2

〉
=

∫ rTOA

rs

∫
4π

I1(r,Ω) I2(r,Ω) dΩ dr.

For the homogeneous boundary conditions (20) and (22), the
expressions of the adjoint operator L† and the adjoint source
function Q† are

L†I†(r,Ω) = −µ
dI†

dr
(r,Ω) + σext(r) I†(r,Ω)

−
σsct (r)

4π

∫
4π

P(r,Ω′,Ω) I†(r,Ω′) dΩ′

−
A
π
δ(r−rs) H(−µ) |µ|

∫
4π
ρ(Ω′,Ω) H(µ′) |µ′| I†(r,Ω′) dΩ′ (27)

and
Q†(r,Ω) = δ(r − rTOA) δ(Ω −Ωm), (28)

respectively. The solution of the adjoint radiative transfer prob-
lem can be found by using the same solution method as for the
forward problem with a modified source function. Actually, it
can be shown that the conjugate adjoint radiance Î† defined by

Î†(r,Ω) = I†(r,−Ω)

solves the conjugate adjoint problem

LÎ†(r,Ω) = Q̂†(r,Ω), (29)

Î†(rTOA,Ω−) = Î†(rs,Ω+) = 0, (30)

where
Q̂†(r,Ω) = F̂0 µm δ(r − rTOA) δ(Ω − Ω̂m) (31)

is the conjugate adjoint source function, Ω̂m =−Ωm = (̂µm, ϕ̂m) is
the conjugate adjoint direction ( µ̂m = −µm and ϕ̂m = ϕm + π),
and F̂0 = 1/µm. The boundary value problems (19)-(20) and
(29)-(30) are identical excepting the source functions (25) and
(31), which, however, are of similar forms. As a result, in the
discrete ordinate method with matrix exponential, the system
matrices for the forward and conjugate adjoint problems coin-
cide, and solving a system of equations with two right-hand
sides yields the level values of the forward and (conjugate) ad-
joint radiance fields.

We come now to the derivative calculations. Taking the
variation of the measured radiance with respect to variations
of atmospheric parameters, and using (21) and (26) yields
(δQ†=0)

δIm =
〈
Q†, δI

〉
=

〈
I†,LδI

〉
. (32)

The variation of the forward operator equation (19) gives

LδI = δQ − δLI, (33)

and, since δQ = 0, we obtain

δIm = −
〈
I†, δLI

〉
. (34)

In the first step of the forward-adjoint approach, we separate
the total radiance I(r,Ω) into a diffuse and a direct component
Id(r,Ω) and I�(r,Ω), respectively, (cf. (5)), and do the same for
the conjugate adjoint total radiance Î†(r,Ω), i.e.

Î†(r,Ω) = Î†
d
(r,Ω) + Î†�(r,Ω), (35)

with
Î†�(r,Ω) = F̂0 δ(Ω − Ω̂m) T̂ †(r)

and T̂ †(r) = exp[−τext(|r − rTOA|, Ω̂m)]. Inserting the resulting
expressions in (34) it gives

∂Im
∂ςi

= T1 + T2, (36)
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N

r jmin

r jmin+1 ht

jmin+1

jmin

jmin

N

jmin+1

jmin

jmin

homogenization

cloud

clear sky

Figure 1: Homogenization of the atmospheric layer jmin containing the cloud top height ht. The layer jmin, with the boundary levels jmin and jmin + 1, is indicated
by a circle.

where the first term T1 involves integrals of the conjugate ad-
joint diffuse radiance Î†

d
,

T1 = −

rTOA∫
rs

∫
4π

∂σext
∂ςi

(r) Î†
d
(r,−Ω) Id(r,Ω) drdΩ

− F0

rTOA∫
rs

∂σext
∂ςi

(r) Î†
d
(r,−Ω0) T(r) dr

+
1

4π

rTOA∫
rs

∫
4π

Î†
d
(r,−Ω)drdΩ

∫
4π

∂

∂ςi
[σsct(r)P(r,Ω,Ω′)] Id(r,Ω′)dΩ′

+
F0

4π

rTOA∫
rs

∫
4π

∂

∂ςi
[σsct(r)P(r,Ω,Ω0)]Î†

d
(r,−Ω)T(r) drdΩ, (37)

while the second term T2 involves integrals of the (conjugate)
adjoint transmission T̂ †,

T2 = −F̂0

rTOA∫
rs

∂σext
∂ςi

(r) Id(r,Ωm) T̂ †(r) dr

+
F̂0

4π

rTOA∫
rs

T̂ †(r) dr
∫
4π

∂

∂ςi
[σsct(r) P(r,Ωm,Ω

′)] Id(r,Ω′) dΩ′

+
F̂0 F0

4π

rTOA∫
rs

∂

∂ςi
[σsct(r) P(r,Ωm,Ω0)]T(r) T̂ †(r) dr. (38)

As a next step, the integration over the azimuthal angle in
(37) and (38) is performed. This computation step together
with the integration over the radial coordinate is described in
Appendix B.

