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Institut für Computerphysik der Universität Stuttgart 2006



Bibliografische Information Der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie; detaillierte bibliografische Datensind im Internet über
http://dnb.ddb.de abrufbar.

Copyright Logos Verlag Berlin 2006
Alle Rechte vorbehalten.
ISBN 3-8325-1318-3

Logos Verlag Berlin
Comeniushof, Gubener Str. 47,
10243 Berlin
Tel.: +49 030 42 85 10 90
Fax.: +49 030 42 85 10 92
INTERNET: http://www.logos-verlag.de



Publications related to this thesis
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Chapter 1

Zusammenfassung

Ein Netzwerk stellt ein Gebilde aus Knotenpunkten dar, die miteinander ver-
bunden sein können. Obwohl Graphen vielfach zeichnerischdargestellt wer-
den, sind sie ’nur’ mathematische Strukturen. Dies bedeutet vor allem, dass
verschiedene Visualisierungen denselben Graphen darstellen können. Die Netz-
werktheorie ist ein interdisziplinäres Forschungsgebiet, das mit Hilfe mathema-
tischer und statistischer Methoden Netzwerke aus unterschiedlichen Bereichen
untersucht. Beispiele für komplexe Netzwerke sind das Internet, soziale Netzw-
erke oder die dynamische Ausbreitung von Krankheiten (Epidemiologie) sowie
die metaboliche und regulatorische Netzwerke. Insbesondere soziale Netzwerke
bringen oft Phänomene hervor, die mit Hilfe statistischerModellen beschrieben
werden können.

Die steigende Verfügbarkeit von Computerkapazität erlaubt die Sammlung und
Analyse von Daten in einem Maßstab, der heute viel größer ist als früher. Obwohl
die genannten Beispiele für Netzwerke ganz unterschiedliche Funktionen und
Eigenschaften haben können, teilen sie eine ähnliche Struktur. Diese Tatsache
suggeriert ein allgemeines organisierendes Prinzip, das hinter den Einzelkompo-
nenten und ihren Wechselwirkungen steckt. Statistische Physik ist als Teilge-
biet der Physik geeignet um Netzwerktheorie zu betrachteten. Komplexe Net-
zwerkesind normalerweise nüztlich zur Darstellung komplexer Systeme. Ein
komplexes Systemwird je nach Autor und Wissenschaftsgebiet unterschiedlich
definiert. Eine allgemeine Definition ist folgende1: Ein komplexesSystem ist
ein System, das die Beschreibungen seines Gesamtverhaltens in einer beliebi-

1http://de.wikipedia.org/wiki/Komplexität
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gen Sprache erschwert, selbst wenn man vollständige Informationen̈uber seine
Einzelkomponenten und ihre Wechselwirkungen besitzt. Die gemessenen Struk-
turen von komplexen Netzwerken können weder durch stark verbundene Gitter-
modelle noch durch Zufallsgraphen modelliert werden.

Neuere Erkenntnisse auf diesem Forschungsgebiet [1, 2] erlauben es, Modelle,
die das Entstehen von realen Netzwerken mit besonderen Eigenschaften erklären
sollen, empirisch zu überprüfen. Ein Teil dieser Dissertation betrachtet an-
hand der Entwicklung entsprechender Modelle zum Beispiel die Ausbreitungs-
dynamik von Systemen, dieMeinungsbildungoderInfektionen. Wir stellen Mod-
elle von Kontaktnetzwerken vor, die nicht ursprünglich auf der Graphentheorie
basieren, sondern aus Agenten bestehen, die aufeinander wirken und durch die
Netzwerke erzeugen. Das Netzwerk ist dannein Resultat der Wechselwirkungen
zwischen den Knoten. Um unsere Modelle zu testen, werden wir verschiedene
empirischesoziale Netzwerkebetrachten.

Die Forschungsschwerpunkte dieser Dissertation werden inFolgenden getrennt
vorgestellt:

Modelle zur Meinungsbildung

Wir entwickelten ein Modell zur Meinungsbildung eines auf Beobachtun-
gen begründeten selbstähnlichen Gitters, welches eine ¨uberraschend gute
Übereinstimmung mit den Wahlergebnissen gewisser Staaten(Brasilien, Indien)
lieferte. Darauf vervollständigten wir auch noch dieses Modell theoretisch durch
einen Renormierungsgruppenansatz. Das selbstähnliche Gitter und ein Beispiel
der Ergebnisse dieser Rechnungen sind in Fig. 1.1 dargestellt (siehe z.B. Artikel
I und V). Alle vorherigen Resultate, die auf selbstähnlichen Gittern formuliert
sind, wurden mit Ergebnissen stochastischer skalenfreierNetzwerke verglichen.
Die gleiche Art von Resultaten ist auch mit einem allgemeineren Meinungsbil-
dungsmodell formuliert worden (siehe z. B. Artikel X).

Ausbreitung von Epidemien auf Netzwerken mobiler Agenten

Wir konstruierten einen völlig neuen Typ von Netzwerken, welcher auf der Be-
wegung von Agenten beruht. Wir studierten auf diesen Netzwerken insbesondere
die Ausbreitung von Epidemien und entdeckten eine Reihe erstaunlicher Eigen-
schaften. Zwei bekannte Resultate der Literatur verbindensich durch unseres
Modell: Ausbreitung von Epidemien durch Mean Field-Näherung (MF ) und
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Modelle zur Ausbreitung von Epidemien auf regulären zweidimensionalen Git-
tern. Ein Beispiel des Modells und der Ergebnisse ist in Fig.1.2 dargestellt (siehe
auch Artikel II und III).

Modelle mobiler Agenten zur Bildung von sozialen Netzwerken

(a) 

Pajek

(b) 

Pajek

(c) 

Figure 1.3: Momenteaufnahme des Systems von bewegten Agenten. Die
Verbindungen zeigen Kollisionen. Gefüllte Knotenpunkte(Blau) und leere
Knotenpunkte (Rot) stellen zwei verschiedene Arten von Knotenpunkte dar, z.B.
verschiedene Geschlechter.

Wir haben das System von mobilen Agenten mit einer speziellen Kontaktregel
und dem daraus entstehenden Kommunikationsnetz erweitert. Anschließend
haben wir die Eigenschaften von diesen Netzwerken genauer untersucht und
Ähnlichkeiten zu empirischen Daten sowohl bei sexuellen Kontakten als auch
bei Freundschaften an Schulen gefunden. Der Arbeit zu sexuellen Kontakten
hat erstmalig verschiedene topologische Eigenschaften von empirischen Netzw-
erken reproduziert (siehe Artikel IV und VI). Die Arbeit über Freundschaftnet-
zwerke wurde mit einer sehr großen Datenbank vergleichen und es entstanden
sehr aufschlussreiche Querverbindungen (siehe Artikel VII und VIII). Beispiele
der sexuale Netzwerke des Modells sind in Fig. 1.3 dargestellt.

Gemeinschaftsstruktur und die Rolle von Merkmalen in Fre-
undschaftnetzwerken

Es wurde erfolgreich eine Methode zur Auswertung der Schulnetzwerke entwick-
elt (siehe Artikel IX). Es wurdenNetzwerke von Gemeinschaftenaus Freund-
schaftnetzwerken extrahiert, die nicht-triviale Struktur haben. Diese sind skalen-
freie Netzwerke und zeigen zudem starke Korrelationen. In diesem Kontext,
beschreiben Korrelationen ethnischen Gruppen. Unsere Methode ermöglicht die
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Figure 1.4: Netzwerk der Schulgemeinschaften. Die Farbe wird der ethnischen
Mehrheit in der Gemeinschaft zugewiesen. Die Knotengrosseist proportional
zur Anzahl der Knoten in der Gemeinschaft.

Quantifizierung und den Vergleich dieser Segregation für verschiedene Schulen.
Ein Netzwerk von Gemeinschaften einer Schule ist in Fig. 1.4dargestellt.

Die hier vorgestellten Modelle bieten einen Ansatz zur die Untersuchung kom-
plexer Netzwerke, die aus den Kontakten von mobilen Agentenentstehen. Die
gefundenen Eigenschaften können auf die Anwesenheit von Gemeinschaften
zurückgeführt werden. Der vorgestellte Ansatz präsentiert eine Verbindung zwis-
chen der granularen Gastheorie und der Modellierung komplexer Netzwerke. Im
quasi-stationären Fall ist es möglich, verschiedene Kollisionsregeln granularer
Gase zu übernehmen. Eine mögliche Fragestellung für zukünftige Forschung,
unter Verwendung der vorgestellten Methode, wäre:Wie kann ein Netzwerk
charakterisiert werden, das anhand von Kollisionsregeln gebildet wird, die aus
dem Schwarmverhalten von Fischen, Vögeln oder Insekten hergeleitet wurden?

Es ist wichtig zu betonen, daß das Ziel unserer Methode die Entwicklung
eines möglichst einfachen Modells ist, welches sich auf den Aggregatzustands
und nicht auf die Ebene der Komponenten konzentriert. In diesem Sinne ist
unser Modell idealisiert und vielleicht ein anderer AnsatzgengenüberAgenten-
basierter Modelle, die sich mit dem individuellen komplexen Verhalten - z.B.
Lernen und Anpassung- beschäftigen. Die hier vorgestellten mobilen Agen-
ten beinhalten Elemente der granularen Gastheorie um komplexe Netzwerke zu
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modellieren.



Chapter 2

Introduction

A network is a set of entities referred as vertices or nodes pairwise connected
among them through edges or links. Systems taking the form ofnetworks are
all around us. Examples include the Internet, the World WideWeb, social sys-
tems of acquaintances like friendship networks, infrastructure systems like the
airport networks, biological systems like metabolic networks, among many other
examples [1, 2]. The nodes represent the components of a given system, e.g.,
computer severs, web-pages, people, airports, molecules;and the links repre-
sent existing interactions among them, e.g., physical connections, virtual links,
friendships, flights, chemical reactions.

The increasing availability and capacity of modern computers has allowed the
collection and analysis of data on a scale far larger than previously possible.
While the listed networks examples are totally different from each other in their
function and attributes, they share a similar structure, suggesting general and
common organizing principles beyond the specific details ofthe individual sys-
tems. In this context, a statistical physics approach has been exploited as a very
convenient method because of its deep connection with graphtheory and because
of its ability to quantitatively characterize macroscopicphenomena in terms of
the microscopic dynamics of the various systems. The concept “complex net-
works” refers to a network that is often the representation of a complex system1.
So by studying the network one can study the underlying complex system itself.
Complex networks contain much randomness but they contain certain structure

1A commonly accepted definition ofcomplex systemis a system consisting of many interacting
units whose collective behavior cannot be explained from the behavior of the individual units alone.

7
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that cannot be modeled as purely random graphs.

After some recent intensive research on the statistical properties of complex net-
works important open questions remain. One aspect of our research focuses on
the development of appropriate models of spreading dynamics, such as diffusion
models of opinion formation and spreading of infections. Particularly, we present
models of contact that differ from the traditional static graph modeling that is at
the core of classical graph theory: We incorporate underlying agent interactions
that generate dynamical contact networks. The network itself is the result of the
interactions among nodes.

Motivated by the close relations of the field with real world measurements, we
collect and incorporate in the context of Statistical Physics literature new sets
of empirical networks in order to test and validate the models here proposed.
The contents of the chapters and the main achievements in each of them can be
summarized as follows:

Modeling opinion dynamics on hierarchical networks

Stochasticity is a common feature of all network models thatresemble real world
topologies. That is, nodes are connected using probabilistic rules. This random-
ness present in the models makes it harder to gain a visual understanding in how
all the nodes relate to each other. There are some models thatsuccessfully lead
to realistic topologies and are constructed in a deterministic fashion [3, 4]. It is
of major theoretical interest to solve the mechanisms of spreading dynamics in
deterministic networks.

In Chapter 4 we adapt a recognized model of opinion formationand use it to sim-
ulate elections processes on a hierarchical network. We obtain vote distributions
which resemble those observed in real elections in Brazil and India (published in
paper I).

Further, we take advantage of the hierarchical structure ofthe deterministic net-
work and provide analytical expressions for the case of two opinions. The ob-
tained expressions reproduce very well the results of the simulations on random
complex networks (as published in paper V).

In a third study in this area, we develop a continuum model foropinions. In
contrast to Ising-like models where the opinion of an agent is represented by
a integer number, in our proposed model an agent can carryn opinions at a
time, represented by a vector with positive real componentsin ann-dimensional
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space. We show that even in such a sophisticated model of opinion, the spreading
mechanisms that lead to opinion formation are the same on either a deterministic
or on a random complex network (as presented in paper X). The obtained results
imply the possibility of using hierarchical networks for ananalytic solution of
the model that, as before, would predict well the dynamics onrandom complex
networks.

Spreading dynamics in a system of mobile agents

Previous advances in modeling spreading dynamics consist in uncovering the in-
fluence of the network topology on the spreading dynamics. These studies which
constitute an important advance in the understanding of spreading mechanisms,
are at the same time, a static picture of the process.

In Chapter 5 we characterize the mechanisms of infection spreading in a system
of mobile agents and show that compared to the static case, a new set of critical
exponents governs the dynamics of infection (as published in paper II).

As a second study in the field, we calculate the size distributions of the spatio-
temporal clusters of infected agents, finding the relationsamong the characteris-
tic cluster size and the total number of infected agents (published in paper III).

Dynamical model of growing social networks

Motivated by the mentioned influence of the mobility on the spreading mecha-
nisms, in Chapter 6 we develop a contact network of mobile agents that success-
fully resembles empirical networks of sexual contacts.

We present, for the first time in the literature, a model that is able to reproduce
many topological features of the empirical sexual networks, testing it with respect
to a null model given by the randomized version of the empirical networks (see
paper VI).

For the appropriate structural analysis and comparison of the network model with
the empirical data, it was necessary for us to develop a suitable analytical ex-
pression that measures the probability of occurrence ofcycles of even lengthin
networks. Our proposed expression appears to be particularly useful in the char-
acterization of bipartite networks, like is the case of realdata from heterosexual
contact networks (published in paper IV).
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Dynamical model of stationary social networks

One important application of complex networks are the friendship relations
among people. Using a model of mobile agents we studied the friendships form-
ing by collisions and found very convincing agreement with studies in American
schools concerning 90118 pupils.

We present all the details of this model in Chapter 7 (as published in papers VII
and VIII).

Community structure and and role of attributes in friendshi p
networks

In Chapter 8 we propose a novel method of analysis that uncovers organizational
aspects of the large data set of friendship networks.

Our study is able to give a new insight into the data concerning the detection
of communities in the friendship networks. The role of weights and attributes
are shown to be of particular importance in the analysis of the collected empir-
ical data. We develop a method that is able to quantify racialsegregation in the
studied empirical networks (as presented in paper IX).

Additionally in Chapter 3 we present some basic concepts andthe most promis-
ing advances already proposed in the field. We divide it in four sections about
static measures of networks, examples and structure of social networks, proposed
models of networks and spreading dynamics. Chapter 9 ends this thesis present-
ing the main conclusions and discussing the results of this study.



Chapter 3

Basics

3.1 Networks measures

In this section we present a set of measures that characterizes the topological
structure of networks. The concepts presented here are basic tools for the appro-
priate evaluation of the developments presented along the rest of this work.

3.1.1 Definitions and notations

A network is a set of items, called nodes or vertices, with some connections
between them called links or edges. Graph theory [5, 6] is thenatural framework
for the exact mathematical treatment of complex networks. AGraphG = (N ,L)
consists of two setsN andL, such thatN 6= ∅ andL is the set of pairs of
elements ofN . The number of elements ofN andL are denoted byN andK,
respectively. A node is usually referred by its indexi in the setN . Each of the
links is defined by a couple of nodes(i, j), and is denoted aseij .

Single nodes joined by links is the simplest type of networks(Fig. 3.1a). For
instance, there may be more than one type of node in a network,or more than
one type of link (Figs. 3.1b-e). Nodes or links may have also different types
of properties associated with them. Taking the example of a social network, the
nodes may represent men or women, people of different races,age, or many other
things. Links may represent friendship, but also could represent animosity, or a

11



12 3.1 Networks measures

professional acquaintance. They can carry weights, representing e.g. the time
two people know each other. They can also be directed, pointing in only one
direction; like a network representing telephone calls. Networks may be also
partitioned in different ways. We will see here examples of bipartite networks:
networks that contain nodes of two different types with links running only be-
tween unlike types of nodes. Along this work, we will find examples of each of
the variations of the networks previously described.

(a) (b)

(c) (d) (e)

directed link

mutual links
node

link

Figure 3.1: Examples of types of networks: (a) An undirectednetwork with only
a single type of node and a single type of link. (b) A directed network, in which
each link has a direction. (c) A weighted network: Differentlink weights. (d) A
bipartite network: Connections are present only between two type of nodes. (e)
A network with various node and link types.

3.1.2 Node degree, degree distributions, and degree correla-
tions

Thedegreeki of a nodei is the number of edges incident with the nodes [7]. If the
network is directed, the degree of the nodes has two components: the number of
outgoing linkskout

i (out degree) and the number of ingoing linkskin
i (in degree).

The total degree is then defined as:ki = kout
i + kin

i .
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The basic topological characterization of a network is given by thedegree distri-
butionP (k), defined as the fraction of nodes in a network having degreek. The
nth-moment ofP (k) is defined as

〈kn〉 =
∑

k

knP (k). (3.1)

The first moment〈k〉 is the mean degree of the network. The second moment
〈k2〉 measures the fluctuations of the degree distribution. The divergence of〈k2〉
in the limit of infinite network size, radically changes the behavior of dynamical
process that take place over the network as it will be shown insection 3.4.1.

A large number of real world networks arecorrelated[9], in the sense that the
probability of a node of degreek to be connected to another node of degree
k′, depends onk. In these casesP (k) does not fully characterize the network
structure and it is necessary to introduce theconditional probabilityP (k′|k),
being defined as the probability that a link from a node with degreek points to
a node with degreek′. The direct evaluation ofP (k′|k) gives extremely noisy
results for most of the real world networks because of their finite size. This
problem can be overcome by defining theaverage nearest neighbors degreeof
nodes with degreek, as:

knn(k) =
∑

k′

k′P (k′|k). (3.2)

If there are no degree correlations, Eq. 3.2 gives〈k2〉/〈k〉, i.e.knn(k) is indepen-
dent ofk. Correlated graphs are classified asassortativeif knn(k) is an increas-
ing function ofk, whereas they are referred asdisassortativewhenknn(k) is an
decreasing function ofk [10]. In other words, in assortative networks the nodes
tend to connect to their degree peers, while in disassortative networks nodes with
low degree are more likely connected with highly connected ones.

3.1.3 Shortest path length and betweenness

A measure of the typical distance between two nodes in a graphis given by the
average shortest path length, defined as the mean shortest distance (dij) over all
couples of nodes [7]:

ℓ =
1

N(N − 1)

∑

i,j∈N ,i6=j

dij . (3.3)
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Note thatℓ diverges if there are disconnected components in the graph,to avoid
this divergence the summation is limited to the largest connected component.

The communication of two non-adjacent nodes, sayj and k, depends on the
nodes belonging to the paths connectingj andk. In consequence, a measure for
the relevance of a given node can be obtained counting the number of geodesics
going through it, which defines the so-callednode betweenness. Together with
the degree, the betweenness is one of the standard measures of thenode central-
ity, originally introduced to quantify the importance of an individual in a social
network [8]. Thebetweennessbi of a nodei, also referred asload [8], is defined
as:

bi =
∑

j,k∈N ,j 6=k

njk(i)

njk
, (3.4)

wherenjk is the number of shortest paths connectingj andk, while njk(i) is
the number of shortest paths connectingj andk and passing throughi. Two
commonly used algorithms to find shortest paths are the Dijkstra algorithm and
the burning method [11, 12].

3.1.4 Clustering

Clustering is a measure for the probability that two neighbors of a node are con-
nected between each other. In a network, high clustering means the presence of a
high number of triangles. More precisely,ci the local clustering coefficientof a
nodei, is a measure introduced by Watts and Strogatz in Ref. [13], and is defined
as follows:

ci =
2ei

ki(ki − 1)
. (3.5)

It is obtained by countingei the actual number of links connecting any two neigh-
bors ofi divided byki(ki − 1)/2, the maximum possible number of links among
all the neighbors ofi. The clustering coefficient of the network is then given by
the average ofci over all the nodes in the network:

C = 〈c〉 =
1

N

∑

i∈N

ci. (3.6)

It is also useful to considerc(k), which is the average local clusteringci taken
over the nodes with degreek, defined as [14]:

c(k) =
∑

k′,k′′

P (k′, k′′|k)pk′k′′ , (3.7)



Basics 15

where the functionpk′k′′ is the probability that nodesk′ andk′′ are connected.
Note thatc(k) is a measure for three nodes correlations. Its recent calculation on
real world networks has been of particular interest, because it is used to study the
level ofhierarchyandmodularityin real complex networks [15].

3.1.5 Motifs

Figure 3.2: Examples of subgraphs analyzed for motifs detection. Shown are the
two types of three-node and the six types of four-node non directed subgraphs.

A motif M is apatternof interconnections occurring in a graphG significantly
more often than inrandomized versionsof the graph [7].Randomized versions,
also callednull models, are graphs generated with the same number of nodes,
links and degree distribution as the original one, but wherethe links are re-wired
at random. Apatternof interconnections is an-node subgraph ofG. As an exam-
ple, the2 possible types of3-node and the6 possible types of4-node undirected
subgraphs are illustrated in Fig. 3.2.

The statistical significance ofM is then described by theZ-score, defined as [16,
17]:

ZM =
nM − 〈nrand

M 〉
σrand

nM

, (3.8)

wherenM is the number of times the subgraphM appears inG, and〈nrand
M 〉

andσrand
nM

are, respectively, the mean and standard deviation of the number of
appearances in the randomized network ensemble.
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The concept ofmotifswas originally introduced in Refs. [16, 17] by Alon and
co-workers. They analyzed a broad spectrum of networks: from biochemistry,
neurobiology, ecology to engineering. They found that specific motifs are as-
sociated to different types of networks. These measures have given a particular
understanding on thelocal structure and functionality related to each type of net-
work, and it represents an important complement to theglobal characterization
of a network measured by the degree distribution.

In the last chapter of this thesis we show that in real world networksmotifscan
emerge not only looking at the topological patterns but alsopaying attention to
the colors orattributesof the nodes. As remarked by Stauffer et. al. in his re-
cent book on interdisciplinary Physics [49]: “More than two thousand years ago
Empedocles observed that some groups of people are like wineand water, mixing
well, while others are like oil and water, mixing badly”. Based on the methods
presented in this section, we quantify the level of ethnic orracial preferences in
a large data base of schools friendship networks in U.S.A.

3.1.6 Community structures

The notion of community structure in networks and the first formal concepts of
it have been proposed in the social sciences [8]. Given a graph G, acommunity
is a subgraphG′ whose nodes are tightly connected, i.e. a cohesive subgroup.
Since the structural cohesion of the nodes ofG′ can be quantified in different
ways, there are different formal definitions of community structures. Next, we
illustrate two widely accepted concepts of community together with two different
methods of detection of community structure recently proposed.

Betweenness algorithm

The concept of community structure is based on the frequencyof links: Com-
munitiesare group of nodes within which node-node connections are dense and
between which connections are sparser. A schematic exampleof a network with
such a community structure is shown in Fig. 3.3.

The method presented in this section was developed by Newmanand cowork-
ers [18]. It is based on identifying those links that are morelikely to bebetween
communities. Groups of communities are then identified removing those links
from the network. The method is based on the concept of betweenness presented
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Figure 3.3: Schematic representation of a network with community structure. In
this network there are three communities of densely connected nodes (enclosed
by circles), with a much lower density of connections between them. By con-
struction, the communities are also examples of3-cliques of different sizes (see
Sec. 3.1.6).

in section 3.1.3 generalized to the links.Link betweennessis the fraction of short-
est paths between pairs of nodes that runs along a link. If there is more than one
shortest path between a pair of vertices, each path is weighted by the inverse of
the existing number of paths, such that the sum of all the paths is unity. Those
links connecting communities will have high betweenness. By removing these
links, groups are separated and so the community structure of the graph is re-
vealed. The procedure can be halted at any point, and the resulting components
in the network are taken to be the communities. The entire progression of the
algorithm from top to bottom, can be represented in the form of a tree such as
shown in Fig. 3.4.

In order to evaluate if the divisions are meaningful, at eachlevel of the tree the
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Figure 3.4: An example of a small hierarchical clustering tree. The circles at the
bottom of the figure represent the nodes in the network. From top to bottom, the
tree shows the sequential split of the network. The shape at the bottom denotes
two communities in the graph, which corresponds to a peak in the calculated
modularityat the level shown by the dotted line.

modularitym for this division is calculated, defined as [19]:

m =
∑

i

(eii − a2
i ), (3.9)

whereeij denotes the fraction of ends of links in groupi for which the other
end of the link lies in groupj, andai =

∑

j eij is the fractions of all ends of
links that lie in groupi. Modularity measures the difference between the total
fraction of edges that fall within -rather than between- groups (the first term) and
the fraction one would expect if edges were placed at random (respecting node
degree). Thus, high values of the modularity indicate divisions of the network
in which more of the edges fall within groups than one would expect by chance.
This indicates a strong significant split in the network and has been found to be
a good indicator of functional network divisions in many cases [20]. The best
division in the process is the one which gives the maximum modularity.

Clique percolation method

A stronger definition of community requires that all pairs ofcommunity members
choose each other. Such a requirement leads to the definitionof k-clique: a fully
connected subgraph ofk nodes. Weakening the requirement of adjacency by
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the requirement of reachability, Vicsek and collaborations [21], introduced the
concept ofk-clique communityas a union of allk-cliques that can be reached
from each other through a series ofadjacentk-cliques. Adjacencyhere means
sharingk − 1 nodes. As an example, the communities of Fig. 3.3 are examples
of groups from adjacent3-cliques or3-clique communitiesof different sizes:4,
5 and6.

A particular feature of this method, in contrast to the othermethods based on
network divisions as e.g. the one presented previously, is that each node can
be memberof different communities. It allows the identification of interesting
features in theoverlapsor number of nodes belonging to different communities.
Thus, it is possible to analyzenetworks of communities, where the nodes are the
k-clique communities and the links are the members they share.

Although different numbers ofk might be optimal for the local community struc-
ture around different nodes, there is a global criterion to fix its value for a given
network:k is selected such that it gives the highest structure of communities pos-
sible from an analyzed network. In other words, in the related percolation phe-
nomena [22] a giant component appears when the number of links are increased
above some critical point. The smallest value ofk is selected for which no giant
community appears. In this way, it is possible to find as many communities as
possible, without the negative effect of having a giant community that smears out
the details of the community structure by merging many smaller communities.

This method is more accurate but consumes much more CPU time than the one
described previously. The running time of the algorithm based on between-
ness scales with system size asO(N3), much better thanO(expN) based on
the clique percolation method. Recent algorithms based also on the concept of
modularity have been proposed and scale as well asO(n2 log n) [23, 24].

In chapters 7 and 8 we use this method of community detection to characterize the
community groups that emerge from our proposed model of mobile agents and to
compare it with the community structure observed in measured social networks.

3.1.7 Summary

In this section we presented the basic concepts and the measurement tools that
have been developed in the last few years for the study and characterization of
complex networks. To summarize, in order to compare networkmodels with real
world networks based on solid statistical grounds various levels of analysis must
be fulfilled. These are: degree distribution, degree correlations, clustering and
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community structure. Additionally, the identification of significant local patterns
can be made through comparisons with appropriate null models of the network.

3.2 Networks in the real world

A recent boom of works from statistical physics to the study of networks has
been largely driven by observations of the properties ofreal world networksand
attempts to characterize and model them. There is data coming from different
kinds of networks, from different branches of science: Social networks, informa-
tion networks, technological networks and biological networks. In many studies
they have been examined simultaneously and it is well established that, from the
statistical point of view, they share common mathematical properties [1, 2, 13].
In the following, we describe this commonly observed mathematical structure;
but we put particular emphasis on examples coming from social networks, which
are the kind of systems particularly studied along this research.

3.2.1 Examples of social networks

The academic discipline with the longest history in the quantitative study of real
world networks are the social sciences: Among the early works on the subject are
the work of Jacob Moreno in the 1920’s and 30’s on friendship patterns within
small groups [25]. In more recent years, studies of businesscommunities [26]
and of sexual patterns [27] have attracted particular attention. Reference [2] is a
review directed to the statistical physics community and atthe same time contains
a rich recompilation of references from the social sciences.

We mention here only some of the most cited examples of socialnetworks for
which their statistical properties have been studied. There are examples from af-
filiation networks, e.g. the collaboration network of film actors, where two actors
are connected if they have appeared together in a film [13, 28]; company directors
networks [26], two directors are linked if they belong to thesame board of direc-
tors; or the scientific Co-authorship networks in which individuals are linked if
they have Co-authored one or more papers [29]. Another source of reliable data
are communication records of certain kind, for example the network of telephone
calls [30] and e-mails communications [31]. Still, the mostused method of data
recompilation for social networks, are the traditional questionnaires or direct in-
terviews, that have been used, for example, to build networks of friendship and
acquaintances [32].
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In the next section we present some of the common topologicalstructures mea-
sured in real world networks.

3.2.2 Basic structures observed

(a) (b) (c)

hub

Figure 3.5:(a) An example of a small Co-authorship network among scientists
at a private research institution (figure from Ref. [36]). (b) Network of sex-
ual and romantic relations from adolescents in a high school(from Ref. [27]).
(c) Network of friendships between individuals in the karate club study of
Zachary [37](figure from [38]).

In d-dimensional lattices, the mean number of nodes one has to pass in order to
reach an arbitrary chosen node, grows with the lattice size as N1/d. In contrast,
in most of the real networks, despite of the large size, thereis a relatively short
path between two nodes, that depends, at most, logarithmically on the network
size; this property is known assmall-world effect. It was first investigated by
Milgram in the 1960s in a series of experiments to estimate the actual number of
steps required for a letter passing person to person to reachan arbitrary target, it
was reported to be in average only six steps [2].

The small diameter is a characteristic of networks withrandomlylinked nodes.
As consequence of their randomness, the so calledrandom graphs, have small
diameter and small clustering coefficient (Eq. 3.6). But in contrast to random
graphs, most real world networks have large values of the clustering coefficient.
This paradoxical observation was addressed in the seminal work by Watts and
Strogatz [13], who proposed the first model ofsmall-world networks, having
small diameter a high clustering.

Further studies of the statistical properties of diverse real world networks have



22 3.2 Networks in the real world

shown the existence of three classes of small-world networks, resumed by Ama-
ral et. al. as follows [33]:

• Scale-free networks, characterized by a degree distribution that decays as
a power law:P (k) ∼ k−γ .

• Broad-scale networks, characterized by a degree distribution that has a
power law-regime followed by a sharp cutoff:P (k) ∼ k−γe−k/κ.

• Single-scale networks, characterized by degree distributions with a fast
decaying tail:P (k) ∼ e−k/κ.

A natural question emerges “what are the reasons for such a rich range of possible
structures?”. A crucial advance in this explanation was given by Barabási and
Albert [34] who proposed the first model for scale-free networks and showed
that they emerge in the context of growing networks in which new nodes connect
preferentially to the more highly connected nodes in the network, calledhubs:
“rich get richer”.

In this context, there is also a possible explanation [33] for the appearance of a
power-law with cut-offand thesingle-scaledegree distributions. That is, that the
preferential attachment can be hindered by two classes of factors, theagingof
the nodes, i.e. with time the nodes stop making new links; andthecostassociated
to a limited capacity of the nodes for making links.

We illustrate with examples of social networks the three kinds of degree dis-
tributions mentioned above. An example ofscale-freesocial network are the
Co-authorship networks [29] for scientific contributions.This is clearly a grow-
ing network where the more prestigious researchers attractthe larger number of
new ones, e.g. students. In reality, the aging effect, of course must be present,
but according to the observations, it seems to be low enough and allows the for-
mation of a power-law degree distribution in most of the studied cases1. On
the other hand, friendship networks are observed to have a strongly peaked or
single-scaledegree distribution. Here the explanation associated withcostap-
plies well for this kind of network: There is a recurrent costin terms of time and
effort for maintaining a friendship, giving those limited resources, people can
only maintain a certain number of friends, these networks are single scale[35].
Indeed, other relations that may imply little cost or ’one-time’ cost to increase
the degree, is the case of sexual contacts which are observedto bebroad-scale.

1Among all the sample of measured Co-authorship networks there some that arebroad-scale
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Just for illustrative purposes, we display in Fig. 3.5 threesmall real networks of
the kind mentioned before. Fig. 3.5a is from Ref. [36] and is an example of a
small Co-authorship network at a private research institution. Nodes represent
scientists and a line between two nodes indicates that they have Co-authored a
paper. The shape of the nodes correspond roughly to different topics of research.
This network has apower-lawdegree distribution. Fig. 3.5b represents the
romantic and sexual network among adolescents in a high-school, it is from the
research conducted by Moody and co-workers [27]. Its degreedistribution has
a power-lawregion with a cut-off. In contrast, Fig. 3.5c is a friendshipnetwork
among members of a Karate Club, which later divided into two clubs, which are
marked by two different symbols. This belongs to the group ofearly networks
analyzed in social sciences, the research was conducted by Zachary [37], this
small network is today a commonly used network to test methods of detection
of community structure; the figure is reproduced from Ref. [38]. The degree
distribution is peaked orsingle scale.

3.2.3 Some particularities

According to recent observations, social networks share characteristics which are
fundamentally different from other types of networked systems [39]. It has been
observed that the degrees of adjacent nodes are positively correlated in social
networks but negatively correlated in most other networks:Social networks are
assortative (see section 3.1.2). There is also some evidence that the clustering
is far larger than expected by chance; while the level of clustering in non social
networks does not differ from the clustering of its randomized versions; i.e. it
depends mainly on the given degree distribution. Additionally social networks
are divided into groups of communities. Some of them grow in time e.g. Co-
authorship networks, and others remain roughly fixed in size, e.g. friendship
networks at the work place.

The appropriate modeling of all these characteristics witha minimum number of
parameters has been an open question. In one attempt, Newmanand coworkers
in Ref. [39] propose that community formation is the mechanism responsible for
the presence of high clustering and of assortativity. In their model, they propose
a priori for the distributions of group membership and the distribution of sizes
of groups, together with a parameterp for link formation within a group and a
generating function formalism, they produce networks which are assortative and
with high clustering.

In Chapter 6 we present an alternative approach for growing social networks
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based on mobile agents; the results compare favorably in terms of degree distri-
bution and clustering distribution or three point degree correlations to real social
networks and their randomized versions. With the same approach in its quasi-
stationary version, i.e. non-growing networks, in Chapter7 we are able to repro-
duce the observed degree correlation and community structure without labeling a
priori the groups each node belongs to. Our model constitutes, until now, a suc-
cessful approach to dynamical social networks with the least number of adjusting
parameters.

3.3 Networks Models

This section focuses on the mathematical modeling of networks. We present here
some of the more cited models of networks. Further details ofthe models can be
found e.g. in Ref. [7].

3.3.1 Random graphs

The systematic study of random graphs was initiated by Erdös and Rényi (ER)
in 1959. Starting withN disconnected nodes,ER random graphsare generated
by connecting couples of randomly selected nodes with probability 0 < p <
1. Graphs withK links will appear in the ensemble with probabilitypK(1 −
p)N(N−1)/2−K . In the limit of largeN → ∞, the graph has fixed average degree
〈k〉 = p(N − 1).

The structural properties of ER random graphs vary as a function of p, they
present a critical phase transition atpc = 1/N , corresponding to a critical av-
erage degree〈k〉c = 1:

• If p < pc the graph has no component of size greater thanO(ln N), and
no component has more than one cycle.

• If p = pc emerges a largest component of sizeO(N2/3).

• If p > pc the graph has a component ofO(N) with a numberO(N) of
cycles, and no other component has more thanO(ln N) and more than one
cycle.
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The transition is of second order and belongs to the universality class of mean
field percolation. The degree distribution is well approximated by a Poissonian
distribution:

P (k) = e−〈k〉 〈k〉k
k!

. (3.10)

ER random graphs are uncorrelated graphs,P (k|k′) andknn(k) are independent
of k. The average shortest-path varies asℓ ∼ lnN/ln〈k〉 and the clustering
coefficient is equal toC = p = 〈k〉/N [7]. Hence ER random graphs have
vanishingC in the limit of large system size.

3.3.2 Small world networks

The model presented by Watts and Strogatz (SW) is a method to construct graphs
that have the small-world property and high clustering coefficient [13]. It is
started with a ring ofN nodes in which each node is symmetrically connected to
its 2m nearest neighbors for a total ofK = mN edges. Then, for every node,
each link that is connected to a neighbor is rewired to a randomly chosen node
with probabilityp, and preserved with probability1 − p. Note that forp = 0 we
have a regular lattice, while forp = 1 we have a random graph with the constraint
of minimum degreekmin = m.

Increasingp slightly above zero, the shortest path lengthℓ, decreases non linearly
and depends logarithmically on the network size. Conversely, C(p) decreases
much slower, at most linearly withp. This leads to a region of values ofp, where
one has both small path length and high clustering, which is an observed property
in real world networks. As for the degree distribution, whenp = 0 it is a delta
function centered in2m, while for p = 1 it is similar to that of a ER random
graph.

3.3.3 Scale-free networks

The Bárabasi-Albert model (BA) is a model of growth inspired by the formation
of the World Wide Web. The basic idea is that in the World Wide Web, sites
with high degree acquire new links with higher rates than lowdegree nodes.
Starting withm + 1 nodes all connected among them, at each time step,t =
1, 2, ..., N − (m + 1), a new nodej with m links is added to the network. The
probability that nodej connects to an existing nodei is linearly proportional to
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the actual degree ofi:

Pj→i =
ki

∑

l kl
(3.11)

Because every new node hasm links the network at timet will haveN = m+1+
t nodes andK = m(t + 1) + 1 links, corresponding to an average degree〈k〉 =
2m for large times. In the limitt → ∞, the model produces a degree distribution
of the formP (k) ∼ k−γ , with γ = 3. The average shortest-path in theBA
model increases asℓ ∼ log N/ log(log N) and the clustering coefficient vanishes
with the system size asC ∼ N−0.75. TheBA model has attracted an exceptional
amount of attention in the literature, many authors have proposed modifications
and generalizations to make the model a more realistic representation of the real
world, resulting in a more flexible value of the exponentγ, or to reinforce the
clustering coefficient and degree correlation.