3.3. Derivatives with respect to cloud geometrical parameters
We must be cautious when computing the derivatives with

respect to the cloud geometrical parameters (cloud top height ht
and cloud bottom height hb). In fact, this process is intimately
connected with the discretization of the atmosphere containing
an homogeneous cloud. We have two options:

1. the atmosphere above, below and in the cloud is discre-
tized, so that the cloud top and bottom heights are atmo-
spheric levels;

2. the atmosphere is discretized into a fixed grid, and the lay-
ers containing the cloud top and bottom heights are ho-
mogenized.

The first discretization method, in which the atmosphere is dis-
cretized each time when a new cloud position is considered, can
be used in conjunction with the forward-adjoint approach and
is described in Appendix C. The second discretization method,
in which a fixed altitude grid is used, can be applied for both
the linearized forward and forward-adjoint approaches and is
summarized below.

Let the optical properties of the homogeneous cloud be de-
scribed by the cloud extinction coefficient σcext and the expan-
sion coefficients ξcn . Assume that the cloud top height ht lies
between the levels r jmin+1 and r jmin , i.e. r jmin+1 < ht < r jmin as
shown in Fig. 1. In layer jmin containing the cloud top height
ht, we perform an homogenization which consists of the com-
putation of the optical parameters σext jmin and ξn jmin by using

σext jmin = σ0
ext jmin + w(ht)σcext, (39)

ξn jmin = ξ0
n jmin + w(ht) ξcn , (40)

where the superscript “0” refers to the clear sky atmosphere,
and the weighting factor w is given by

w(ht) =
ht − r jmin+1

4r j
. (41)

By this procedure, σext jmin and ξn jmin are functions of ht, i.e.

σext jmin = σext jmin (σ
c
ext, ht) and ξn jmin = ξn jmin (σ

c
ext, ht),

so that the partial derivatives ∂σext jmin/∂ht and ∂ξn jmin/∂ht can
be readily computed. The derivatives with respect to the cloud
bottom height hb are computed in an analogous manner. Note
that, for an accurate homogenization, the discretization step 4r j

should not be too large.
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3.4. PCA-based methods for derivative calculations
As for radiance calculations, acceleration techniques can be

used to increase the computation speed. These include the Padé
approximation, the delta-M scaling and TMS correction meth-
ods, the telescoping technique, the method of false discrete
ordinate, the correlated k-distribution method, and the PCA
technique. For derivative calculations, two PCA-based meth-
ods can be designed. To explain these methods, we give a short
overview of dimensionality reduction techniques for optical pa-
rameters [9].

An approximate model for computing the radiance I at the
wavelength λ reads as

ln
I(λ)
Ia(λ)

= fI(λ), (42)

where Ia is the radiance computed by an approximate radiative
transfer model, and fI is a correction factor.
The optical property dimensionality reduction is performed on
the layer values of the gas absorption coefficient lnσgas

abs
(λ)

and the molecular scattering coefficient lnσmolsct(λ). For each
λk, k = 1, . . .Nλ, where Nλ is the number of discrete wave-
lengths, we define an N-dimensional vector (the abbreviation
“not” stands for notation)

x(λk) not
= xk = [lnσgas

abs j(λk); lnσmolsct j(λk)]ᵀ, j=1, . . . ,N−1, (43)

withN =2N−2, so that the wavelength variability of the optical
parameters is contained in xk. High-dimensional real data often
lie on or near a lower-dimensional manifold. The fundamental
issues in dimensionality reduction are the modeling of the ge-
ometry structure of the manifold, and the design of an appropri-
ate embedding for data projection. For the N-dimensional data
set {xk}

Nλ

k=1, where xk ∈ RN , let x = (1/Nλ)
∑Nλ

k=1 xk be the sam-
ple mean of the data. The goal of a linear embedding method
is to find an M-dimensional subspace (M < N) spanned by
a set of linear independent vectors {al}