3.4 Spreading Dynamics

In the previous sections we have focused on the static properties of contact net-
works. However, in real systems there is another important aspect to add to the
study of contacts, that is flow or spreading dynamics throughthe contacts.

Spreading processes in networks are often modeled by cellular automata [40].
Each node of the network represents an agent that can be in only one of a fi-
nite numbers of states. Time is discrete, and at each time step the next step of
each agent is computed as a function of its state and the stateof its neighbors
on the network. In particular, in section 3.4.1 we will discuss theSIS model
of epidemic, or spreading without immunization and in section 3.4.2 models of
opinion. These two classes of processes are radically different. We will focus on
the discovered influence of the inclusion of network topologies in those standard
models.

3.4.1 Epidemic spreading

In theSIS model each node exists in one of the two states, healthy orsuscep-
tible and infected. The infection spreads through nearest neighbors contact,an
infected site passing the disease to its healthy neighbors at rateλ. Infected sites
recover at rate1 − λ and are immediately susceptible to infection. The rates for
a node with4 neighbors are shown in Fig. 3.6. Since an agent must have an
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1−λλ λ/4

Figure 3.6: Example ofSIS model for a chosen node withk = 4 neighbors.
An infection event is chosen to occur with probabilityλ, and it occurs if the cho-
sen node is susceptible (white) and if one randomly chosen neighbor is infected
(black). With probability1 − λ, the node is cured, only if it is infected.

infected neighbor to become infected , the disease-free state is absorbing; per-
sistence of the epidemic depends on the infection rateλ. The boundary between
survival and extinction is marked by a critical point that characterizes transitions
into an absorbing state.

Each step involves randomly choosing a process:infectionwith probability λ
andcurewith probability1 − λ. and choosing a nodei. In a cure event a node,
if infected, is cured. Infection proceeds only ifi is susceptible and a randomly
chosen nodej is infected; if so,i is infected. Time is incremented by∆t = 1/N
after each step, successful or not , so that a unit time interval, on a network ofN
nodes, corresponds on average to one attempted event per site [41].

Following Ref. [42], we consider the relative densityρk(t) of infected nodes with
given degreek; i.e. the probability that a node withk links is infected. The mean
field rate equation can be written as:

δtρk = −ρk(t) + λk[1 − ρk(t)]P(ρ(t)), (3.12)

The creation term considers the probability that a node withk links is healthy
[1−ρk(t)] and gets the infection via a connected node. The probabilityof this last
event is proportional to the probability of infectionλ, the number of connections
k and the probability that a given link points to an infected nodeP(ρ(t)). For
uncorrelated networks, its is given by:

P(λ) =

∑

k kP (k)ρk(λ)

〈k〉 (3.13)
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Using the relations:

ρ =

∫ ∞

m

P (k)ρkdk. (3.14)

For a network with scale-free distribution of the formP (k) = (1 +
γ)m1+γk−2−γ with 0 < γ < 1 and first moment:

〈k〉 =
1 + γ

γ
m. (3.15)

The set of Eqs. [ 3.12 - 3.13] can be used to calculateP(λ) and then

ρk ∼ λ1/(1−γ). (3.16)

This means the total absence of any epidemic threshold and the associated criti-
cal behavior; i.e.λc = 0. The higher the node’s degree, the smaller the epidemic
threshold. Thus, in scale-free networks the unbounded fluctuations in the num-
ber of links emanating from each node (〈k2〉 → ∞) eliminates the epidemic
threshold.

Epidemic spreading on complex networks has recently attracted much attention
in the literature. Various features have been investigated: different analytic for-
malisms, models with immunization, the incidence of degreecorrelations, strate-
gies for halting the epidemics outbreak or fluctuating diseases (see details in
Ref. [7]).

In chapter 5 of this research we investigate a novel aspect inthis topic. The SIS
model of infection described in this section is studied overa mobile population
of agents, showing that a family of critical exponents is obtained as a function of
the spatial correlations in the population.

3.4.2 Opinion formation

An interesting application concerning the structure of social networks is the mod-
eling of the dynamics of opinion formation. Specific measurements that charac-
terize the statistics behind the existence of different groups and affiliations within
human populations, makes plausible the intents to model such aspect of human
behavior. The idea behind this field is to find simple rules of interactions among
the nodes oragents, each of which carries its own changing color oropinion,
trying to reproduce the emergence of complex patterns observed in reality.

Suchopinionscan be defined by a finite number of integers as in the model pro-
posed by Sznajd et. al. [43] or can even be represented byreal numbers, having
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a rich spectrum and opening the possibility for as many opinions as agents; like
in the model proposed by Deffuant et. al. [44]. Here we summarize these two
characteristic models of opinion formation. Others modelsas the Hegselmann
and Krause [45], the voter model [46], the Galam’s majority rule [47] and the
Axelrod’s model [48] will not be discussed.

r=1 r=2

j

i

Figure 3.7: Example of the two different outputs generated by the Sznajd model
on a cell with the same initial configuration and the rules “r-convince”, with
r = 2 and r = 3. Here, for the caser = 2 consensusis reached, i.e. an
absorbing state where all the agents share the same opinion (white); for r = 3 the
cell remains unchanged because there are not3 neighboring nodes sharing the
same opinion (color).

In the Sznajd model, the opinionoi is an Ising like variable, assuming the value
+1 and−1. At each time stepr randomly selected neighboring agents transfer
their opinion to all their neighbors if and only if they sharethe same opinion.
Fig. 3.7 presents an example in a cell of 5 nodes and the two opinions presented
as black and white. In the example, for the same initial configuration and the
same pair of nodes(i, j), if the model is run withr = 2, “2 convince” consensus
is reached, while for “3 convince” the cell remains unchanged.

In the Defuant model,oi is a real number (0 ≤ oi ≤ 1). At each time step,
two randomly chosen interacting agentsi andj check their opinionsoi andoj .
If the two opinions differ by more than a fixed threshold parameterǫ (0 < ǫ <
1), called theconfidence bound, both opinions remain unchanged. If, instead
|oi − oj | < ǫ, then each opinion moves into the direction of the other by an
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amountµ|̇oi − oj |, with µ being a second tunable parameter (0 < µ ≤ 1/2).

Both dynamics have a natural absorbing state, in which all the agents share the
same opinion orconsensus. For a given initial configuration the dynamics is
followed until the system reaches an equilibrium state characterized by the exis-
tence of one or several opinion groups, depending on the control parameters of
the model.

As recently pointed out in Ref. [7] very few and not conclusive results exist for
the consensus models on complex networks. We dedicate the first chapter of this
thesis to investigate some aspects in this area. The greatest success of the Sznajd
model is the possibility to reproduce numerically some of the empirical laws
observed in political elections with a version of the model with many different
opinions, each representing the preference of the node by a given candidate. In
chapter 4, we demonstrate that this result is independent ofthe topology of the
complex networks used; we reproduce previous observationsof the model on a
BA network, on a hierarchical network. This gives a powerful insight into the
analytical treatment of the model, which allows us to propose an expression that
coincides with the numerical simulations for the Sznajd model run on complex
networks of growing and fixed size. Finally, in an attempt to generalize this
observation to the case of more complex representations of opinions, we propose
a model where each agent can haveo-dimensional vector, which representso
different opinions and each component of the vector is like aDeffuant type of
opinion, i.e. a real number0 ≤ oi ≤ 1. We show that even for this kind of
sophisticated model the transition to consensus does not depend on the details of
the complex network used to model the interaction.



Chapter 4

Modeling opinion dynamics
on hierarchical networks

In this chapter we study spreading dynamics on deterministic networks as a suit-
able theoretical approach to predict spreading dynamics onrandom scale-free
networks. This chapter comprehends three related studies presented in three sec-
tions.

In the first section, the Sznajd model of socio-physics, thatonly a group of people
sharing the same opinion can convince their neighbors, is applied on a scale-
free network modeled by a deterministic graph. We study a model for elections
based on the Sznajd model and the exponent obtained for the distribution of votes
during the transient agrees with those obtained for real elections in Brazil and
India. Our results are compared to those obtained using a Barabási-Albert scale-
free network.

In the second section, we present a renormalization approach to solve analytically
the Sznajd model of opinion formation on the same deterministic graph. For the
case of two opinions, we present an expression for the probability of reaching
consensus for a given opinion as a function of the initial fraction of agents with
that opinion. The calculations reproduce the observed sharp transition of the
model on a fixed network, as well as the smooth function for themodel on a
growing complex network.

In the last section of this chapter, we propose a more sophisticated model of

31
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opinions where the agents interact with a non-linear rule, and each of them hasn
opinions, represented by the positive real components of ann-dimensional vec-
tor. We compare the behavior of this opinion model with the agents interacting
through different networks, i.e. deterministic versus random structures.

4.1 Opinion Formation on a Hierarchical Network

The majority of networks used to generate a scale-free topology is stochastic,
i.e. the nodes appear to be randomly connected to each other.These scale-free
random networks have naturally a continuous degree distribution. But recently it
has been shown that discrete degree distributions of some deterministic graphs
asymptotically also exhibit a power law decay [50]. Furthermore, scale-free
random networks are excellently modeled by such deterministic graphs [3, 4].
However the comparison between the behavior of stochastic and deterministic
networks in the simulation of a particular model still remains open.

Opinions can either be made up by a person or taken over from another person.
Sometimes some people try to force their opinions on others.In general, all peo-
ple are free to form opinions. The mechanism of opinion formation is “norma-
tive”, in the sense of whatought to be, opposed to a “positive” mechanism, which
is based on observationwhat is[51]. Based on this facts, and with the necessary
simplifying assumptions, socio-physics gave the opportunity to apply techniques
of statistical physics to model opinion formation among people [47, 49, 52, 53].

One of the opinion formation models that has generated immediate interest in
many authors on the field is the Sznajd model [43], which is based on the slo-
gan “together we stand”: Individuals are represented by thelattice nodes (one-
dimensional in its first version), and each randomly selected pair of neighbors
convinces all their neighbors of their opinions, if and onlyif the pair shares the
same opinion; otherwise, the neighbors’ opinion are not affected. It differs from
other consensus models by dealing only with communication between neighbors,
and the information flows outward as in rumor spreading: a site does not follow
what the neighbors tell the site; some details of this model can be found in sec-
tion 3.4.2.

Initially, two opinions (+1 and−1) are randomly distributed with probabilityp
and1 − p respectively over all the nodes of the lattice. The basic Sznajd model
with random sequential updating always leads to a consensus(all sites have the
same opinion and the whole system reaches a fixed point after acertain simula-
tion time). A phase transition is often observed as a function of the initial con-
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Figure 4.1: The three first generations of the scale-free pseudo-fractal graph. At
each iteration stept, every edge generates an additional vertex, which is attached
to the two vertices of this edge.

centration of opinionp. A generalization to many different opinions (instead of
only±1) simulated on a Barabási-Albert network [34] reproduced quite well the
results of the complex elections of city councillors in the state of Minas Gerais
in Brazil in 1998 [54].

Next, we present the deterministic scale-free network to beused. Further, we
simulate an election process, using the Sznajd model in thisnetwork. We com-
pare our results with the same simulations carried out on a stochastic scale-free
network (the Barabási-Albert network) and with state elections from Brazil and
India.

4.1.1 Hierarchical network

The deterministic scale-free graph used in this work grows as follows: At each
time step, every edge generates an additional vertex, whichis attached to both end
vertices of this edge. Initially, att = 0, we have a triangle of edges connecting
three vertices, att = 1, the graph consists of6 vertices connected by9 edges,
and so on (see Fig.4.1). The total number of vertices at iteration t is

Nt =
3(3t + 1)

2
(4.1)

This simple rule produces a complex growing network. Such a graph is called a
pseudo-fractal. The resulting graph is not a fractal, as was already pointedout
in Ref. [3]. The graph is surrounded by a long chain of edges and the resulting
structure has not a fixed fractal dimension.



34 4.1 Opinion Formation on a Hierarchical Network

The presented hierarchical network has a discrete degree distribution. To relate
the exponent of this discrete degree distribution to the standardγ exponent of a
continuous degree distribution for random scale-free networks, we use a cumu-
lative distributionPcum(k), which follows

Pcum(k) ∼ k1−γ (4.2)

and is the probability that a node of the network hat at leastk neighbors. It de-
creases as a power ofk with exponentγ = 1 + ln 3/ ln 2. In a similar way,
the average clustering coefficient [3], which is the probability of existence of a
link between two nodes when they are both neighbors of a same node, can be
calculated for the infinite graph,̄C = 4/5. One obtains a shortest-path-length
distribution which tends to a Gaussian of width∼

√
lnN centered at̄l ∼ lnN

for large networks [3]. These properties concerning the degree distribution, the
clustering coefficient and the mean length, are also presentin a wide range of
stochastic scale-free networks reported in the literature. They make our sim-
ple deterministic networks suitable to examine applications very often found on
stochastic networks. In the next section we implement the Sznajd model on our
scale-free pseudo-fractal.

4.1.2 Monte Carlo simulations of the Sznajd model

We let the fractal of Fig.4.1 grow and at each step assign sites with random opin-
ion±1. At every stept > 0, we have the following process:

1. The network grows, i.e.,3t new sites are added.

2. A random opinion (±1) is set to each new node of the network, with prob-
ability p (1 − p) for opinion+1 (−1).

3. Ns Sznajd runs are performed. For each run,3t sites chosen randomly are
analyzed and updated, i.e., one visits for the Sznajd model anumber of
sites equal to the number of sites added at that step to the network.

Three variations of the Sznajd model on the pseudo-fractal network have been
investigated:

• 1 site convincing:For each sitei chosen, we change the opinion of all its
neighbors to the site’s opinion.
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• 2 sites convincing:For each sitei chosen, we select randomly one of its
neighbors. If this selected neighbor has the same opinion ofthe sitei, then
all their neighbors follow the pair’s opinion. Otherwise, nothing is done.

• 3 sites convincing: For each sitei chosen, we select 2 of its neighbors
at random. If all these three sites have the same opinion, they change the
opinion of all their neighbors.

Figure 4.2: Sznajd model on a 29576 nodes pseudo-fractal network with Ns =
1, 10 and 50 runs per time step for (a) 1 node convincing, (b) 2 nodes convincing
and (c) 3 nodes convincing.

Figure 4.2 shows the mean opinion for the three rules (1, 2 and3 sites convincing)
for different initial concentrationsp andNs Sznajd runs per step (rps):1 rps
(Ns = 1) corresponds to one realization of Sznajd per step, that is at each step,
one chooses3t nodes of the network at random to simulate Sznajd.10 rps (Ns =
10) and50 rps (Ns = 50) correspond, respectively, to choose10 × 3t and50 ×
3t nodes randomly per step. We let the network grow up to29576 sites, that
corresponds to10 iterations. For1 node convincing, the model cannot reach
consensus, the results become more unpredictable, the larger the number of runs
per step (Fig.4.2a). However, for two and three nodes convincing, full consensus
is observed (Figs.4.2b and 4.2c). We clearly see that for rules2 and3 the order
parameter (opinion) jumps drastically and shows strong hysteresis. Our results
are very similar to the ones obtained on the Barabási-Albert network when the
same rules are applied [56], except that the latter requiresmore Sznajd runs for
the network to reach a fixed point, i.e., a full consensus.

Since after some time steps the rules2 and3 always lead to a consensus and the
whole system reaches a fixed point, in Fig.4.3 we show the number of samples,



36 4.1 Opinion Formation on a Hierarchical Network

0 0.2 0.4 0.6 0.8 1
number of samples

0

200

400

600

800

1000

2 convince
3 convince

Figure 4.3: Monte Carlo simulation on a 29576 nodes pseudo-fractal network
counting the number of samples, out of1000, for which the fixed point all “up”
is obtained when different values for the initial concentrationp of nodes “up” are
simulated. As we can see, the fraction of realizations with fixed point up depends
on the probabilityp and on the rule implemented, for Sznajd models with 2 and
3 nodes convincing.

out of 1000, for which the fixed point all “up” (all with opinion+1) is obtained
when different values for the initial concentrationp of nodes “up” are simulated.
As we can see, the fraction of realizations with fixed point “up” depends on the
probabilityp and on the implemented rule. This is opposed to the results obtained
with the same rules (2 or more nodes convincing) on a square lattice, where an
abrupt change is observed forp ≥ 0.5 [55]; but in agreement with the ones
on a Barabási-Abert network [56] and on a 1-dimensional chain[43]. For1 node
convincing the system does not tend to a fixed point (consensus), while on square
lattices it does [57, 58], although without the abrupt change of 2 sites convincing.

4.1.3 Simulation of elections with many candidates

We create a network of interacting nodes by using the pseudo-fractal network
prescription as described before (Eq.4.1). In addition to our network, we also
simulated the rule presented in [54] for modeling electionson a Barabási net-
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work. We summarize the generation of the Barabási network as follows: At the
beginning of the simulation we have6 fully connected nodes. After that, we add
more and more nodes and connect them with5 of the present nodes chosen with
a probability proportional to the number of nodes already connected to them. For
comparison we generate both networks with the same number ofnodes (voters),
and the same number of candidates.

After generating a network, one starts with the “election process”.N candidates
are randomly distributed. The valuen (1 ≤ n ≤ N ) of a node on the network
represents that this voter has preference for the candidaten. Initially, all sites start
with value zero, meaning that there is no preference for any candidate, except
for N sites that have the number of a candidate. Now, the electoralcampaign
starts (only voters with preference for a candidate can influence other voters,
à la Sznajd). At each time step all the nodes are randomly visited: a random
list of nodes assures that each node is reached exactly once.For each visit, we
implement the following process:

• We choose a nodei at random, if it has preference for a candidate, we
choose among its connected nodes, a nodej at random. Otherwise, we
randomly select another node.

• If node j has the same candidate as nodei, each node convinces all the
nodes connected to it with probability:

p(k) =
1

n(k)1/ξ
(4.3)

wheren(k) is the number of nodes connected to eitheri or j, andξ > 1 a
switching factor that is analyzed later and is a parameter ofthe model.

• If nodej has no candidate, nodei convinces it to accept its own candidate
with the probabilityp(i) of Eq. (4.3).

• If nodej has a different candidate from nodei, we choose another nodei.

As in real elections, we do not wait for a kind of fixed point which here would
correspond to all the nodes preferring the same candidate, but we count the votes
at an intermediate time. We group in a histogram thenumber of candidateswhich
received a certain number ofvotes. Because the bin size for thevotesincreases by
a factor2 for each consecutive bin we divide each point of the histogram by the
bin size, for this reason we have numbers lower than one for the histogram of the
number of candidates, this kind of “voting distribution” isused in the literature
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Figure 4.4: Plot of the voting distribution of an election process on the pseudo-
fractal compared to the simulation on a Barabási network. Both networks have
797163 sites (voters) and 500 candidates. We average over20 realizations for
each network. The distribution for the pseudo-fractal is obtained after 15 itera-
tions of the convincing process withξ = 2 (Eq. 4.3) . The distribution for the
Barabási network is obtained after83 iterations. In the inset we show the results
of the simulation on the pseudo-fractal forξ = 1, 2, 4, 8 and16, after400, 20, 4,
2 and1 iterations respectively. We see that the results depend on the rule chosen.

for analyzing similar results [54, 61]. In Fig.4.4 we see that the results of the
voting distribution for the simulations on the pseudo-fractal and on the Barabási
network agree very well, usingξ = 2 (Eq. 4.3) with the pseudo-fractal. In the
inset we show the results of the simulation on the pseudo-fractal for ξ = 1, 2,
4, 8 and16, after400, 20, 4, 2 and1 iterations, respectively. The results differ
for each choice ofξ: the system reaches a fixed point more rapidly for larger
parameterξ, i.e, one needs less iterations in order to reach the same distribution’s
width. Using the same value used in the simulations on the Barabási network,
ξ = 1, after nearly2000 iterations, a fixed point (consensus) on the pseudo-
fractal network could not be reached. A similar result is observed on the square
lattice for the Sznajd model, where if convincing happens only with a certain
probability, no complete consensus is found [55, 59].

For the simulation on the Barabási network we useξ = 1, like reported in
Ref. [54]; this choice means that on average each node convinces one other node
at each process. As we show in Fig. 4.5 the degree distribution of the pseudo-
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Figure 4.5: Comparison of the degree distributions of the Barabási network
P (k) ∼ k−γ (γ = 2.9), and of the pseudo-fractal network,P (k) ∼ k1−γ

(γ = 1 + ln 3/ ln 2).

fractal is discrete and is given byP (k) = k− ln 3/ ln 2, while the degree exponent
for the Barabási network presented in this work isγ = 2.9 [34]. KnowingP (k)
we can calculate the probability distribution to convince choosing one site at
random, that is the probability of convincing Eq.4.3 multiplied by the degree dis-
tribution P (k). For the convincing distribution of both networks to be similar,
one has to chose Eq. 4.3 withξ = 2 for the simulation on the pseudo-fractal. We
obtain qualitatively the same results in both simulations,being12 time faster on
the pseudo-fractal than on the Barabási network, because it requires less memory
space and computation time (see Fig.4.6).

In Fig. 4.7 we see that the shape of the voting distribution after a given number
of iterations does not change with the size of the network. Changing the number
of candidates doesn’t alter the form of the distribution (see the inset of Fig. 4.7).

We consider the results from two Brazilian states (São Paulo and Minas Gerais)
for the positions of local state deputies. In such electionsthe voters vote directly
for the candidate and not for parties. Some elections occur with a high number
of candidates, of the order of thousands, and with a number ofvoters of the order
of millions. The official results for each state are available on the Internet [60].

In Fig.4.8 we see the results of a simulation on a15-generations pseudo-fractal
(21523362 nodes) and1144 candidates, and compare it to the results of real elec-
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Figure 4.6: CPU time (seconds) on a PIV 2.4 GHz vs. size of the network for
the pseudo-fractal network and for the Barabási network. We simulate an election
process with 100 iterations of the convincing model, on networks of sites:88575,
265722 and797163 with 500 candidates. The computation time on the pseudo-
fractal grows linearly with the size of the system, while forthe stochastic network
it grows exponentially.

tions. For the moment we do not take into account abstentions, or invalid votes
in the simulation. The pseudo-fractal tends to consensus ina similar way as the
real elections. After averaging over more than100 realizations we see, that the
deviations from a perfect line in the intermediate regions of votes, seen in the
real elections, are not of statistical nature but seem due tothe determinism of the
network. The general behavior of the distribution of candidates of the simulation
on the pseudo-fractal, however, agrees with the one observed in real results. The
results of the distribution of candidates for the simulatedand the real cases follow
a hyperbolic law,

N(v) ∝ 1/v, (4.4)

for the numberN of candidates havingv votes, extending over two or three order
of magnitude, with deviations only for small and large numbers of votes [61].

In addition we analyzed the behavior of the voting distribution for the elections
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Figure 4.7: Test for size effects on the distribution of candidates for the sim-
ulation of elections on the pseudo-fractal with 12 generations (diamonds), 13
generations (triangles) and 14 generations (circles) with2000 candidates each,
after15 iterations of the election process. In the inset we make the simulation
with a number of candidates proportional to the number of sites of the network,
keeping the relation#Cands/#voters = 0.005, we see that the results are
size-independent. The solid lines are guides to the eye withslopes−1 and−2.

in India to the lower house of the Parliament (Lok Sabha). These elections are
events involving political mobility and organizational mobility on an amazing
scale. In the 1998 election to Lok Sabha there were1269 candidates from38
officially recognized national and state parties seeking election,1048 candidates
from registered parties not recognized and10635 independent candidates. A total
number of596185335 people voted. The Election Commission employed almost
400000 people to run the election. The official results of these elections are avail-
able on the Internet [62]. In contrast to the Brazilian elections, in this process the
country is divided into543 parliamentary constituencies, each of which return
one representative to the Lok Sabha. That is, not all the voters elect among all
the candidates of one state (like in Brazil), but there is oneelection process for
each of the543 representatives, that occurs in each parliamentary constituency.
These parliamentary constituencies are selected by an independent Delimitation
Commission, which creates constituencies which have roughly the same popu-
lation, subject to geographical considerations and the boundary of the states and
administrative areas.
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Figure 4.8: Result of the simulation of an election process after 20 iterations
on a pseudo-fractal network of21523362 nodes and1144 candidates (triangles).
Compared to the voting distribution for the state of Minas Gerais in 1998 (circles)
(819 candidates,11815183 voters) and the state of São Paulo (1998) (squares)
(1260 candidates,23321034 voters). Both axis are plotted on a logarithmic scale.
The dashed straight line is a guide to the eye with slope−1. The bin size for
the votes increases by a factor2 for each consecutive bin. The height of the
distribution of the pseudo-fractal is multiplied by10 to better see the comparison
of the results.

At the end of the process one can analyze the voting distribution of each state
of India. In Fig. 4.9 we observe the results for 5 states: Uttar Pradesh, Goa,
Andhra Pradesh, Haryana and Kerala, with 85, 2, 42, 10 and 20 constituencies
respectively. The voting distribution for each state is thesuperposition of differ-
ent electoral processes for all the constituencies of the state. For each election
in a constituency there is a voting result that corresponds to few candidates, be-
tween5 and10. The difference between the Indian and Brazilian results appears
at this stage.

If one analyses the election process of each parliamentary constituency, even
though one does not have a large number of candidates for the statistics, a dis-
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Figure 4.9: Voting distribution for state elections of India in 1998. For Uttar
Pradesh (squares) with55, 015, 804 voters and649 candidates. Goa (diamonds)
with 532, 766 voters and 12 candidates. Andhra Pradesh (triangles up) with
31, 829, 338 voters and301 candidates. Haryana (triangles down) with7516, 884
votes and 84 candidates and Kerala (stars) with13, 036, 581 voters and108 can-
didates. We obtain results qualitatively comparable to this kind of processes
on a pseudo-fractal with 12 generations and80 candidates, after few iterations
(5). The solid lines are square fits to the data, in the intermediate regions. The
slopes are:−1.32 (Uttar Pradesh),−0.97 (Goa),−1.51 (Andhra Pradesh),−2.06
(Haryana),−1.26 (Kerala) and−1.32 (Pseudo-fractal)

tribution with slope∼ −1 is observed. However, the final results of the process
for each Indian state provide a different profile far from thehyperbolic one (1/v
type of distribution) (see Fig.4.9), which was observed formany Brazilian states
[54, 61]. In order to analyze the number of candidatesN which received a cer-
tain fraction of votesv for the nationwide voting process, we have normalized the
votes of each candidate by the total number of voters (Fig.4.10). As can be seen,
the number of candidatesN follows a power lawN(v) ∝ vα , with α = −1.3
(for Brazil, α = −1).

The differences in the Sznajd simulations on the pseudo-fractal network for the
Indian and the Brazilian elections are mainly due to the number of candidates
considered for each one. In the latter, the number of candidates is almost0.005%
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Figure 4.10: Voting distribution for India in 1998 (squares), compared to the
simulation on a pseudo-fractal (circles) with 12 generations and80 candidates,
after few iterations (5). The solid lines are guide to the eye with slope−1.3

of the lattice nodes, while for the former it is0.01%. The fixed point (consensus)
is reached the faster, the larger the density of candidates.Because of that, the
comparison of the real elections in India with our simulations were made taking
account only5 iterations of the Sznajd model on the pseudo-fractal network (20
iterations for Brazilian elections).

4.1.4 Summary

We studied the behavior of a deterministic scale-free network simulating a
spreading of opinion model on it. We solved the Sznajd’s model on a grow-
ing deterministic scale-free network, obtaining always a consensus of opinion
after some runs of the model. The final opinion presents a smooth transition as
a function of the initial concentration of opinions in the network for rules2 and
3. The results coincide with the results reported for a stochastic scale free net-
work [56]. We found that there is not scaling in the finite-size cut-off showing
that the system is not critical (Fig.4.7). We simulated election processes on the
network. The probability of convincing of the model has to beadapted (ξ = 2,
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in Eq. 4.3) in order to avoid the differences in the values of the exponentsγ
of the degree distribution of our deterministic network andtheγ exponent of a
typical stochastic network (Fig. 4.4). We obtained the sameresults, reported for
a stochastic scale-free network, but with computation times considerably lower
(see Fig.4.6). We could use our model to reproduce qualitatively good complex
electoral processes, such as the state elections for parliament in Brazil and India.

4.2 Renormalizing Sznajd model on complex net-
works taking into account the effects of growth
mechanisms

In this section we take advantage of the deterministic character of the scale-free
network from the previous section and present an approach tosolve analytically
the Sznajd model on it.

On networks with fixed size, the results of the Sznajd model donot depend much
on the spatial dimensionality and type of neighborhood selected (i.e., two nodes
convince the others, three convince the others, etc.) [55, 63, 64]. In the case
of q choices of opinion, the model hasq homogeneous absorbing states, where
all individuals choose the same opinion; in the context of opinion, one says the
system reaches consensus. The case of two opinions (q = 2) has been the most
studied, denoting opinions as Ising variables “up” or+1, and ”down” or−1. In
more than one dimension, the probability (Pup) of reaching consensus “all up”
depends on the initial fractionp of individuals with opinion ”up”; forp > 0.5, the
probability of reaching “all up” as stationary state is close to one, while forp <
0.5 it is negligible, having a sharp transition atp = 0.5, which can be interpreted
as a dynamical phase transition. Computer simulations in [65] indicate that the
universality class associated to this dynamical phase transition is different from
the universality class of the Ising model. The distributionof time needed to reach
the stationary state is a peak followed by a fast decay [66].

Much less is known about the Sznajd model on growing networks. Interactions of
groups of people in some circumstances can be thought of as a growing system,
i.e., in a city with positive rate of immigration. In a first and simple approxima-
tion, it can be modeled by a growing scale-free network [1]. We showed in the
previous section that if the Sznajd model is simulated during the growth of either
a Barabási-Albert network or a hierarchical network [3], the system reaches con-
sensus [56, 67]. But in contrast to the sharp transition observed for the networks
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of fixed size, the probability that the system reaches “all up” for a growing com-
plex networks is a smooth function ofp the initial fraction of opinion “up”. In
addition, this function depends on the type of neighborhoodselected.

In this section, we present a real space renormalization approach [68] to calculate
the probabilityPup(p) of reaching consensus on opinion “up” as a function ofp.
Our results are for two common rules of neighborhood, namely“r-convince all
their neighbors”, withr = 2 andr = 3. We have obtained the two well-known
results known for the model: a smooth function ofp for the growing case and an
expression which approximates the step function for fixed networks.

Next, we present the renormalization approach and the analytical expressions
obtained, each case is compared with the results from the numerical simulations,
previously reported in [67], as well as for theBA scale-free network.

4.2.1 Renormalization Approach

Our method can be very intuitive and is based on the method proposed by Galam
to study bottom-up democratic voting by majority rule in a square lattice [47],
where the predictions of the results on the lattice are basedon the application of
the majority rule to a basic cell of neighbors, called renormalization cell.

We find that given a neighborhood rule, it is enough to choose an appropriate ge-
neration of a hierarchical network for calculatingPup(p)|r,g, which agrees with
the numerical results of the model on growing networks. The subscript index
r, g in Pup(p)|r,g denotes that the resulting function belongs to a chosen Sznajd
rule (r) in a growing network (g). Subsequent self-iterations ofPup(p)|r,g result
in a step function, i.e.,Pn

up(p)|r,g = Pup(p)|r,f , where the subscript indexf
corresponds to the result obtained for a network of fixed size.

For a population fractionp with opinion “up”, the general method is as follows:

• Given a neighborhood ruler, the chosen basic cell corresponds to the min-
imum generationt of the hierarchical network, such thatr > Nt (the r
agents must have at least one agent to convince). We call thisresulting
number of nodes in the cellnr.

• The probability of each possible configuration in a elementary cell is easily
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calculated, such that

1 = Pall(p)|r =

nr
∑

k=2

Bnrkpk(1 − p)nr−k. (4.5)

with the binomial coefficientBnrk:

Bnrk = nr!/[k!(nr − k)!]. (4.6)

• From all the configurations calculated above, we select the subset that gives
“all up” when applying the selected Sznajd rule on the cell, the sum of all
of them isPup(p)|r,g:

Pup(p)|r,g = Pall(p)|r,up (4.7)

Next, we illustrate the result of the method withr = 2 andr = 3.

4.2.2 Caser = 2

Growing

Forr = 2, the triangle of the generationt = 0 is the basic cell. Thusnr = 3 and,
for a given fractionp, all the possible configurations are:

1 = Pall(p)|2 = p3 + 2p2(1 − p) + 2p(1 − p)2 + (1 − p)3 (4.8)

If we apply the selected Sznajd ruler = 2 over the triangle, only the configura-
tions expressed in the first two terms of the sum give “all up”.Therefore:

Pup(p)|2,g = p3 + 2p2(1 − p) = 3p2 − 2p3 (4.9)

In Fig. 4.11, we can see the good agreement of Eq. 4.9 with the numerical results
[67] for the Sznajd model on a growing hierarchical, as well as on the Barabási-
Albert scale-free network [1].

Fixed

In order to recover the reported result on a fixed network, onemakes renormal-
ization iterations, which means simply self-composing theEq. 4.9:

Pup(p)|2,f = Pni

up (p)|2,g, (4.10)
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Figure 4.11: Comparison between the function presented in Eq. 4.9 (solid line)
with Monte Carlo simulations on a growing hierarchical network (triangles with
error-bars) and on a growingBA scale-free network (stars). In both networks,
29576 nodes are considered. We count the number of samples, out of1000, for
which the fixed point all “up” is obtained when different values for the initial
concentrationp of nodes “up” are simulated for ruler = 2.

and in the limit of a large number of iterations (ni − 1), one recovers the step
function observed numerically for the model on fixed networks. Note that the
number of terms and the coefficients sizes increase very fast, as one can observe
in the expression of only one composition:

P 2
up(p)|2,g = 27 p4 − 36 p5 − 42 p6 + 108 p7 − 72 p8 + 16 p9, (4.11)

therefore, the multiple compositions presented in Fig. 4.11 are iterated using a
computer. Figure 4.12 shows that the numerical simulationson large networks
tend to the step function calculated from Eq. 4.11 withni = 100.



Modeling opinion dynamics on hierarchical networks 49

0 0.2 0.4 0.6 0.8 1
initial density (p)

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y 

of
 C

on
ce

ns
us

 (
P up

(p
)| 2,

f)

Sznajd model (fixed Nt=29576)
Sznajd model (fixed Nt=797163)
Sznajd model (fixed Nt=2391486)
RSRG calculation

Figure 4.12: Eq. 4.10 withni = 100 (solid line) compared with simulations
on a fixed hierarchical networks withNt = 29576, 797163 and2391486 nodes
(dashed line with symbols). Other simulation conditions aspresented in the cap-
tion of Fig. 4.11.

4.2.3 Caser = 3

Growing

The core of the method is the selection of the correct configurations after applying
the Sznajd rule on it. As we will see for this rule, when the number of nodes in
the renormalization cell is even, there are some symmetrical configurations which
can have either “all up” or “all down” with the same probability. In this case only
half of them are summed toPup. For r = 3, the generationt = 1 is the basic
cell. Thusnr = 6 and, for a given fractionp, all the possible configurations are:

1 = Pall(p)|3 = (1 + (1 − p))6. (4.12)

Note that the values of the binomial coefficient in the consecutive terms are:
1, 6, 15, 20, 15, 6, 1. From the20 configurations of the4th term, there are7 that
give “all up”(shown in Fig. 4.15 at subsection 4.2.4), the corresponding7 op-
posed cases which give “all down”, and6 symmetrical configurations shown in
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Figure 4.13: Eq. 4.13 (solid line) compared with the resultsfrom the simulations
on a growing hierarchical network (triangles with error-bars) and on a growing
BA scale-free network (stars) whenr = 3. The other simulation conditions are
the same of Fig. 4.11.

Fig. 4.16 (subsection 4.2.4) that can give either “all up” or“all down”. Therefore,
these group of configurations contribute with7 + 0.5 × 6, and we have:

Pup(p)|3,g = p6 + 6 p5 (1 − p) + 15 p4 (1 − p)2 + 10 p3 (1 − p)3 (4.13)

In Fig. 4.13, we see that Eq. 4.13 agrees very well with the numerical results [67]
for the Sznajd model on a growing network when the ruler = 3 is considered.

Fixed

The result of the composition for this case is far more complicated and only one
self-composition of Eq. 4.13 (ni = 2) already needs a computer, as shows the
following expression:

Pup(p)|23,g = −1249989 p12 + 390897 p11 − 158184 p10 + 28561 p9−
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Figure 4.14: Eq. 4.13 self-composed in9 steps (solid line) compared with the
result from the simulations on a fixed hierarchical network networks withr = 3
(dashed lines with symbols). The other simulation conditions are the same as
presented in the caption of Fig. 4.12.

643783179 p18 + 270741222 p17 − 100735317 p16 + 41109081

p15 − 17504838 p14 + 5585931 p13 − 15244686567 p24+

11863411551 p23 − 7642674243 p22 + 4315583718 p21−

2347570026 p20 + 1281132990 p19 − 816731505 p30+

2281401855 p29 − 5100164190 p28 + 9199907505 p27−

13440029166 p26 + 15908268375 p25 − 2187 p36 + 65610 p35

−925101 p34 + 8148762 p33 − 50268195 p32 + 230706630 p31

In Fig. 4.14 we see the step function obtained with only9 steps of composition
compared with the numerical results on a fixed network of different sizes; as
we see the results agree very well with the simulations of themodel on large
networks.
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4.2.4 Additional Information: Configurations with the same
fraction of nodes “up” and “down”

Here we present some of the possible configurations applyingthe Sznajd rule
corresponding to ther = 3 on its appropriate renormalization pattern (n3 = 6).
In particular, we show the case of half of the nodes having opinion up, mentioned
in Section 4.2.3,and represented by the fourth term in Eq. 4.13.

Figure 4.15 shows the7 configurations that give as a result “all up”, when apply-
ing the Sznajd rule, i.e., three consecutive nodes with opinion +1 convince all
their neighbors. Note that interchanging+ and−, we have the7 configurations
for the opposed case of consensus “all down”.