M
l=1, such that the cen-

tered data xk − x lie mainly on this subspace (manifold), i.e.
xk ≈ x +

∑M
l=1 yklal = x + Ayk, k = 1, . . . ,Nλ. Here, A not

= [al]Ml=1
is an N ×M matrix comprising the column vectors al, and ykl

is the lth component of the vector of parameters yk ∈ RM. The
vector of parameters yk is given by the forward mapping from
the high-dimensional space to the low-dimensional space, i.e.
yk =A†(xk−x), where A†= (AT A)−1Aᵀ is the pseudoinverse of A.
Now, let f (xk) be a scalar function, which by assumption is not
too nonlinear in xk. Setting

4xk =

M∑
l=1

ykl al, (44)

we approximate f (xk) by a second-order Taylor expansion, ex-
pressed in finite-difference form by

f (xk) ≈ f (x) +
1
2

M∑
l=1

[ f (x + al) − f (x − al)] ykl

+
1
2

M∑
l=1

[ f (x + al) − 2 f (x̄) + f (x − al)] y2
kl. (45)

To compute the radiance correction factor we identify

f (xk) = fI(λk) = ln[I(λk)/Ia(λk)], (46)

and from (45) it is apparent that the computation of the correc-
tion factor requires 2M + 1 calls of the exact and approximate
models. As a result and taking into account thatM � Nλ, we
are led to a substantial reduction of the computational time. A
short remark is though needed. PCA produces a global linear
model of the data and is appropriate when the manifold is em-
bedded linearly or almost linearly in the data space. The method
preserves only the global structure of the data, and may fail to
preserve the local structure if the data lies on a nonlinear mani-
fold. In contrast, the linear embedding methods presented in [9]
optimally preserve local neighbourhood information (the local
structure of the data) in a certain sense. In fact, the dimensional-
ity reduction approach used in [6, 7] is also a local linear model,
which combines PCA with the clustering of the data space. In
general, a local model implementation of PCA involves a two-
step procedure: (1) a clustering of the data space into disjoint
regions by using, for instance, the Lloyd algorithm with Eucli-
dean distances as the distortion function, and (2) the estimation
of the linear mappings within each region by PCA. Then, each
region (bin of wavelengths) is characterized by its own orthogo-
nal basis, and so, by its own set of correction factors. If P is the
number of the disjoint regions, then (2M+1)P calls of the exact
and the approximate models are required to compute all correc-
tion factors.

Two methods can be used for computing the derivatives with
respect to the atmospheric parameter ςi.

1. The first method is similar to (46), and uses the identifica-
tion

f (xk) = fςi (λk) = ln
[ ∂I
∂ςi

(λk)/
∂Ia
∂ςi

(λk)
]
. (47)

2. The second method is based on the linearization of the
restoration equation (45) for the radiance correction factor
fI, and involves the computation of the derivatives ∂ykl/∂ςi

[8]. In our framework, this technique can be summarized
as follows. Express the restoration equation as

I(λk) = Ia(λk) e fI(λk), (48)

and take the derivative to obtain

∂I
∂ςi

(λk) =
∂Ia
∂ςi

(λk) e fI(λk) + Ia(λk) e fI(λk) ∂ fI
∂ςi

(λk), (49)

with

∂ fI
∂ςi

(λk) ≡
∂ f
∂ςi

(xk)

≈
∂ f
∂ςi

(x) +
1
2

M∑
l=1

[
∂ f
∂ςi

(x + al) −
∂ f
∂ςi

(x − al)] ykl

+
1
2

M∑
l=1

[ f (x + al) − f (x − al)]
∂ykl

∂ςi

+
1
2

M∑
l=1

[
∂ f
∂ςi

(x + al) − 2
∂ f
∂ςi

(x) +
∂ f
∂ςi

(x − al)] y2
kl

+

M∑
l=1

[ f (x + al) − 2 f (x) + f (x − al)] ykl
∂ykl

∂ςi
. (50)

6



In general, from a vector x (which can be identified with x
or x ± al) we extract {σgas

abs j}
N−1
j=1 and {σmol

sct j}
N−1
j=1 according

to the representation x = [lnσgas
abs j; lnσmol

sct j]
ᵀ and, for these

optical parameters, we compute the exact and approximate
radiances I(x) and Ia(x), respectively. Then, we have

∂ f
∂ςi

(x) =
1

I(x) Ia(x)

[ ∂I
∂ςi

(x) Ia(x) −
∂Ia
∂ςi

(x) I(x)
]
, (51)

and what is left is the computation of ∂ykl / ∂ςi. For do-
ing this, we need to specify the mapping from the high-
dimensional space to the low-dimensional space. Let PCA
be chosen as the dimensionality reduction technique, and
let us assume that all centered data xk − x, k = 1, . . . ,Nλ,
are stacked into the columns of an N × Nλ matrix X, i.e.
X = [xk − x]Nλ

k=1. Essentially, PCA performs a dimension-
ality reduction by projecting the original N-dimensional
data on theM-dimensional subspace spanned by the dom-
inant singular vectors of the data’s covariance matrix.
Therefore, assuming the singular value decomposition
Cx = (1/Nλ) X Xᵀ = UΣUᵀ, where Σ not