Figure 4.16 presents the6 symmetrical configurations that have3 consecutive
nodes with+1, as well as3 nodes with−1 giving consensus “all up” or “all
down”, respectively. Thus, these configurations contribute wit 0.5 × 6 to the
probability of consensus “all up”(Pp), as showed in Section 4.2.3.

Figure 4.15: Configurations that generate consensus “all up” with r = 3 and the
same fraction of opinions “up” and “down”.

4.2.5 Summary

Based on opinion formation rules of the usual Sznajd model, we use a renormal-
ization approach to give an expression for the probability of consensus into one
opinion as a function of the initial fraction of this opinion.
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Figure 4.16: Configurations that generate either consensus“all up” or “all down”
with r = 3.

We show that for a given Sznajd rule it is enough to solve exactly the model
on an appropriate basic cell in order to find an expression forthe smooth func-
tion, found numerically for the model on a growing network. Several self-
compositions of the obtained function give the step function observed for the
model on a network of fixed size. Further renormalization patterns should be
tested, but in order to reproduce the results of the Sznajd model on growingSF
networks, aSF hierarchical network must be chosen.

The proposed method could be, in principle, extended to other types of neigh-
borhood and more interestingly to many choices of opinion (q > 2) which, as
shown in section 4.1, can simulate elections processes [54,66, 67], obtaining re-
sults consistent with some empirical observations[61].

4.3 A general model of opinion on different topolo-
gies

In this section, we present a general model of opinion, wherethe agents interact
with a non-linear rule, and intends to be a general version ofprevious models
where the opinion is represented by just an integer number.

Every agenti is characterized by its own opinion vectora
(i)
n of n = 1, .., O

opinions. Each element of this vector corresponds to a different opinion about
the same topic. For instance, agentj is 20% communist and 80% capitalist (given
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O = 2): a
(j)
1 = 0.2, a

(j)
2 = 0.8. Each time step every agent actualizes its opinion

vector by comparing its values to the ones ofk other agents. These other agents
are chosen by the topology of the graph, and the agent updatesits opinion vector
due to the following rule,

â(i)
n (t) =

k
∑

l=1

a(i)
n (t)a(l)

n (t) + kg(t), (4.14)

whereg(t) presents a stochastic variable, distributed uniformly in the interval
[0, η]. This stochasticity can be interpreted to be due to misunderstandings among
the agents, the spread of wrong information, or other perturbing actions. The
interaction term in this model is of second order, and thus favors strong opinions
on one topic. The factork avoids that agents which have more connections feel
less noise. In order to guarantee that the sum of opinions is equal to one, the
vector is normalized afterwards,

a(i)
n (t + 1) =

â
(i)
n (t)

O
∑

m=1
â
(i)
m (t)

. (4.15)

The main parameter of this model is given by the maximal noiseη which we
will call from now on the control parameter. Its role corresponds to the one of
a temperature in physical systems. Other free parameters ofthe system are the
number of agentsN , the number of opinionsO of an agent and the number of
agentsk to interact with per time step, which depends on the topologyof the
interaction network.

4.3.1 Influence of the interacting topology

We compare the behavior of the presented opinion model if theagents interact
with their k nearest neighbors on different networks topologies. We study two
different kinds of scale-free networks; i.e. networks witha power law degree
distributionk−α.

Those are the Barabási-Albert network (BA) [34] and the Apollonian net-
work [4]. Those networks have considerable topological differences, that can
be expressed in terms of their clustering coefficientC. TheBA network has a
clustering coefficient,C, which depends on the network size asN−0.75. It is
independent of the degree of the nodes. In contrast, the Apollonian network has
hierarchical structure withC depending on the degree of the node as a power
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law of the degree and its average value is high (C ≈ 0.8) and independent of the
network sizeN . Both types of scale-free networks, with and without hierarchical
structure have shown to be good models for rather different kinds of social inter-
action networks, from social collaboration networks [15] to networks of sexual
contacts [69].

Further, we show that despite of the structural differencesof these networks, the
formation of consensus depends mainly on the noise and is independent of the
specific topology of the scale-free network studied in the case of two opinions.
We compare the behavior of the dynamics of the two complex networks men-
tioned above, and analyze also the results on a regular network with k = 6. The
chosen regular network is generated from a chain (k = 2), adding interactions
up to the third nearest neighbors. Simulations with mean field (MF ) interactions
are also simulated. ByMF , we mean that at each step an agent interacts withk
agents chosen randomly among all the others. We observe thatthe transition to
consensus as a function of noise for the two scale-free networks, seems to belong
to the same type of transition asMF .

At each time step pairwise interactions run over all the agents. The results reveal
that there are two different absorbing states the system canreach. At small values
of the control parameter (maximum noiseη) one opinion completely dominates
the system,omax. For a noiseη larger than a critical valueηc, each opinion
remains with the same frequency,1/O. The order parameterD is the frequency
of the agents which have an opinion vector with the same dominant opinion,
being itself dominant in the system. To be more precise: for each agent we
search its strongest opinion and then count, for each opinion, “n” the number of
agents with this opinion as their dominant one. The largest valuenD, and so the
most dominant one of the system, determinesD = nD/N . 〈D〉 means, that we
averageD over many time steps. This order parameter is normalized, sothat is
unity if all agents have the same opinion to be the dominant one, a state we call
the consensus state. The value1/O corresponds to an uniform distribution of
opinions. A transition occurs between consensus and uniform distribution, when
〈D〉 goes from1 to 1/2 in the case of two opinions (left side of Fig. 4.17).

In figure 4.17 we show〈D〉 vs. η for the model on the networksBA (trian-
gles), and Apollonian (solid line), compared to the result of MF connections
(plus signs) and the regular network (circles). The resultsof the figure are the
average over20 realizations on systems ofN = 124 agents and2 opinions. The
differences in the type of transition from consensusD = 1 to D = 1/2 is due to
differences in the dynamics of the model depending on the topology.

We illustrate this fact, from Fig. 4.17b to Fig. 4.17d, plotting aomax
vs. time, for
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Figure 4.17: (a)Influence of the topology of networks on the transition to consen-
sus (D = 1) as a function of noise (η). The transition on two different scale-free
networks, the Apollonian (solid line) and the Barabási-Albert network (triangles)
is similar to the one observed in mean field interactions (plus signs), and differs
from the transition on a regular lattice (circles). In the three insets we plot the
value of the dominant opinion,aomax

vs. time. (b) Comparison of the behavior
of aomax

(t) on the four networks: Apollonian (solid line), BA (dotted line), MF
(dashed-line) and Regular (long dashed line) for a fixed noise (η = 0.2). One
observes that for this noise, which is below the critical noise, in the regular net-
work the emergence of consensus takes longer in scale-free andMF interactions,
which have similar behavior (three upper curves). (c) Near but below the tran-
sition, forη = 0.4, we compare the response of the regular and the Apollonian
network. It is observed that for the former there is an intermittency among con-
sensusD = 1 andaomax

= 0.79 and not consensusD = 0.5 andaomax
= 0.5.

This behavior is not observed in the complex networks. (d) Above the transition
(η = 0.6) the consensus is broken and the dynamics of the opinionaomax

vs.
time behaves similar by in regular and complex networks. Allsimulation runs
are with systems of 124 agents.
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different values ofη with the corresponding arrows marking the value of〈D〉.
For η = 0.2, which is below the critical noise, for each type of interaction the
system reaches consensusD = 1, with a dominant opinionaomax

= 0.89. For
the scale-free networks andMF the consensus is reached considerably faster
than for the regular lattice as we see in Fig. 4.17b. This effect is due to the
metastable states of competing regions with the same opinion which takes longer
to reach consensus on regular structures.

On the regular lattice the system presents an intermittencynear but below the
transition point (ηc = 0.45). We observe this intermittency of the dynamics in
Fig. 4.17c, comparing the value of the dominant opinionaomax

vs. time, for the
Apollonian and the regular network withη = 0.4.

Above the critical noise, there is no consensus and the fraction of agents with
dominant opinion is〈D〉 ≈ 1/2. The response of the system is similar for scale-
free and regular networks, as is shown in Fig. 4.17c withη = 0.6.

In order to illustrate the behavior of the dynamics as function of the noise, we
display each of the nodesi of the Apollonian network in a plane, and represent
the value ofa(i)

omax
in the color scale presented in Fig.4.18. Forη = 0.2 in

Fig. 4.18a we see a snapshot before reaching stationary state of consensus, which
is observed in Fig 4.18b. In Fig. 4.18a there are two regions in space witha ≈ 1.
Finally the region with a larger fraction of agents dominates and consensus (D =
1) can be reached withaomax

= 0.89 ( Fig. 4.18b). In Fig. 4.18c for a larger noise
of η = 0.4 still below the transition, the value of the dominant opinion is lower,
aomax

= 0.70, and almost consensus is observed with a high fraction of agents,
〈D〉 = 0.98, sharing the same opinion. In contrast, forη = 0.6, aomax

= 0.55,
is shared only by approximately half of the agents.

4.3.2 Summary

The response of the system to reach consensus originates in the model dynamics
as opposed to the particular features of the network. An important characteristic
of the transition to consensus is the dimension associated to the space of agent
interactions. The dynamical response of the opinion model for both scale-free
networks is similar to the one observed forMF interactions and each of these
networks represents long range interactions. In contrast,differences are reported
with a regular lattice, which has spatial dimension two, i.e. nearest neighbors
interactions.
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aomax
(a) (b)
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Figure 4.18: Snapshots of the value of the dominant opinionaomax
for different

values ofη on the Apollonian network with9844 nodes and2 opinions. (a)
With η = 0.2, before reaching consensus there are two competing regionswith
different dominant opinionsa ≈ 1. Note that only the value of one opinion is
shown and the darker nodes have the other opinion as dominant. (b) Snapshot
for the same noise as in (a) when consensus (D = 1) with aomax

= 0.89 is
reached. (c) Below the critical noise withη = 0.4, the great majority of the
nodes (D = 0.98) have the same opinionaomax

= 0.75. (d) Above the critical
noise withη = 0.6, no consensus is observed,aomax

= 0.62 and is shared by
half of the population〈D〉 = 0.5.

As was previously observed for the Sznajd model of opinion formation, for the
general model that we present here, the response of the system in terms of opinion
formation is qualitatively the same for a deterministic scale free network, as for
a random scale free network. This implies a clear advantage for an analytical
treatment of this model in a similar way as was done for the Sznajd model in
section 4.2 [70].



Chapter 5

Spreading dynamics in a
system of mobile agents

In this chapter we investigate the influence of agent mobility in spreading of
infections. For a two-dimensional system of agents modeledby molecular dy-
namics, we simulate epidemics spreading. Our resulting network model is time-
evolving. In section 5.1, we study the transitions to spreading as function of
density, temperature and infection time. In addition, we analyze the epidemic
threshold associated to a power-law distribution of time ofinfection.

Clusters of infected individuals are defined from data from health laboratories,
but this quantity has not been defined and characterized for epidemics models
on statistical physics. In section 5.2, we show that all the moments of the clus-
ter size distribution at the critical rate of infection are characterized by only one
exponent, which is the same exponent that determines the behavior of the total
number of infected agents. No giant cluster survives independent on the magni-
tude of the rate of infection.

5.1 Scaling of the propagation of epidemics

The statistical spreading of infections, information or damage, involves non-
equilibrium phenomena. Fluctuations and spatial correlations play an important
role and are often exactly not solvable. Usually these processes are studied on a

59
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lattice that can be regular [41, 71], hierarchical or small-world [42]. But in most
cases the population in question is mobile. Therefore, in this work we study a
system of particles moving according to a simple dynamics. We simulate on it
a known contact process [72], described in terms of a ’SIS’ model of infection,
or infection without immunization, i.e. particles are either healthy or infected,
and are susceptible to re-infection after healing, thus thename of the model (SIS:
susceptible-infected-susceptible).
We characterize the transition to spreading of the epidemicdynamics, and obtain
a continuous range of critical exponents changing the density of the system. The
observed behavior results to be the ’SIS’ analogous of a model of ’stirred percola-
tion’ [73–75] which was used to describe epidemic dynamics with immunization
(’SIR’).

5.1.1 Model

The simulations are carried out on a square shaped cell of linear sizeL with
periodic boundary conditions.L =

√

ρ/N , is given by the number of particles
(N ) and the density (ρ). The particles are represented by ’soft-disks’ of radius
r0 moving continuously on the plane. The interaction between two particles at
positionsri and rj corresponds to a Lennard-Jones potential truncated at its
minimum,

u(ri, rj) = U0

[

(

2r0

|ri − rj |

)12

− 2

(

2r0

|ri − rj |

)6
]

+ U0, |ri − rj | ≤ 2r0,

(5.1)
reduced units are used in whichU0, r0 , kB (the Boltzmann constant) andm (the
particle mass) are all unity.
Along this work, the particles are considered to be ’agents’, to model the ’SIS’
process described above. In a simple version one can assume that at each time
two agents(i, j) interact or ’collide’ (that is, if|ri − rj | ≤ 2r0), the infection
propagates from an infected agent to a susceptible one. In most of our simulations
we used a simple initial condition: (i) at timet = 0, N agents are distributed reg-
ularly in the cell, (ii) have the same absolute velocityv with randomly distributed
directions, (iii) a central agent is infected and the rest are susceptible. At each
time step the positions{ri}, velocities{vi} and the infection state{σi} of the
system is updated. We use a molecular dynamics (MD) scheme of cell subdi-
vision with the leapfrog integration method [76]. Once an agent is infected, it
heals and becomes susceptible again after a fixed number of time steps, that is
the ’time of the infection’ (∆tinf ), and is a free parameter of the model.
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Figure 5.1: Starting with one infected agent, the figures shows how the infection
spreads with time and after a certain period of time (’transient’), the fraction of
infected agents (FIM ) fluctuates around a mean value. The fraction of infected
agents in this ’quasi-equilibrium’ state, increases with the infection rate (λ).

5.1.2 Scaling

The dynamics of an epidemics is described in terms of the infection rate (λ). That
is defined as the number of agents one agent infects before healing. Therefore, in
this model

λ ≡ ∆tinf/τcoll, (5.2)

whereτcoll is the mean time between two collisions, and depends on the mean
velocity of agents (〈v〉). Neglecting the interaction potential with respect to the
kinetic energy, one has:

〈v〉 =

√

kBTπ

m
. (5.3)

Thus, the mean number of collisions (〈ncoll〉) of one agent during a period of
time t, is given by the area within which it interacts (2r0〈v〉t), multiplied by the
density,

〈ncoll〉 = ρ 2r0〈v〉t. (5.4)
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Figure 5.2: The plot shows the collapse of data of Fig. 5.1. The vertical axis was
divided by the mean field approximation ofFIM (λ) and the horizontal axis is
divided by the collision time (τcoll).

The pre-factor in Eq. (5.4) is the collision frequency, and its inverse, gives the
mean time between collisions,

τcoll =
1

ρ 2r0

√

m

πTkB
(5.5)

In Fig. 5.1 we see the fraction of infected agents (FIM (t) vs. time) for different
values of temperature (T ), density (ρ) and time of infection (∆tinf ). In each
case we start with one infected agent and after a transient, the system fluctuates
around a valueFIM , which depends onλ. This mean value can be calculated
using a mean field approach,

∂FIM (t)

∂t
= −FIM (t) + λFIM [1 − FIM ] (5.6)

The first term of the r.h.s is the fraction of agents that healsand the second term, is
the fraction of agents that becomes infected. After the transient,∂FIM (t)/∂t ∼
0. Thus

FIM (λ) =

{

0 if λ ≤ λc

1 − 1/λ if λ > λc
(5.7)
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whereλc = 1, is known as the critical rate of infection. In Fig. 5.2 we seethe
collapse of the realizations of Fig. 5.1, with the expression obtained in Eq. (5.7).
The dynamics of the system is characterized by the infectionrate λ, which
contains all the free parameters of the system.

5.1.3 Transition to spreading
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Figure 5.3: Fraction of infected nodesFIM as function ofλ for different condi-
tions ofT andρ. The data agree with theMF approximation (Eq. (5.7)) only
for low densities (< 0.1). The inset shows thelog− log plot of FIM vs. λ − λc

with T = 1 and increasing densities:ρ = 0.05, λc = 1.05 (diamonds),ρ = 0.1,
λc = 1.06 (circles),ρ = 0.23, λc = 0.862 (filled triangles),ρ = 0.30, λc = 0.73
(crosses), andρ = 0.46, λc = 1.05 (rotated triangles). The circles are linear
fits of the data and have respectively slopes:β = 1.0, β = 0.92, β = 0.738,
β = 0.66, andβ = 0.599.

We analyze the transition to spreading of the epidemic. In systems of1254
agents after the transientFIM is averaged, over500 initial conditions at a given
λ. In Fig. 5.3 we see that the results agree with the mean field approximation
for densities lower than0.1. Increasing the density, changes the shape of
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Figure 5.4:Log − log plot of the fraction of infected nodesFIM as function of
λ − λc for (ρ = 0.2, T = 1), with λc = 0.935. The dashed line is a fit to the
form FIM ∼ (λ − λc)

β , with exponentβ = 0.773.

the transition curve. Near the critical point theFIM follows a power law,
FIM ∼ (λ − λc)

β . The inset of Fig. 5.3 in a double-logarithmic plot, demon-
strates this power law behavior, with straight lines of slope β. As can be seen,
the value ofβ depends on the density of the system. Smaller values ofβ indicate
more significant changes ofFIM (λ) near the transition. Even for low densities
(i.e. ρ ∈ [0.1, 0.2]), where one expectsMF to be valid, the critical exponents
change with the density.
In order to confirm this observation, we study the transitionin detail. Fig. 5.4
shows thelog− log of FIM vs. (λ − λc), averaging over1000 realizations in
systems withρ = 0.2, T = 1, andλc = 0.935. We see that the data fit the
expression∼ (λ − λc)

β , with exponentβ = 0.773.

Other critical exponents, are obtained, if one averages thesurvival probability
of infection P (t), the number of infected agentsn(t) and the square distance
of spreadingR2(t) and plots them against time. At the critical point, they are
expected to display asymptotic power laws [77],

P (t) ∼ t−δ, n(t) ∼ tη, R2(t) ∼ tz. (5.8)
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Figure 5.5: Evolution of the survival probability of infection P (t), the mean
number of infected agentsn(t) and the mean square distance of spreadingR2(t)
in time. Each graph contains three curves near criticality.With ρ = 0.2, from
bottom to top:λ = 0.93, 0.94 and0.95. The circles are linear fits to calculate the
critical exponents

MF ρ = 0.1 ρ = 0.2 Contact Process(2D)[41]
λc 1 1.0(8) 0.9(4) 1.6488(1)
β 1 0.9(2) 0.7(7) 0.583(4)
δ 1 0.5(9) 0.5(3) 0.4505(10)
η 0 0.1(5) 0.2(5) 0.2295(10)
z 1 1.3(0) 1.2(7) 1.1325(10)

Table 5.1: Critical rate of spreading and exponents forSIS model on moving
agents withρ = 0.1 and0.2, contact process in two dimensions, and estimates
obtained by mean fieldMF .

The relations in Eq. (5.8) apply at long times, and require that the infection does
not reach the boundaries of the system. Results for the threequantitiesP (t), n(t)
andR2(t), averaged over∼ 103 realizations, with systems of∼ 104 agents, and
fixed temperature (T = 1), are shown in Fig. 5.5 forρ = 0.2.

The values of the critical exponents are reported in table 5.1. The known
hyperscaling relation of the dynamics4δ + 2η = dz, whered is the dimension
of the system, is recovered within the range of numerical errors. Increasing the
density of the system we find a continuous change in the critical exponents of
the epidemic dynamics, they go fromMF values to the exponents for contact
process on a two dimensional lattice [41]. Numerical estimates of the critical
exponentβ vs. ρ are shown in Fig. 5.6.
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Figure 5.6: Numerical estimates for the critical exponentβ, for systems with
different density.

The dependence of the critical exponents of the dynamics on the density of agents
(ρ), is analogous to the dependence on the ’flammable’ fractionof space (φ),
observed in ’forest fire’ dynamics, or epidemics dynamics with immunization
[73, 75], described through ’stirred percolation’ models.’Stirred percolation’
consists in random walkers transmitting charge at collisions and was proposed
by de Gennes [74] to describe the behavior of conductivity inbinary mixtures
[78].

5.1.4 Power-law distribution of infection times

Considering the same value of infection times (∆tinf ) for each agent corres-
ponds to situations with homogeneous connectivity. In order to extent the model
to some real world situations where the number of contacts varies greatly from
one agent to another, we assign∆tinf to each agent following a power-law dis-
tribution,

P (∆tinf ) = (γ − 1)∆t−γ
inf ∆tinf ≥ 1. (5.9)



Spreading dynamics in a system of mobile agents 67

10
−2

10
−1

 ρ−ρc

10
−2

10
−1

10
0

FIM ~ (ρ−ρc
)
β

0 0.1 0.2 0.3 0.4 0.5
ρ

0

0.2

0.4

0.6

0.8

1

F
IM

(ρ
)

10
−3

10
−2

10
−1

10
0ρ

10
−4

10
−3

10
−2

10
−1

10
0

F
IM

(ρ
)

ρ
c

Figure 5.7: Fraction of infected nodes vs. density, with power-law distribution of
infection times (Eq. 5.9) forγ = 2.4. FIM ∼ (ρ − ρc)

β is shown in the upper-
left-corner inset withρc = 0.065 andβ = 2.6(5). The bottom-right-corner inset
is the main plot inlog− log scale to see better the tail of the spreading curve, for
ρ < ρc.

As a result, for2 < γ ≤ 3, the epidemic threshold tends to zero, like has been
observed forSF networks [42] (see Fig. 5.7).
However, the shape of the spreading curve has a point of inflection (ρc) above
which, the infection is much larger (FIM ∼ (ρ − ρc)

β , ρc = 0.06(5), β = 2.65,
for γ = 2.4).
We see that the more ’connected’ agents are responsible for the absence of an
epidemic threshold (tail of the curve). The infection wouldspread only if the
meanrate of spreading is larger than unity, that is

λc ≡ 〈∆tinf 〉
τcoll

=
γ − 1

γ − 2
ρ 2r0

√

πTkB

m
> 1. (5.10)

λc = 1 gives the inflection pointρc, which forγ = 2.4 isρc = 0.0718 (according
to Eq. 5.10, forr0 = 21/6 andT = 1), and agrees with the numerical value
ρc = 0.06(5), reported in Fig. 5.7 averaging over about103 realizations with
about103 agents each.
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5.1.5 Summary

Novel effects are observed studying theSIS model of infection on a system of
mobile agents. A continuous range of critical exponents is observed as function
of the density of agents, recovering mean field predictions for lower densities,
two-dimensional exponents of contact process, increasingthe density. Introduc-
ing a power-law distribution of infection times, the epidemic threshold vanishes
due to the more ‘infecting agents’; but still there is acritical rate of spreading,
which depends on the exponent of the distribution and the mean time of collision
among the agents.

5.2 Cluster size distribution of infection

In a small and highly urbanized nation like Singapore dengueoutbreaks or epi-
demics are identified as “clusters”. A denguecluster or focus of transmission
is defined as at least two confirmed cases, with no recent travel history, that are
located within 200 m of each other (taken as the flight range ofthe Aedes ae-
gypti) and whose dates of the onset of symptoms are within three weeks of each
other [79]. Most of the efforts have been directed towards ’SIS’ [42, 72, 77] mod-
els of infection, which was presented in the previous section. Analytical and nu-
merical expressions describe the dynamics of theSIS model in terms of the rate
of spreadingλ, the evolution of the survival probability of the infectionP (t), the
mean number of infected agentsn(t) and the mean square distance of spreading
R2(t) in time, which are quantities difficult to compare with real data of epi-
demics. This chapter suggests comparison with public health data, analyzing a
scaling function forclusters numberson aSIS model of infection.

An important ingredient of our work is the mobility of agents, contrasted to
most of the models of epidemics where the population is modeled by static
networks [42, 72, 77]. As we showed in the previous chapter [80] the critical
exponents, which depend on the density of the system, i.e spatial correlations
and mobility of the agents play an important role. Here we usethe model of
mobile agents to define clusters of infections and analyze its dependency on the
rate of infectionλ and on the mobility of the agents.

We find that the network of clusters of infections remains disconnected and no
matter how large the rate of infection, no giant cluster is formed. We show that
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in the transition to spreading, the moments of the cluster size distribution are de-
scribed by an exponentβ, which is the exponent that characterizes the fraction
of infected massFIM = NInf/N , defined as the ratio of the number of infected
agents (NInf ) and the total amount of population (N ). Thus the number of clus-
ters depends onλ, and mobility and spatial correlation of the agents influence
this dependency.

5.2.1 Method

Our objective is to characterize the behavior of the clusters of infected individu-
als. When agentj infects agenti a link is created among them, the link lasts until
one of them heals, meanwhile each of them continues making links with other
susceptible agents through the same rule.

A cluster is thus defined as a group of infected agents connected by links. Note
that in contrast to percolation, where clusters are given byoccupied lattice sites
connected by nearest-neighbor distances, for this model each cluster gives a
group of agents infected in a given period of time linked by a relation of con-
tagion. Isolated infected agents are regarded as clusters of size unity and any
cluster consisting ofs connected agents is ans − cluster. We borrow the nota-
tion from Stauffer’s book on percolation theory [81] and define herens = Ns/N
as the number ofs-clusters per agent, whereNs is the number of clusters of size
s andN the total number of agents in the system. For different values of λ, in
the next section we present the results of the calculation ofthe first three mo-
ments of the cluster size distribution. Namely:

∑

s ns,
∑

s sns,
∑

s s2ns. Those
quantities give us, respectively, information about: the total number of clusters,
the fraction of infected agents and the mean size of clusters. In order to keep
the analogy with percolation, we sum over all values ofs excluding the largest
cluster (Smajor). We also present, the calculations ofFmajor = Smajor/N , the
fraction of agents that belong to the largest cluster andFIM = Ninf/N , the
fraction of agents that are infected.

5.2.2 Results

For a fixed density, we varyλ (Eq. 5.10) changing the time of infection (∆tinf ).
Starting with half of the population infected, for rate of infections nearλc, a
given trial may end in the absorbing state after a few time steps or it maysurvive
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Figure 5.8: Left: Fraction of infected individuals from surviving trials versus
time atλ = λc, starting with half of the population infected. At the top, the
results forρ = 0.05 andλ = 1.06 and at the bottomρ = 0.46 andλ = 0.68.
System sizesN = 32 × 32, 64 × 64, 128 × 128 (from top to bottom). Right:
Quasi-stationary fraction of infected agents versusλ for the same densities (Top:
ρ = 0.05. Bottom:ρ = 0.46).

fluctuating with a quasi-stationary fraction of infected agents, marked by win-
dows in the left-side of Fig 5.8. The calculations are made averaging on time at
thequasi-stationary state, which is described by the surviving trials following an
initial transient. The number of time steps of this transient depends onλ and on
the system sizeL (see left side of Fig. 5.8). The data here illustrate how the mean
fraction of infected agentsF sv

IM (t) (the superscript denotes an average restricted
to surviving trials) approaches its stationary valueF̄IM (λ, N) (in the following,
we write F̄IM (λ, N) just like FIM (λ)). On the right side of the same figure we
see the graph ofFIM (λ), for three system sizes. We analyze in detail the number
of clusters for the two density valuesρ = 0.05 andρ = 0.46, which have critical
rate of spreadingλc = 1.06 andλc = 0.68 respectively. Note that at the critical
densityλc, surviving trials tend to stationary values only in the limit L → ∞.

The top of Fig. 5.9 is only for pedagogical reasons, in order to illustrate how the
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Figure 5.9: Top: Snapshots of cluster sizes of infected agents for systems with
different densities: (a)ρ = 0.05, (b)ρ = 0.20, (c)ρ = 0.40 and (d)ρ = 0.80, in
all casesλ = 1.5. Bottom: Quasi-stationary fraction of infected agents varying
λ over three orders of magnitude (Average over20 realizations forρ = 0.05 and
N = 32 × 32). The insets show the fraction of infected agents in the largest
cluster (lower value) and the first moment of the cluster sizedistribution (upper
value) vs. time, atλ = 1.08, λ = 10.0 andλ = 108.0.

number of clusters looks in the quasi-stationary state, we see snapshots of the
clusters of infections fordifferentsystem densities and thesamerate of infection
λ = 1.5, hereN = 10 × 10.
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For ρ = 0.05 andλ ∈ [1, 200], the bottom of Fig. 5.9 shows the variation of
FIM (λ) andN = 32 × 32 averaged over20 different realizations. The insets
show the change in time ofFmajor and

∑

s ns, for only one realization withλ =
1.08, λ = 10.0 andλ = 108. In contrast to percolation, in this model there is no
significant variation ofFmajor with λ, and the relationFmajor ≪ FIM remains.
Moreover, the number of clusters

∑

s ns grows considerably only nearλc. In
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Figure 5.10: First three moments of the cluster size distribution , fraction of
agents in the largest cluster (Fmajor) and fraction of infected agents (FIM ) vs. λ.
Average over 50 trials, system sizeN = 64× 64. Left:ρ = 0.05. Right:ρ = 0.46
.

Fig. 5.10 forρ = 0.05 andρ = 0.46, we plot the behavior of the cluster numbers
near their respectiveλc. As the largest cluster remains small compared to the total
number of agents (Smajor ≪ N ), we haveFIM (λ) ∼ ∑

s sns. Additionally one
can see that

∑

s sns and
∑

s s2ns show the same critical behavior asFIM (λ),
plotted in detail in Fig. 5.11. We observe that all the moments of the cluster
size distribution present exactly the same critical behavior thanFIM , namely
(λ − λc)

β , whereβ depends on the density of the system.

5.2.3 Summary

This section showed that the cluster size distribution of infected individuals is
described in terms of the spreading rate (λ) and the same exponents (β) previ-
ously known for the total mass of infection. Although the agents are free to move
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Figure 5.11: Same results of Fig. 5.10 plotted vs.(λ − λc). The solid lines are
regressions of the formmi(λ − λc)

β with mi the coefficient of theith moment.
Left: λc = 1.06, β = 0.66, m0 = 0.321, m1 = 2m0, andm2 = 6m0. Right:
λc = 0.68, β = 0.56, m0 = 0.386, m1 = 2.3m0, andm2 = 7.5m0

there is a homogeneous size distribution of infected clusters at the critical rate
of infection, and we did not find any critical exponent associated to the cluster
sizes. Comparing with the traditionalSIS model on a static network we confirm
that mobility and spatial correlations change the value of the critical exponentβ
of the fraction of the infected population, and to the same extent the cluster size
distribution.
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Chapter 6

Dynamical model of growing
social networks

In section 6.1 we present a novel model to simulate real social networks of com-
plex interactions, based in a system of colliding particles(agents). The network
is build up by keeping track of the collisions and evolves in time with correlations
which emerge due to the mobility of the agents. Therefore, statistical features are
a consequence only of local collisions among its individualagents. Agent dynam-
ics is realized by an event-driven algorithm of collisions where energy is gained
as opposed to physical systems which have dissipation. The model reproduces
empirical data from networks of sexual interactions, not previously obtained with
other approaches.

Next, in section 6.2, we investigate the clustering coefficient in bipartite net-
works where cycles of size three are absent and therefore thestandard definition
of clustering coefficient cannot be used. Instead, we use another coefficient given
by the fraction of cycles with size four, showing that both coefficients yield the
same clustering properties. The new coefficient is computedfor the empirical
networks of sexual contacts, one bipartite and another where no distinction be-
tween the nodes is made (monopartite). In both cases the clustering coefficient
is similar. Furthermore, combining both clustering coefficients we deduce an ex-
pression for estimating cycles of larger size, which improves previous estimates
and is suited for either monopartite or multipartite networks, and discuss the ap-
plicability of such analytical estimates.

75
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6.1 Model of mobile agents for sexual interactions
networks

A social network is a set of people, each of whom is acquaintedwith some sub-
set of the others. In such a network the nodes (or vertices) represent people
joined by edges denoting acquaintance or collaboration. Empirical data of social
networks include networks of scientific collaboration[29], of film actor collabo-
rations[13], friendship networks[33] among some others[2]. One kind of social
network is the network of sexual contacts[82–85], where connections link those
persons (agents) that have had sexual contact with each other. The empirical in-
vestigation of such networks are of great interest because,e.g. the topological
features of sexual partners distributions help to explain why persons can have the
same number of sexual partners and yet being at distinct risklevels of contracting
HIV [86].

The simplest way to characterize the influence of each individual on the network
is through its degreek, the number of other persons to whom the individual is
connected. Sexual contact networks are usually addressed as an example of scale-
free networks[1, 83–85], because of having a tail in its degree distribution, which
is well fitted by a power-lawP (k) ∼ k−γ , with an exponentγ between2 and3.
However, another characteristic feature, not taken into account, is that the small
k-region, comprehending the small-k values varies slowly with k, deviating from
the power-law. Moreover, the size of the small-k region also increases in time,
yielding rather different distributions when consideringthe number of partners
during a one year period or during the entire life, e.g. for entire-life sexual con-
tacts, the degree distribution shows that at least half of the nodes have degree in
the small-k region [82, 83]. A model predicting all these different distributions
shapes for different time spans is of crucial interest, because the transmission of
diseases occur during the growth of the network.

One of the main difficulties for validating a model of sexual interactions is that
typical network studies of sexual contacts involve the circulation of surveys, or
anonymous questionnaires, and only the number of sexual partners of each in-
terviewed person is known, not being possible to obtain information about the
entire network, in order to calculate degree correlations,closed paths (cycles), or
average distance between nodes.

In this section we propose a model of mobile agents in two dimensions from
which the network is build by keeping track of the collisionsbetween agents,
representing the interactions among them. In this way, the connections are a
result not of somea priori knowledge about the network structure but of some
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Figure 6.1: Snapshots of the growing network of collisions in a low-density gas
with N = 100, for (a) n = 0.02N , (b) n = 0.15N , (c) n = N . Two colors rep-
resent the two sexual genders and larger symbols emphasize those which belong
to the network (linked agents).

local dynamics of the agents from which the complex networksemerge. Below,
we show that this model is suited to reproduce sexual contactnetworks with de-
gree distribution evolving in time, and we validate the model using contact trac-
ing studies from health laboratories, where the entire contact network is known.
In this way, we are able to compare the number of cycles and average short-
est path between nodes as well as compare the results with theones obtained
with Barabási-Albert scale-free networks [34], which arewell-known models,
accepted for sexual networks[83–85].

6.1.1 The Model

The model introduced below is a sort of gas [87], whereN particles with small
radiusr represent agents randomly distributed in a two-dimensional system of
linear sizeL ≫

√
Nr (low density) and the basic ingredients are an increase

of velocity when collisions produce sexual contacts, two genders for the agents
(male and female), andn/N , the fraction of agents that belong to the network,
which constitutes an implicit parameter for the resulting topology of the evolving
network.

The system has periodic boundary conditions and is initialized as follows: all
agents have a randomly chosen gender, position and moving direction with the
same velocity modulus|v0(i)|. We mark one agent from which the network will
be constructed. When the marked agent collides for the first time with another



78 6.1 Model of mobile agents for sexual interactions networks

one of the opposite gender, the corresponding collision is taken as the first con-
nection of our network and its colliding partner is marked asthe second agent of
the network (Fig. 6.1a). Through time, more and more collisions occur, increas-
ing the sizen of the network (Fig. 6.1b and 6.1c) till eventually all the agents
composing the system are connected.
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Figure 6.2: (a) Cumulative distributionPcum(k) of the numberk of partners
among agents, when considering type-(i) and -(ii) interactions (see text) for
n = 103 (circles),n = 104 (squares),n = 5× 104 (diamonds) andn = 105 (tri-
angles). For the same parameter values(b) shows a pure scale-free distribution,
obtained when only type-(ii) interactions form links. The solid line indicates the
slopeγ = 3 of the scale-free distribution. Hereα = 1 andN = 320 × 320.

Collisions between two agents take place whenever their distance is equal to their
diameter and the collision process is based on an event-driven algorithm, i.e. the
simulation progresses by means of a time ordered sequence ofcollision events
and between collisions each agent follows a ballistic trajectory[76].

Since sexual interactions rely on the sociological observation[88] that individuals
with a larger number of partners are more likely to get new partners, we choose
a collision rule where the velocity of each agent increases with the numberk
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of sexual partners. The larger the velocity one agent has themore likely it is
to collide. Moreover, contrary to collision interactions where the velocity direc-
tion is completely deterministic[89], here the moving directions after collisions
are randomly selected, since in general, sexual interactions do not determine the
direction towards which each agent will be moving afterwards. Therefore, mo-
mentum isnotconserved.

Regarding these observations our collision rule for sexualinteractions reads

v(ki) = (kα
i + |v0(i)|)ω, (6.1)

whereki is the total number of sexual partners of agenti, exponentα is a real
positive parameter,ω = (ex cos θ + ey sin θ) with θ a random angle andex and
ey are orthogonal unit vectors. Collisions which do not correspond to sexual
interactions only change the direction of motion. It shouldbe pointed out that the
motion of agents occurs in a space which is not the common physical space, but
rather a general continuous Euclidean space, whose norm is related with some
’social’ distance, depending not only on the physical distance between each pair
of agents, but also on their common features and acquaintances.

Collisions corresponding to sexual interactions, i.e. with a velocity update as
in Eq. (6.1), are the only ones which produce links, and occurin two possible
situations: (i) between two agents which already belong to the network, i.e. be-
tween two sexually initiated agents and (ii) when one of suchagents finds a non-
connected (sexually non-initiated) agent. For simplicity, we do not take into ac-
count sexual interactions between two non-connected agents, and therefore our
network is connected (see the discussion in Sec. 6.1.3).

When interactions of type (i) and (ii) occur, both the distribution tail and the
small-k region are observed, as shown by the cumulative distribution Pcum(k)
in Fig. 6.2a. Here, we use a system ofN = 320 × 320 agents withρ = 0.02,
α = 1 and distributions are plotted for different stages of the network growth,
namelyn = 103, n = 104, n = 5 × 104 andn = 105 ∼ N . As one sees, the
exponent of the power-law tail and the transition between the tail and the small-k
region increase during the growth process. These features appear due to the fact
that at later stages most of the collisions occur between already connected agents.
Consequently, the average number of partners increases as well.