= diag[σl]Nl=1 is the
N ×N diagonal matrix of the singular values appearing in
decreasing order σ1 > σ2 > · · · > σN > 0, and U= [ul]Nl=1
is the N × N orthogonal (or orthonormal) matrix of the
singular vectors ul, we take A = UM = [ul]Ml=1, yielding
A† = Uᵀ

M
. As in [6, 7], we consider the scaled orthogonal

vectors ul =σl ul, in which case we have A=UM=UMΣM
and A†=U

†

M=Σ−1
M

Uᵀ
M

, with ΣM=diag[σl]Ml=1. We then get

ykl =
1
σl

uᵀ
l (xk − x), (52)

and, further,

∂ykl

∂ςi
= −

1
σ2

l

uᵀ
l (xk − x)

∂σl

∂ςi
+

1
σl

(∂ul

∂ςi

)ᵀ
(xk − x)

+
1
σl

uᵀ
l

(∂xk

∂ςi
−
∂x
∂ςi

)
. (53)

To compute ∂ykl / ∂ςi we need ∂σl / ∂ςi and ∂ul / ∂ςi. As
Cx ul = σl ul and uᵀ

l ul = 1, these quantities can be com-
puted by solving the (N +1)× (N +1) system of equations
(as in Appendix A)[

ul σl IN − Cx
0 uᵀ

l

]  ∂σl
∂ςi
∂ul
∂ςi

 =

[ ∂Cx
∂ςi

ul

0

]
. (54)

The disadvantage of the first method is that the second-order
Taylor approximation should be valid for both fI(λk) and
fςi (λk), while the disadvantage of the second method lies in
an increase of the computation time. However, in the second
method, if ςi stands for the cloud optical thickness or the cloud
top height, then xk does not depend on ςi, and so, ∂ykl/∂ςi = 0.
Consequently, the system of equations (54) needs not to be
solved, and the computation time of the second method is com-
parable to that of the first method.

In [4], the correlated k-distribution method has been com-
bined with the PCA technique to speed-up the radiance calcu-
lations. The same technique is used here for the derivative cal-
culations.

4. Numerical simulations

In this section, we analyze the accuracy and efficiency of the
linearized radiative transfer models in computing the deriva-
tives of the measured radiance with respect to the cloud op-
tical thickness τc and the cloud top height ht. The models to
be analyzed are the Linearized Discrete Ordinate method with
Matrix Exponential (LDOME), the Linearized Matrix Operator
method with Matrix Exponential (LMOME), and the Forward-
Adjoint approach using the Discrete Ordinate method with Ma-
trix Exponential (FADOME). The derivatives with respect to
the cloud geometrical parameters are computed by homogeniz-
ing the layers containing the cloud top and bottom heights. The
simulations were performed for channel 9 of the EPIC instru-
ment, which is an oxygen A-band absorption channel at 764 nm
with a bandwidth of 1.0 nm. As in [4], we consider a water-
cloud model with a Gamma size distribution

P (a) ∝ aα exp
[
−α

(
a

amod

)]
(55)

of parameters amod = 8 µm and α = 6. The droplet size ranges
between 0.02 and 50.0 µm, and the cloud geometrical thickness
is 4h = ht − hb = 1.5 km. The atmosphere is discretized with a
step of 0.5 km between 0 and 16 km, a step of 2 km between 16
and 20 km, a step of 5 km between 20 and 30 km, and, finally,
a step of 10 km between 30 and 50 km. The ground surface is
Lambertian with albedo A = 0.2, the solar and viewing zenith
angles are θm = θ0 = 30◦, and the relative azimuthal angle is
4ϕ = ϕm−ϕ0 = 176◦. In [4], it was found that a compromise be-
tween an accurate description of the scattering in the backward
direction and computation time can be reached for a number of
discrete ordinates M in the range 24 ≤ M ≤ 32. For this reason,
we fix the number of discrete ordinates to 32. The radiances are
solar-flux normalized, and the delta-M scaling together with the
TMS correction is used. The simulations were performed on a
server Intel(R) Xeon(R) CPU E5-2695 v3 @ 2.30 GHz using
up to 56 threads.