If one considers only type-(ii) sexual contacts, the systemreproduces a stationary
scale-free network, as shown in Fig. 6.2b. In this case the average number of
partners, defined as[91]〈k〉 = kmin(γ − 1)/(γ − 2) with kmin the minimum
number of partners, is always2 (kmin = 1 andγ = 3). As we show below,
while empirical data of sexual contacts over large periods have distributions like
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Figure 6.3: Cumulative distributions, when varying(a) a parameters of selectiv-
ity which interpolates between Figs.6.2a and 6.2b (see text) for α = 1 and(b) the
exponentα in the update velocity rule, Eq. (6.1), fors = 0. Here a fixed stage of
growth is considered, namelyn = 5 × 104 = 0.5N .

the ones for regime (i)+(ii), data for shorter periods (1 − 10 years) are scale-free
(only (ii)).

With our model one can easily interpolate between both interaction regimes,
(i)+(ii) and (ii), by introducing a parameters of ‘selectivity’, defined as the prob-
ability that sexually initiated agents in case of collisionwith another initiated
agent, have no sexual contact. Physically, this selectivity accounts for the intrin-
sic ability that a node has to select from all its contacts (collisions) the ones which
are sexual. These intrinsic abilities were already used in other contexts, e.g. as
a new mechanism leading to scale-free networks in cases where the power-law
degree distribution is neither related to dynamical properties nor to preferential
attachment[92]. Fors = 0 one obtains the two regions illustrated in Fig. 6.2a,
namely the small-k region and the power-law tail, while fors = 1 one obtains
the pure scale-free topology illustrated in Fig. 6.2b. In Fig. 6.3a, we show the
crossover between these two regimes.

The shape of the cumulative distributions is also sensible to the exponentα in
the update velocity rule, Eq. (6.1), as shown in Fig. 6.3b. While for small values
of α . 1 one gets an exponential-like distribution, forα & 1.4 the distribution
shows that a few nodes make most of the connections. Henceforth, we fix α =
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1.2.

Having described the model of mobile agents we proceed to a specific applica-
tion, i.e. modeling empirical networks of sexual contacts.
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Figure 6.4: Cumulative distribution of sexual partners in anetwork of heterosex-
ual contacts extracted from Ref. [83], where male (triangles) and females (circles)
distributions are plotted separately, with a total of2810 persons. Solid lines indi-
cate the simulations when plotting the distributions at thesame stagen = 0.2N ,
starting with a population composed by58% of females and42% of males. Here
N = 105, s = 0
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Figure 6.5: Distributions of sexual partners in a network ofheterosexual contacts
using different amounts of females:(a) 58% as in Fig. 6.4,(b) 52%, (c) 64% and
(d) 70%. In each plot solid and dashed lines indicate the cumulativedistributions
of males and females respectively, for five different realizations. Clearly, the
exponent of the power-law tail of the distributions decreases when the percentage
of females or males increases (see dotted lines). Same conditions as in Fig. 6.4
were used.

6.1.2 Reproducing networks of sexual contacts

We will show that, by properly choosing the parameter valuesin our model, one
can reproduce real data distributions of sexual contact networks. In Fig. 6.4 the
cumulative distributions of a real contact network[83] areshown for females (cir-
cles) and males (triangles) separately, based on empiricaldata from2810 persons
from a Swedish survey of sexual behavior, where each person reported the num-
ber of sexual partners they had in a given period of time (frequency of sexual
relations with each partner is neglected). The solid lines in Fig. 6.4 are the sim-
ulated distributions. The simulated power-law tails have exponentsγm = 2.4
andγf = 4.0 for males and females respectively, compared with the empirical
dataγm = 2.6 ± 0.3 andγf = 3.1 ± 0.3[83]. To stress that, while the power-
law tails are also well fitted by distributions obtained withscale-free networks
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Figure 6.6: Comparing the average number of partners for scale-free networks
(stars) and the agent model (circles). For the scale-free network kmin = 4 and
for agent modelN = 520 × 520, s = 0.

(dashed lines in Fig. 6.4), these distributions have a minimum number of connec-
tions (partners) ofkmin = 5 for females andkmin = 7 for males, contrary to the
real valuekmin = 1 also reproduced with our agent model. In fact, the model
of mobile agents takes into account not only the power-law tail of these distribu-
tions, but also the small-k region which comprehends the significant amount of
individuals having only a few sexual partners (k & 1).

It is important to note that in order to reproduce the difference in the exponents it
is necessary to have58% females and42% males, which is far from the expected
difference among number of females and males in typical human populations,
with ratios of females:males of the order of1.1. The difference in the exponents
of the distribution tails for males and females separately,present in the data of
sexual surveys, has generated much controversy and is oftenconsidered due to a
bias either of sampling or honest reporting (see Ref. [82] and references therein).
The exponentsγm andγf on a bipartite network are expected to be nearly the
same when the percentage of males and females are similar, asshown in Fig. 6.5.
In each plot five different realizations are shown for males (solid lines) and fe-
males (dashed lines). In Fig. 6.5a, we plot the results for the same conditions
as in Fig. 6.4 (58% females and42% males). Taking the average over the five
curves for each gender yields the curves shown in Fig. 6.4. Figures 6.5b-d show
the distributions obtained for other percentages illustrating that when decreasing
the difference in the ratio females:males the difference inthe exponents dissap-
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pears. A characteristic feature of our model is that the average number〈k〉 of

(a)
(b)

Figure 6.7: Sketch of two real sexual contact networks having (a) only hetero-
sexual contacts (N = 82 nodes andL = 84 connections) and(b) homosexual
contacts (N = 250 nodes andL = 266 connections). While in the homosexual
network triangles and squares appear, in the heterosexual network triangles are
absent (see Table 6.1).

partners increases as the network grows, which is expected to occur in real sexual
networks according to the observed differences in the shapeof the degree distri-
bution for yearly and entire-life reports of number of sexual partners [83, 84].
This feature is not observed in scale-free networks, as illustrated in Fig. 6.6. Of
course, that this growth also indicates non-stationary regimes, where〈k〉 diverges
with the network growth. In the section 6.1.3 we explain how to overcome this
shortcoming.

We compare the model, with two empirical networks of sexual contacts. One
network is obtained from an empirical data set, composed solely by heterosexual
contacts amongn = 82 nodes, extracted at the Cadham Provincial Laboratory
(Manitoba, Canada) and is a 6-month block data [94] between November 1997
and May 1998 (Figure 6.7a sketches this network). The other data set is the
largest cluster withn = 250 nodes in the records of a contact tracing study [93],
from 1985 to 1999, for HIV tests in Colorado Springs (USA), where most of the
registered contacts were homosexual (see Figure 6.7b).

Figures 6.8(a)-(b) show the cumulative distribution of thenumber of sexual part-
ners for each of the empirical networks. For both cases the agent model and
scale-free networks withkmin = 1 can reproduce the distribution of the number
of partners. However, the agent model withs = 0.7 reproduces, as well, the
clustering coefficient distribution that we measure from the empirical network.

The clustering coefficientC(i) of one agent is defined [13] as the total number of
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Figure 6.8: (a) Cumulative degree distribution of a homosexual contact net-
work[93] with n = 250 (triangles). (b) Cumulative degree distribution of a
heterosexual contact network[94] withn = 82 (triangles). Each case is com-
pared with the average degree distribution over20 iterations, for theBA scale-
free model (dashed line) withkmin = 1, andkmin = 2 and with our agent model
(solid line) withs = 0.7. (c) Cluster coefficient for the homosexual network em-
pirical data (triangles), the agent model (solid line) and theBA modelkmin = 2.
The scale-freekmin = 1 yieldsC(k) = 0 (not shown).

triangular loops of connections passing at one node dividedby the total number
of connectionski. AveragingC(i) over all nodes withki neighbors yields the
clustering coefficient distributionC(k). While for the scale-free graph which
better reproduces these empirical data, the clustering coefficient is zero, our agent
model yields a distribution which resembles the one observed in the real network
(Fig. 6.8c). This feature is due to the co-existence of a tree-like substructure and
closed paths (see Figs. 6.7b).

For both heterosexual and homosexual networks of sexual contacts, the model of
mobile agents reproduces other important statistical features, namely the average
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N L T Q C

Heterosexual 82 84 0 2 0

Homosexual 250 266 11 6 0.029

Heterosexual 82 83.63 0 1.45 0
(Agent Model)

Homosexual 250 287.03 8.23 10.52 0.023
(Agent Model)

Heterosexual 82 84 0 8.47 0
(Null model)

Homosexual 250 266 6.94 16.2 0.011
(Null model)

Homosexual 250 266 11.0 21.462 0.015
(Null m., sameT )

Heterosexual 82 162 0 159.72 0
(Scale-free)

Homosexual 250 498 45.28 256.79 0.082
(Scale-free)

Table 6.1: Clustering coefficients and cycles in two real networks of sexual con-
tacts (top), one where all contacts are heterosexual and another with homosexual
contacts. In each case we present the values of the numberN of nodes, the num-
berL of connections, the numberT of triangles, the numberQ of squares and
the average clustering coefficientC. The values of these quantities are computed
for networks constructed with the agent model, with two nullmodels (see text),
one where the number of triangles is fixed and another where this restriction is
not imposed, and with scale-free networks withkmin = 2. For kmin = 1, one
has better values for the numberL of links in both the heterosexual and the ho-
mosexual networks,L = 81 andL = 249 respectively, but there are no cycles
(not shown).

clustering coefficientC and the number of loops of a given order. Table 6.1
indicates the numberT of triangles (loops composed by three edges), the number
Q of squares (loops with four edges) and the average clustering coefficientsC
given by [13] the average ofC(i) over the entire network.

When using the agent model with the same numberN of nodes as in the real
networks we obtain similar results forL, T , Q andC, as shown in Table 6.1
(middle), where values represent averages over samples of100 realizations. For
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the heterosexual network there are no triangles due to the bipartite nature of the
network. In order to ascertain possible non-trivial features in these empirical
networks, we compare the topological measures of them with the ones of a null
model having the same degree distribution. The null model isa randomized
version of the empirical networks, constructed by rewiringrandomly selected
connections [90]. Namely, whenever one pair of links is selected, sayi ↔ j and
k ↔ l, we substitute these links by two other ones, one connectingi andk and
the other connectingj andl. Note that in the randomized versions the number
of triangles and squares is much larger than in the real networks. In order to
compare the number of squares without the effect of the number of triangles in
the network, we consider also the case of a null model where additionally to
the degree distribution, the numberT of triangles is also the same. In this case,
altough Table 6.1 shows a better estimate ofC, there is yet a much larger number
Q of squares. The heterosexual network is not compared to thislast kind of null
model because it does not have triangles (it is bipartite, aswill be discussed in
section 6.2).

Note that the clear difference in the number of cycles among the empirical net-
works and its randomized versions (or null model), implies that the stucture of
cycles in the real data are not just a statistical consequence of the degree distri-
bution. Thus, the presented model is a good choice for reproducing the observed
cycle structure.

At the bottom of Table 6.1 we also show the values obtained with scale-free net-
works whose minimum number of connections was chosen to bekmin = 2. The
chosen casekmin = 2, is that for which the clustering coefficient distributionsare
as close as possible from the distributions of the real networks. Clearly, the agent
model not only yields clustering coefficients much closer tothe ones measured
in the empirical data, but also does not show the formation oflarger amounts of
loops (triangles and squares), a feature of theBA scale-free networks w hich is
not observed in empirical data.

6.1.3 Summary and discussion

In this section we presented a new model for networks of complex interactions,
based on a system of mobile agents whose collision dynamics is governed by
an efficient event-driven algorithm that generates the links (contacts) between
agents. As a specific application, we showed that the dynamical rules for inter-
actions in sexual networks can be written as a velocity update rule which is a
function of a powerα of the previous contacts of each colliding agent. For suit-
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able values ofα and selectivitys, the model not only reproduces empirical data
of networks of sexual contacts but also generates networks with similar topo-
logical features as the real ones, a fact that is not observedwhen using standard
scale-free networks of static nodes.

Furthermore, our model predicts that the growth mechanism of sexual networks
is not purely scale-free, due to interactions among internal agents, having a mean
number of partners which increases in time. This should influence the predic-
tions about spreading of infections [91]. The agent model presented here offers a
suitable approach to study the emergence of complex networks of interactions in
real systems, using only local information for each agent, and may be well suited
to study networks in sociophysics, biophysics and chemicalreactions, where in-
teractions depend on specific local dynamical behavior of the elementary agents
composing the network.

Since the results obtained with the present model are clearly more satisfactory
than the ones obtained with previous models, we think that the key feature of
mobile agents systems, namely mobility, is a keystone of real contact networks.

While given promising results the model may be improved in two particular as-
pects. First, it should enable the convergence towards a stationary regime with a
growth process starting with all possible collisions instead of one particular agent
from which the network is constructed. Second, the dependence of the above re-
sults on the velocity rule in Eq. (6.1) should be studied in detail, namely for the
case of constant velocity (α = 0). In chapter 7 it is shown that a stationary regime
is easily obtained with the model described above by introducing a simple aging
scheme, while by varying the parameterα one is able to reproduce other non-
trivial degree distributions. Moreover, we introduced theselectivity parameters
to select from all possible social interactions (collisions) the ones which are of
sexual nature. Without introducing this selectivity, the model of mobile agents is
able to reproduce other social networks of acquaintances. Finally, the very few
cycles present in the available data sets, here analyzed, could be just an affect of
their small size. Therefore, larger data sets should be available in order to analyze
and strenghten the applicability of the present model.
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6.2 Cycles and clustering coefficient in bipartites
networks

One important statistical tool to access the structure of complex networks arising
in many systems [2, 6] is the clustering coefficient, introduced by Watts and Stro-
gatz [13] to measure “the cliquishness of a typical neighborhood” in the network
and given by the average fraction of neighbors which are interconnected with
each other. This quantity has been used for instance to characterize small-world
networks [13], to understand synchronization in scale-free networks of oscilla-
tors [95] and to characterize chemical reactions [96] and networks of social rela-
tionships [97, 98]. One pair of linked neighbors corresponds to a ‘triangle’, i.e. a
cycle of three connections.

While triangles may be abundant in networks of identical nodes they cannot be
formed in bipartite networks [97–99], where two types of nodes exist and con-
nections link only nodes of different type. Thus, the standard clustering coef-
ficient is always zero. However, different bipartite networks have in general
different cliquishnesses and clustering abilities [98], stemming for another co-
efficient which uncovers these topological differences among bipartite networks.
Bipartite networks arise naturally in e.g. social networks[99, 100] where the re-
lationships (connections) depend on the gender of each person (node), and there
are situations, such as in sexual contact networks [69], where one is interested
in comparing clustering properties between monopartite (identical nodes) and
bipartite (two types of nodes) compositions.

In this section, we study the cliquishness of either monopartite and bipartite net-
works, using both the standard clustering coefficient and anadditional coefficient
which gives the fraction of squares, i.e. cycles composed byfour connections.
As shown below, such a coefficient retains the fundamental properties usually as-
cribed to the standard clustering coefficient in regular, small-world and scale-free
networks. As a specific application, the two examples of networks of sexual con-
tacts will be studied and compared, one being monopartite and another bipartite.

Furthermore, we will show that one can take triangles and squares as the basic
units of larger cycles in any network, monopartite or multipartite. The frequency
and distribution of larger cycles in networks have revealedits importance in re-
cent research for instance to characterize local ordering in complex networks
from which one is able to give insight about their hierarchical structure [101],
to determine equilibrium properties of specific network models [102], to esti-
mate the ergodicity of scale-free networks [103], to detectphase transitions in
the topology of bosonic networks [104] and to help characterizing the Internet
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structure [105]. Since the computation of all cycles in arbitrarily large networks
is unfeasible, one uses approximate numerical algorithms [103, 106, 107] or sta-
tistical estimates [108, 109]. Here, we go a step further anddeduce an expression
to estimate the number of cycles of larger size, using both clustering coefficients,
which not only improves recent estimates [109] done for monopartite networks,
but at the same time can be applied to bipartite networks and multipartite net-
works of higher order.

We start in Section 6.2.1 by introducing the expression which characterizes the
cliquishness of bipartite networks, comparing it to the usual clustering coeffi-
cient. In Section 6.2.2 we use both coefficients to estimate cycles of larger size
and show how they are applied to bipartite networks, while inSection 6.2.3 we
apply both coefficients to real networks of sexual contacts.Discusions are given
in Section 6.2.4.

6.2.1 Two complementary clustering coefficients

2

3
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7

6
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1

Figure 6.9: Illustration of the neighborhood of a central node (◦) composed by its
first neighbors (•) and its second neighbors (�), i.e. the neighbors of its neigh-
bors. First and second neighbors are used to compute the complementary clus-
tering coefficientC4 (see text).

The standard definition of clustering coefficientC3 is the fraction between the
number of triangles observed in one network out of the total number of possible
triangles which may appear. For a nodei with a numberki of neighbors the total
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number of possible triangles is just the number of pairs of neighbors given by
ki(ki − 1)/2. Thus, the clustering coefficientC3(i) for nodei is

C3(i) =
2ti

ki(ki − 1)
. (6.2)

whereti is the number of triangles observed, i.e. the number of connections
among theki neighbors. As in other studies, here and throughout the manuscript
multiple connections between the same pair of nodes are not allowed.

Similarly to C3(i), a cluster coefficientC4(i) with squares is the quotient be-
tween the number of squares and the total number of possible squares. For a
given nodei, the number of observed squares is given by the number of com-
mon neighbors among its neighbors, while the total number ofpossible squares
is given by the sum over each pair of neighbors of the product between their
degrees, after subtracting the common nodei and an additional one if they are
connected. Explicitly, for a given nodei the contribution of a pair of neighbors,
saym andn, to C4(i) reads

C4,mn(i) =
qimn

(km − ηimn)(kn − ηimn) + qimn
, (6.3)

whereqimn is the number of common neighbors betweenm andn (not counting
i) andηimn = 1+qimn +θmn with θmn = 1 if neighborsm andn are connected
with each other and0 otherwise. The numerator in Eq. (6.3) gives the number
of squares containing nodesi, m andn, while the denominator counts the total
possible number of squares containing these three nodes.

To illustrate the definition given in Eq. (6.3), we show in Fig. 6.9 a simple sketch
of a node (◦) neighborhood composed by its first and second neighbors (• and
� respectively), Considering the neighbors2 and3, one hasq123 = 2 squares
containing nodes1, 2 and3 and there arek2 = 5 andk3 = 5 neighbors of nodes2
and3 respectively. Since nodes2 and3 are not connected with each otherθ23 =
0, yielding η123 = 3 and a denominator in Eq. (6.3) which equals6 possible
squares: two squares which are observed and other four squares corresponding to
the possible combinations of all pairs of non-common neighbors. For neighbors6
and7 a similar calculation can be done, this time withθ67 = 1 since the neighbors
are connected with each other. The clustering coefficientC4(i) is easily obtained
from Eq. (6.3) just by summing the numerator and denominatorseparately over
the neighbors ofi.

While C3(i) gives the probability that two neighbors of nodei are connected
with each other,C4(i) is the probability that two neighbors of nodei share a
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common neighbor (different fromi). AveragingC3(i) andC4(i) over the nodes
yields two complementary clustering coefficients,〈C3〉 and〈C4〉, characterizing
the contribution to the network cliquishness of the first andsecond neighbors
respectively. For simplicity we write henceforthC3 andC4 for the averages of
C3(i) andC4(i) respectively.