In Fig. 2, we plot the derivatives with respect to τc for
ht=4 km, and with respect to ht for τc=5. The results are com-
puted by using line-by-line (LBL) calculations for the oxygen
absorption cross sections as in [31, 32]. The agreement between
LDOME and LMOME is perfect. The results corresponding to
FADOME show small deviations from LDOME results; in gen-
eral, the relative errors are larger when the derivative values are
smaller, but they are below 10−4 for ∂Im/∂τc and below 10−3

for ∂Im/∂ht. Note that, in atmospheric remote sensing, due to
the general nature of the Gauss-Newton iterative method com-
monly used to solve the nonlinear inverse problem, the accu-
racies of the weighting functions up to a few percent do not
deteriorate the convergence rate of the solution, and the appli-
cation of the adjoint approach is not critical. Therefore, an ac-
curacy better than 10−3 in the derivatives when using FADOME
in conjunction with LBL calculations is more than satisfactory.

In Fig.3, we show the relative errors when LBL calculations
are replaced with the correlated k-distribution method, the PCA
technique, and the correlated k-distribution plus PCA method.
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Figure 2: Upper panels: Radiance derivatives (n.u. denotes Sun-normalized units) with respect to τc for ht = 4 km (upper-left panel) and with respect to ht for
τc = 5 (upper-right panel). Lower panels: Relative errors in the derivatives when using the linearized DOME approach as a reference.

PCA is used with two principal components and one wave-
length bin, while the method based on the linearization of the
restoration equation (45) is used for derivative calculations. The
general observation is that the relative errors in ∂Im / ∂τc are
smaller than 5 · 10−3, and that the relative errors in ∂Im / ∂ht are
smaller than 10−2. Indeed, the relative errors of the correlated
k-distribution plus PCA method are smaller than 4 · 10−3 for
∂Im/∂τc in the range 2 ≤ τc ≤ 50, and smaller than 7 · 10−3 for
∂Im/∂ht in the range 2 ≤ ht ≤ 16 km.

In Table 1 and Table 2, we show the computation times (i.e.
the accumulated time over all threads) for the simulations with
the linearized radiative transfer models and various acceleration
techniques. It is apparent that FADOME is the fastest method,
followed by LDOME, equally whether LBL calculations or
acceleration techniques are used. The best time performance
is obtained when FADOME is combined with the correlated
k-distribution plus PCA method. In this case, and taking into
account that the results in Table 1 correspond to 16 values of
τc, and the results in Table 2 correspond to 11 values of ht, the
average time to simultaneously compute ∂Im/∂τc and ∂Im/∂ht
at (τc, ht) is 13 s.

5. Conclusions

Several linearized radiative transfer models have been ana-
lyzed with respect to their applicability to the retrieval of cloud

parameters from EPIC measurements. The models under con-
sideration are the linearized discrete ordinate method with ma-
trix exponential, the linearized matrix operator method with
matrix exponential, and a forward-adjoint approach based on
the discrete ordinate method with matrix exponential.

The numerical simulations show that these three models pro-
vide similar results when computing the derivatives with re-
spect to the cloud optical thickness and the cloud top height.
Furthermore, the forward-adjoint approach based on the dis-
crete ordinate method with matrix exponential, and using the
correlated k-distribution method in conjunction with the PCA
technique, is an accurate and efficient tool for the offline re-
trieval of cloud optical thickness and cloud top height from
EPIC measurements, with a speed-up factor of 2 when com-
pared to the conventional linearization approaches. This for-
ward-adjoint radiative transfer model can be combined with a
linearized Mie or T-matrix code [33] to retrieve microphysical
properties of clouds and aerosols.
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Figure 3: Relative errors in ∂Im/∂τc (left panels) and ∂Im/∂ht (right panels) when comparing LBL-based simulations with those for correlated k-distribution, PCA
technique, and correlated k-distribution plus PCA.

Table 1: Computation times in minutes to simulate the derivatives with respect
to τc for different models (LDOME, LMOME, FADOME) and acceleration
techniques. The speed-up factor corresponds to the ratio between LDOME and
FADOME.

Acceleration techniques
Linearized models Speed-up

factorLDOME LMOME FADOME

LBL calculation 3625 4602 1804 2.0

Correlated k-distribution 678 869 335 2.0

PCA technique 8 9.5 6 1.3

Corr. k-distribution plus PCA technique 6 7.5 3.5 1.7

Table 2: Computation times in minutes to simulate the derivatives with respect
to ht for different models (LDOME, LMOME, FADOME) and acceleration
techniques. The speed-up factor corresponds to the ratio between LDOME and
FADOME.

Acceleration techniques
Linearized models Speed-up

factorLDOME LMOME FADOME

LBL calculation 2451 3079 1240 2.0

Correlated k-distribution 456 574 224 2.0

PCA technique 5.5 6.5 4.5 1.2

Corr. k-distribution plus PCA technique 4 5 2.5 1.6
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Appendix A

In this appendix we compute the partial derivatives of the
inverse of the eigenvector matrix V−1

m j and the eigenvalues λk.
The steps for computing an eigensystem of the matrix Am j

can be summarized as follows:

1. Compute
A+ = A−A+, (56)

where A+ = A11
m j+A12

m j and A− = A11
m j−A12

m j, and determine
an eigensystem {µk,w+

k }
M
k=1 of the matrixA+.

2. Normalize the vectors w+
k for k = 1, ...,M.

3. Compute the eigenvectors of the matrixA− = A+A−,

w−k =
1
λk

A+w+
k , k = 1, . . . ,M, (57)

where λk =
√
µk are the positive eigenvalues of the matrix

Am j.
4. Set v+

k = (w+
k + w−k ) / 2 and v−k = (w+

k − w−k ) / 2 for
k = 1, . . . ,M.

5. Construct the eigenvectors of Am j as

v+
k =

[
v+

k
v−k

]
, v−k =

[
v−k
v+

k

]
, k = 1, . . . ,M. (58)

The spectral decomposition of the matrix Am j is then

Am j = Vm j

[
Λm j 0

0 −Λm j

]
V−1

m j, (59)

with
Vm, j = [ v+

1 , . . . , v
+
M , v

−
1 , . . . , v

−
M ] (60)

and
Λm j = diag[λ1, . . . , λM]. (61)

To compute ∂V−1
m j/∂ςi and ∂λk/∂ςi, we follow the exposition

given in [11]. Considering the eigenvalue problem for the ma-
trixA+, i.e.

A+w+
k = µkw+

k , (62)

and taking the derivative with respect to ςi, we obtain

∂A+

∂ςi
w+

k +A+

∂w+
k

∂ςi
=
∂µk

∂ςi
w+

k + µk
∂w+

k

∂ςi
. (63)

Equation (63) is a system of M equations with M+1 unknowns:
the scalar ∂µk/∂ςi and the vector ∂w+

k /∂ςi. Since the eigenvec-
tors w+

k are normalized, we derive an additional equation

w+ᵀ
k

∂w+
k

∂ςi
= 0, (64)

which yields the compatibility of the system of equations. By
(63) and (64), the resulting system of equations can be written
in matrix form as[

w+
k µk I −A+

0 w+ᵀ
k

]  ∂µk
∂ςi
∂w+

k
∂ςi

 =

[ ∂A+

∂ςi
w+

k
0

]
. (65)

It is important to observe that the we can solve the above system
of equations for all atmospheric parameters ςi, i = 1, . . . ,Np,
that is, we can solve the matrix equation

[
w+

k µk I −A+

0 w+ᵀ
k

]  ∂µk
∂ς1
· · ·

∂µk
∂ςNp

∂w+
k

∂ς1
· · ·

∂w+
k

∂ςNp

 =

 ∂A+

∂ς1
w+

k · · ·
∂A+

∂ςNp
w+

k

0 · · · 0

 . (66)

If ∂µk/∂ςi is known, the partial derivative of λk =
√
µk with re-

spect to ςi follows immediately as

∂λk

∂ςi
=

1
2 λk

∂µk

∂ςi
. (67)

To compute the partial derivative of w−k , we use definition (57)
and apply the chain rule to obtain

∂w−k
∂ςi

=
(
−

1
λ2

k

∂λk

∂ςi

)
A+ w+

k +
1
λk

∂A+

∂ςi
w+

k +
1
λk

A+

∂w+
k

∂ςi
. (68)

Further calculations give

∂v+
k

∂ςi
=

1
2

(∂w+
k

∂ςi
+
∂w−k
∂ςi

)
,

∂v−k
∂ςi

=
1
2

(∂w+
k

∂ςi
−
∂w−k
∂ςi

)
, (69)

and
∂v+

k

∂ςi
=

 ∂v+
k

∂ςi
∂v−k
∂ςi

 , ∂v−k
∂ςi

=

 ∂v−k
∂ςi
∂v+

k
∂ςi

 . (70)

Using now the definition of Vm j we obtain

∂Vm j

∂ςi
=

[∂v+
1

∂ςi
, . . . ,

∂v+
M

∂ςi
,
∂v−1
∂ςi

, . . . ,
∂v−M
∂ςi

]
; (71)

whence, taking into account that Vm j V−1
m j = I, we end up with

∂V−1
m j

∂ςi
= −V−1

m j
∂Vm j

∂ςi
V−1

m j. (72)

Appendix B

In this appendix, we perform the integration over the az-
imuthal angle in (37) and (38), and discuss the integration over
the radial coordinate.

We begin by considering the cosine-azimuthal expansions

Id(r,Ω) =

2M−1∑
m=0

Im(r, µ) cos[m(ϕ − ϕ0)], (73)

and

Î†d(r,Ω) =

2M−1∑
m=0

Î†m(r, µ) cos[m(ϕ − ϕ̂m)], (74)

yielding

Î†d(r,−Ω) =

2M−1∑
m=0

Î†m(r,−µ) cos[m(ϕ − ϕm)]. (75)
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Further, we write

σsct(r) P(r,Ω,Ω′)=

2M−1∑
m=0

(2−δm0)sm(r, µ, µ′) cos[m(ϕ−ϕ′)], (76)

where (cf. (16) and (17))

sm(r, µ, µ′) = σsct(r) pm(r, µ, µ′)=

2M−1∑
n=m

ξn(r) Pm
n (µ) Pm

n (µ′). (77)

Inserting (73), (75), and (76) in (36)-(38), and using the orthog-
onality relations of the Fourier cosine basis functions, we obtain

∂Im
∂ςi

=

2M−1∑
m=0

(T1m + T2m) cos[m(ϕm − ϕ0)], (78)

where

T1m = −(1 + δm0) π
[ rTOA∫

rs

1∫
−1

∂σext

∂ςi
(r) Î†m(r,−µ) Im(r, µ) drdµ

]

− F0

[ rTOA∫
rs

∂σext

∂ςi
(r) Î†m(r, µ0) T (r) dr

]

+
1
2

(1+δm0) π
[ rTOA∫
rs

1∫
−1

Î†m(r,−µ) drdµ

1∫
−1

∂sm

∂ςi
(r,µ,µ′) Im(r,µ′) dµ′

]

+
F0

2

[ rTOA∫
rs

1∫
−1

∂sm

∂ςi
(r, µ,−µ0) Î†m(r,−µ) T (r) drdµ

]
(79)

and

T2m = −F̂0

[ rTOA∫
rs

∂σext

∂ςi
(r) Im(r, µm) T̂ †(r) dr

]

+
F̂0

2

[ rTOA∫
rs

T̂ †(r) dr

1∫
−1

∂sm

∂ςi
(r, µm, µ′) Im(r, µ′) dµ′

]

+
F̂0F0

4π
(2 − δm0)

[ rTOA∫
rs

∂sm

∂ςi
(r, µm,−µ0) T (r) T̂ †(r) dr

]
. (80)

To perform the integration over the radial coordinate in (79)
and (80), we assume for simplicity that the partial derivatives
∂σext j/∂ςi and ∂ξn, j/∂ςi are nonzero for all layers j ∈ Di, where
Di is a subset of {1, . . . ,N −1}. In this case, the integration with
respect to the radial coordinate reduces to an integration over
all layers in Di; we have∫ rTOA

rs
dr =

∑
j∈Di

∫ r j

r j+1

dr.

For the azimuthal mode m, let Im j(ρ,±µk) and Î†m j(ρ,±µk) be,
respectively, the forward and conjugate adjoint radiances at an
internal point ρ in the layer j (0 ≤ ρ ≤ 4r j). Using the analytic

representation of the radiance at an internal layer point as given
in [23], the integrals

Im j(µ) =

∫ 4r j

0
Im j(ρ, µ) T̂ †(ρ) dρ

=

∫ 4r j

0
e
−[ ρ
4r j

τmext j+(1− ρ
4r j

)τm
ext j+1]

Im j(ρ, µ) dρ, (81)

Îm j(µ) =

∫ 4r j

0
Î†m j(ρ, µ) T (ρ) dρ

=

∫ 4r j

0
e
−[ ρ
4r j

τ0
ext j+(1− ρ

4r j
)τ0
ext j+1]

Î†m j(ρ, µ) dρ, (82)

Jm j(µ, µ′) =

∫ 4r j

0
Î†m j(ρ, µ) Im j(ρ, µ′) dρ, (83)

for µ = ±µk, µ′ = ±µl, k, l = 1, . . . ,M, as well as the integral

T j =

∫ 4r j

0
T (ρ) T̂ †(ρ) dρ

=

∫ 4r j

0
e
−[ ρ
4r j

(τ0
ext j+τ

m
ext j)+(1− ρ

4r j
)(τ0
ext j+1+τm

ext j+1)]
dρ, (84)

can be computed analytically. Here, τ0
ext j and τ0

ext j+1 are
the optical depths along the geometrical characteristic Ω0 =

(−µ0, ϕ0) at the boundary levels j and j + 1, respectively, while
τmext j and τm

ext j+1 are the optical depths along the geometrical

characteristic Ω̂m = (̂µm, ϕ̂m) = (−µm, ϕm + π) at the boundary
levels j and j + 1, respectively. We end up with

T1m = − (1 + δm0) π
∑
j∈Di

T a
1m j − F0

∑
j∈Di

T b
1m j

−
1
2

(1 + δm0) π
∑
j∈Di

T c
1m j +

F0

2

∑
j∈Di

T d
1m j, (85)

T2m = −F̂0

∑
j∈Di

T a
2m j +

F̂0

2

∑
j∈Di

T b
2m j

+
F̂0 F0

4π
(2 − δm0)

∑
j∈Di

T c
2m j, (86)

where

T a
1m j =

∂σext j

∂ςi

∑
k

wk [Jm j(−µk, µk) +Jm j(µk,−µk)], (87)

T b
1m j =

∂σext j

∂ςi
Îm j(µ0), (88)

T c
1m j =

∑
l

∑
k

wl wk

[ ∂sm j

∂ςi
(µl, µk)Jm j(−µl, µk)

+
∂sm j

∂ςi
(µl,−µk)Jm j(−µl,−µk) +

∂sm j

∂ςi
(−µl, µk)Jm j(µl, µk)

+
∂sm j

∂ςi
(−µl,−µk)Jm j(µl,−µk)

]
, (89)

T d
1m j =

∑
k

wk

[ ∂sm j

∂ςi
(µk,−µ0) Îm j(−µk)

+
∂sm j

∂ςi
(−µk,−µ0) Îm j(µk)

]
, (90)
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and

T a
2m j =

∂σext j

∂ςi
Im j(µm), (91)

T b
2m j =

∑
k

wk

[ ∂sm j

∂ςi
(µm, µk)Im j(µk)

+
∂sm j

∂ςi
(µm,−µk)Im j(−µk)

]
, (92)

T c
2m j =

∂sm j

∂ςi
(µm,−µ0)T j. (93)

The integrals Îm j(µ0) and Im j(µm), which enter the expressions
of T b

1m j and T a
2m j, respectively, can be computed by using the

method of false discrete ordinate (i.e. the false discrete ordi-
nates µ0 and µm with zero weights are added to the set {µk}

M
k=1).

Appendix C

In this appendix, we present the first discretization method
of Section 3.3, which consists of the discretization of the at-
mosphere above, below and in the cloud. The linearization
method pertinent to this discretization scheme is the forward-
adjoint approach. Let us consider an homogeneous cloud with
top height ht and bottom height hb, and let the optical proper-
ties of the homogeneous cloud be described by the cloud ex-
tinction coefficient σcext and the expansion coefficients ξcn , so
that scm(µ, µ′) =

∑2M−1
n=m ξcn Pm

n (µ) Pm
n (µ′). Set

σext (r) = σ0
ext (r) + H(ht − r) H(r − hb)σcext, (94)

sm(r, µ, µ′) = s0
m(r, µ, µ′) + H(ht − r) H(r − hb) scm(µ, µ′), (95)

where the superscript “0” refers to the clear sky atmosphere, so
that from

∂H(ht − r)
∂ht

= δ(ht − r) (96)

we get

∂σext

∂ht
(r) = δ(ht − r) H(r − hb)σcext, (97)

∂sm

∂ht
(r, µ, µ′) = δ(ht − r) H(r − hb) scm(µ, µ′). (98)

Inserting (97) and (98) in (79) and (80), we find, for example,
that the first integral in (79) is given by∫ rTOA

rs

∫ 1

−1

∂σext (r)
∂ςi

Î†m(r,−µ) Im(r, µ) drdµ

=

∫ 1

−1
σcext Î†m(ht,−µ) Im(ht, µ) dµ (99)

and that the third integral in (79) is given by∫ rTOA

rs

∫ 1

−1
Î†m(r,−µ) drdµ

∫ 1

−1

∂sm

∂ςi
(r, µ, µ′) Im(r, µ′) dµ′

=

∫ 1

−1
Î†m(ht,−µ) dµ

∫ 1

−1
scm(µ, µ′) Im(ht, µ′) dµ′. (100)

For the derivatives with respect to the cloud bottom height hb,
we use

∂H(r − hb)
∂hb

= −δ(r − hb) (101)

and proceed analogously.
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