An important point to stress concerns the denominators in the definitions of both
clustering coefficients. The possible number of triangles in Eq. (6.2) does not
take into account the topology of the neighborhood, in particular the number
of second neighbors. Instead, the standard way [13] to compute C3, given by
Eq. (6.2), is to assume that all possible triangles are observed when the neighbors
are fully interconnected. Consequently, possible degree-correlation biases may
appear. The same occurs for the definition ofC4. Recently [110] another expres-
sion forC3 was proposed with the aim to filter out these degree-correlation biases
by taking into account the minimum number of neighbors of each pair of nodes
considered. A similar approach could be done forC4, substituting the denomi-
nator in Eq. (6.3) by a suited function of the minimum number of neighbors ofn
andm. However, here we considerC4 as defined above, since it is our purpose
to establish a parallel betweenC4 and the standard definition ofC3, which itself
does not take into account either the correlation removal proposed in Ref. [110].

Figure 6.10 shows both clustering coefficientsC3 andC4 in several topologies.
In all casesC3 andC4 are plotted as dashed and solid lines respectively, and are
averages over samples of100 realizations. As an example of regular networks,
we use networks with boundary conditions where each node hasn neighbors
symmetrically placed, i.e. when arranged in a chain, each node has an even num-
ber of neighbors, half of them on one side and the other half onthe other side.
In particular, forn = 2 one obtains a chain of nodes connected to its nearest
neighbors. For these regular networks, Fig. 6.10a shows thedependence of the
clustering coefficients on the fractionn/N of neighbors, withN = 103 the total
number of nodes. As one seesC4 < C3 and for either small or large fractions
of neighbors both coefficients increase abruptly withn. In the middle regionC3

is almost constant, whileC4 decreases slightly. Our simulations have shown that
in regular networks the coefficients depend only onn/N , i.e. for any size of the
regular network, similar plots are obtained.

Figure 6.10b shows the coefficients for small-world networks with N = 103

nodes, constructed from a regular network withn = 4 neighbors symmetri-
cally placed. The coefficients are computed as functions of the probabilityp
to rewire short-range connections into long-range connections and they are nor-
malized as usual [13] by the clustering coefficientsC0

3,4 of the underlying regular
network. As one sees,C4 yields approximately the same characteristics as the
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Figure 6.10: Comparisons between the standard clustering coefficient C3 in
Eq. (6.2) (dashed line) and the clustering coefficientC4 in Eq. (6.3) (solid line)
for different network topologies:(a) in a regular network withn neighbors sym-
metrically placed (N = 103), (b) in small-world networks where long-range
connections occur with probabilityp (N = 103 andn = 4) and(c) in random
scale-free networks where the distribution of the clustering coefficients is plot-
ted as a function of the numberk of neighbors (N = 105 andm = 2). In all
cases samples of102 networks were used. The distributionsC3(k) andC4(k)
are also plotted for(d) Apollonian networks [4] withN = 9844 nodes (•) and
pseudo-fractal networks [3] withN = 9843 nodes (◦).
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standard clustering coefficientC3 being therefore able to define the same range
of p for which small-world effects are observed. While here the small-world net-
works were constructed rewiring short-range connections into long-range ones,
the same features are observed when using the construction procedure introduced
in Ref. [111] where instead of rewiring one just adds long-range connections.

To construct scale-free networks, we use the standard procedure of Albert and
Barabási with growth and preferential attachment proportional to the number of
neighbors (see e.g. Ref. [2] for details). For such scale-free networks, which we
call henceforth random scale-free networks, we plot in Fig.6.10c the distribution
of both coefficients as functions of the numberk of neighbors, using networks
with N = 105 nodes and by given initiallym = 2 connections to each node.
Here, one observes thatC4(k) is almost constant ask increases, reproducing the
same known feature as the standardC3(k) apart a scaling factor:C4(k)/C3(k)
which is approximately constant for allk. In Fig. 6.10d we plot the clustering
distributions for two different deterministic scale-freenetworks recently studied,
namely Apollonian networks [4], represented by bullets•, and pseudo-fractal
networks [3], represented by circles◦. In both cases, the same power-law be-
havior already known forC3(k) ∼ k−α in these hierarchical networks is also
observed for the coefficientC4(k) with the same value of the exponentα.

All networks in Fig. 6.10 are monopartite, i.e. no distinction between nodes is
made, to have the straightforward comparison between both clustering coeffi-
cients,C3 andC4. Of course, in the case that bipartite counterparts are consid-
ered, the standard clustering coefficientC3 vanishes, and onlyC4 is suited to
measure the clustering between nodes.

In short, the results shown in Fig. 6.10 give evidence thatC4 is also a suited co-
efficient to characterize topological features of several complex networks com-
monly done with the standard clustering coefficientC3. Furthermore, sinceC4

counts squares instead of triangles, it is particularly suited for bipartite networks.
Next, we will use this coefficient to compare different models for networks of
sexual contacts, where both monopartite and bipartite networks arise naturally.

6.2.2 Estimating the number of large cycles with squares and
triangles

Recent studies have attracted attention to the cycle structure of complex net-
works, since the presence of cycles has important effects for example on infor-
mation propagation through the network [112] and on epidemic spreading be-
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havior [113]. In order to avoid numerical algorithms counting the number of
cycles of arbitrary size which implies long computation times, an estimate of the
fraction of cycles with different sizes was proposed [109],using the degree dis-
tributionP (k) and the standard cluster coefficient distributionC3(k). However,
this estimate yields a lower bound for the total number of cycles and cannot be
applied to bipartite networks, as shown below. The aim of this Section is twofold.
First, to show that by using bothC3 andC4 one is able to improve that estimate,
being suited at the same time to either monopartite and bipartite networks. Sec-
ond, to explicitly show some limitations of the estimates below and discuss their
applicability.

The estimate in Ref. [109] considers the set of cycles with a central node, i.e. cy-
cles with one node connected to all other nodes composing thecycle. Figure
6.11a illustrates one of such cycles, where the central nodeand each pair of its
consecutive neighbors forms a triangle, within a total amount of four adjacent
triangles. In such set of cycles, to estimate the number of cycles with sizes one
looks to the central node of each cycle which has a number, sayk, of neighbors.
The number of different possible cycles to occur isn0(s, k) =

(

k
s−1

) (s−1)!
2 , since

one has
(

k
s−1

)

different groups ofs nodes and in each one of these groups there
are (s − 1)!/2 different ways ordering thes nodes into a cycle. The fraction
n0(s, k) of cycles which is expected to occur isp0(s, k) = C3(k)s−2, since the
probability of having one edge between two consecutive neighbors isC3(k) and

(a) (b) (c)

Figure 6.11: Illustrative examples of cycles (sizes = 6) where the most con-
nected node (◦) is connected to(a) all the other nodes composing the cycle,
forming four adjacent triangles. In(b) the most connected node is connected
to all other nodes except one, forming two triangles and one sub-cycle of size
s = 4, while in (c) the same cycles = 6 encloses two sub-cycles of sizes = 4
and no triangles (see text).



96 6.2 Cycles and clustering coefficient in bipartites networks

one must haves − 2 edges between thes − 1 neighbors. Therefore, the number
of cycles of sizes is estimated as

Ns = Ngs

kmax
∑

k=s−1

P (k)n0(s, k)p0(s, k), (6.4)

whereP (k) is the degree distribution andgs is a factor which takes into account
the number of repeated cycles. This geometrical factor can be computed for each
particular case ofs-cycles but the estimates can be carried out without the explicit
computation of the factor [109].

The estimate in Eq. (6.4) is a lower bound for the total numberof cycles since it
considers only cycles with a central node. For instance, in Fig. 6.11b while cycles
of sizes = 4 can be estimated with Eq. (6.4), the cycles = 6 cannot since it has
no central node, and in Fig. 6.11c the above equation cannot estimate any cycle
of any size. In fact, Fig. 6.11c illustrates the type of cycles appearing in bipartite
networks, where no triangles are observed. For such cyclesC3(k) = 0 and
therefore all terms in Eq. (6.4) vanish yielding a wrong estimate of the number
of cycles.

To take into account cycles without central nodes (Figs. 6.11b and 6.11c), one
must consider the clustering coefficientC4(k) defined in Eq. (6.3). One first
considers the set of cycles of sizes with one node (◦) connected to all the
othersexceptone, as illustrated in Fig. 6.11b. In this case, since there are
s − 2 nodes connected to node◦ one hasn1(s, k) =

(

k
s−2

)

(s − 2)!/2 differ-
ent possible cycles of sizes, with k the number of neighbors of node◦. The
fraction of then1(s, k) cycles which is expected to be observed is given by
p1(s, k) = C3(k)s−4C4(k)(1 − C3(k)), since the probability of havings − 4
connections among thes − 2 connected nodes isC3(k)s−4, the probability that
a pair of neighbors of node◦ has to share a common neighbor (different from
node◦) is C4(k) and the probability that these same pairs of neighbors are not
connected is(1−C3(k)). Writing an equation similar to Eq. (6.4), where instead
of n0(s, k) andp0(s, k) one hasn1(s, k) andp1(s, k) respectively and the sum
starts ats − 2 instead ofs − 1, one has an additional numberN ′

s of estimated
cycles which is not considered in estimate (6.4). Notice that, since forN ′

s one
considers at least one sub-cycle of sizes = 4, this additional estimate contributes
only to the estimate of cycles with sizes ≥ 4. We call henceforth sub-cycle, a
cycle which is enclosed in a larger cycle and which does not contain itself any
shorter cycle.

Still, the new estimateNs + N ′
s is not suited to bipartite networks, since it yields

nonzero estimate only fors = 4. To improve the estimate further one must
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consider not only cycles composed by one single sub-cycle ofsizes = 4, as
done in the previous paragraph, but also cycles with any number of sub-cycles
of sizes = 4. Figure 6.11c illustrates a cycle of sizes = 6 composed by two
sub-cycles of size4. In general, following the same approach as previously, for
cycles composed byq sub-cycles of size4 one findsnq(s, k) = (s−q−1)!

2

(

k
s−q−1

)

possible cycles of sizes calculated for a node withk neighbors and a fraction
pq(s, k) = C3(k)s−2q−2C4(k)q(1 − C3(k))q of them which are expected to be
observed. Forq = 0 one considers cycles as the one illustrated in Fig. 6.11a,
while for q = 1 andq = 2 one considers the set of cycles with one and two sub-
cycles of size4, as illustrated in Figs. 6.11b and 6.11c respectively. Summing up
overk andq yields our final expression

Ns = Ngs

[s/2]−1
∑

q=0

kmax
∑

k=s−q−1

P (k)nq(s, k)pq(s, k). (6.5)

where[x] denotes the integer part ofx. In particular, the first term (q = 0) is
the sum in Eq. (6.4). The upper limit[s/2] − 1 of the first sum results from the
fact that the exponent ofC3(k) in pq(s, k) must be non-negative:s − 2q − 2 ≥
0. The estimate in Eq. (6.5) not only improves the estimated number computed
from Eq. (6.4), but also enables the estimate of cycles up to alarger maximal
size. In fact, since in the binomial coefficient

(

k
s−1

)

of Eq. (6.4) one must have
s − 1 ≤ k ≤ kmax, one only estimates cycles of size up tokmax + 1, while in
Eq. (6.5) the maximal size is2kmax, as can be concluded using both conditions
s − 2q − 2 ≥ 0 ands − q − 1 ≤ kmax.

Figure 6.12 compares two cases treated in Ref. [109], both with a degree dis-
tribution P (k) = P0k

−γ and coefficient distributionsC3(k) = C
(0)
3 k−α, using

one value ofα < 1 (Fig. 6.12a) and another oneα > 1 (Fig. 6.12b). Dashed
lines indicate the estimate using Eq. (6.4), while solid lines indicate the estimate
using Eq. (6.5). In both cases, the latter estimate is larger. Forα < 1 the differ-
ence between both estimates decreases with the sizes of the cycle. Forα > 1
the difference between the estimates increases withs beyond a sizes∗ . kmax.
Clearly, from Fig. 6.12b one sees thatkmax + 1 is the larger cycle size for which
Eq. (6.4) can give an estimate, while for Eq. (6.5) the estimate proceeds up to
2kmax (partially shown). In both cases, the typical size for whichNs attains a
maximum is numerically the same for both estimates, as expected. Moreover, for
α > 1 (Fig. 6.12b), beyond a size of the order ofkmax, Ns/(Ngs) in Eq. (6.5)
decreases exponentially withs, slightly different as observed for Eq. (6.4). In
fact, the deviation of Eq. (6.4) from the exponential tail, is due to the fact that for
very large cycle sizes (s ∼ kmax) Eq. (6.4) can only consider very few terms in
its sum.
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Figure 6.12: Estimating the number of cycles using Eq. (6.4), dashed lines, and
Eq. (6.5), solid lines. Here we impose a degree distributionP (k) = P0k

−γ with

P0 = 0.737 andγ = 2.5, and coefficient distributionsC3,4(k) = C
(0)
3,4k−α with

(a) C
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3 = 2, C

(0)
4 = 0.33, α = 0.9 and(b) C
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3 = 1, C

(0)
4 = 0.17, α = 1.1. In

all caseskmax = 500.

Another advantage of the estimate of Eq. (6.5) is that it counts cycles in bipartite
networks. For bipartite networks there are no connections between the neigh-
bors, i.e. all subgraphs are similar to the one illustrated in Fig. 6.11c. Therefore
all terms in Eq. (6.5) vanish except those for which the exponent of C3(k) is
zero, i.e. fors = 2(q + 1). Consequently, sinceq is an integer, Eq. (6.5) shows
clearly that in bipartite networks there are only cycles of even size, as already
known [99]. Moreover, substitutingq = (s − 2)/2 in Eq. (6.5) yields a simple
expression for the number of cycles in bipartite networks, namely

N Bipart
s = Ngs

kmax
∑

k=s/2

P (k)
(s/2)!

2

(

k

s/2

)

C4(k)s/2−1. (6.6)

A simple example to illustrate the validity of Eq. (6.5) is the fully connected
network, where each node is connected to each other one. In this case the number
of cycles with sizes is given byNs =

(

N
s

) (s−1)!
2 . The factor(s − 1)! counts the

arrangements betweens − 1 nodes in each combination ofs nodes, while the
division by two is due to the undirected links. To computeNs from Eq. (6.5)
one has for the particular case of the fully connected network, P (k) = C3(k) =
C4(k) = δk−N+1, kmax = N −1 andgs = 1/s. Consequently the only nonzero
term in the first sum is the one forq = 0, while the nonzero term in the second
sum is the one fork = N − 1, yielding the same result as above.
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Figure 6.13: (a) The exact number of cycles as a function of the size for the
pseudo-fractal network [3] compared with(b) Ns/Ngs of the analytical expres-
sions in Eqs. (6.4), dashed lines, and (6.5), solid lines. From small to large curves
one has pseudo-fractal networks withm = 2, 3, 4, 5 generations (see text).

Both the expression in Eq. (6.4) and the one in Eq. (6.5) are particularly suited for
networks or subnetworks where nodes are highly connected toeach other, since in
those situations there is a very large number of centrally connected cycles as the
ones illustrated in Fig. 6.11. Highly connected subnetworks appear, for instance,
in social networks which are composed by communities [21]. In Ref. [109],
for instance, the estimate of small cycles from Eq. (6.4) is compared to the true
values computed for several empirical networks, namely theInternet, the co-
authorship web and semantic networks. While fors = 3 and4 the estimate is
clearly good, fors = 5 there is a clear underestimation, due to the appearance
of no centrally connected cycles. Of course one expects that, similarly to what
is observed in Fig. 6.12, the estimate in Eq. (6.5) improves the one used in [109]
for such situations.

Next we illustrate this point using a particular network, the pseudo fractal net-
work, already described in section 4.1.1. For these networks, the exact number
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of cycles with sizes can be written iteratively [114] as

N (m+1)
s =

s
∑

l=3

(

l

s − l

)

N (m)
s , (6.7)

for s ≥ 4 andN
(m+1)
3 = N

(m)
3 + 3m.

Figure 6.13 shows the real number of cycles of the pseudo-fractal network
(Fig. 6.13a) with the quantityNs/(Ngs) (Fig. 6.13b) for the pseudo-fractal net-
work. In Fig. 6.13b solid lines indicate our estimate, whiledashed lines indicate
the previous estimate in Ref. [109]. In both cases, the underestimation is very
significant when compared to the exact number from Eq. (6.7).Nevertheless,
even in this case, the estimates predict the shape of the cycle distributions. Up to
our knowledge, complex networks for which the exact number of cycles may be
computed having most nodes highly connected are not known.

It is important to notice that triangles and squares may appear in any multipartite
network (except in bipartite ones, where triangles are absent). Therefore, the
estimates described and studied in this Section can be applied not only to bipartite
networks but also to any multipartite network of any order. In the next Section
we will focus on the applicability of the clustering coefficient C4 in empirical
sexual networks (monopartite and bipartite) with the aim tocompare simulated
results for such networks.

6.2.3 Cycles and clustering in sexual networks

In this Section we apply both coefficientsC3 andC4 in Eqs. (6.2) and (6.3) to
analyze the two real networks of sexual contacts previouslypresented. As Figure
6.7 sketches, in these two networks one can see that cycles ofdifferent sizes
appear. While the network with only heterosexual contacts is clearly bipartite,
the network with homosexual contacts is monopartite.

For the two networks in Fig. 6.7, Table 6.2 presents the coefficientsC3 andC4

with the same simulations of the model shown in Table 6.1. As one sees, although
the heterosexual network has less squares than the homosexual network due to
its smaller size,C4 is much larger. Another feature common to both networks is
L/N ∼ 1, i.e. an effective coordination number of2L/N ∼ 2.

While in the heterosexual network the number of squares and consequently the
value ofC4 is overestimated, for the homosexual network the null modelyields
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〈C3〉 〈C4〉
Heterosexual 0 0.00486

(Fig. 6.6a)

Homosexual 0.02980 0.00192
(Fig. 6.6b)

Heterosexual 0 0.0451
(Null model)

Homosexual 0.011 0.00373
(Null model)

Homosexual 0.0145 0.00477
(Null model, sameT )

Heterosexual 0 0.01273
(Agent Model)

Homosexual 0.02302 0.01224
(Agent Model)

Heterosexual 0 0.12859
(Scale-free)

Homosexual 0.08170 0.02787
(Scale-free)

Table 6.2: Clustering coefficients and cycles in two real networks of sexual
contacts (top), illustrated in Fig. 6.7, one where all contacts are heterosexual
(Fig. 6.7a) and another with homosexual contacts (Fig. 6.7b). In each case one
indicates the values of both clustering coefficientsC3 andC4 in Eqs. (6.2) and
(6.3) respectively. The values of these quantities are compared with the ones of a
null model (see text) with the same degree distribution for two cases, one where
the number of triangles is fixed and another where this restriction is not imposed,
and also with networks constructed with the agent model presented in the previ-
ous section [69] and with theBA scale-free network withm = 2. Samples of
100 realizations were used in each case.

reasonable results for both clustering coefficients, although the large discrepancy
between the number of triangles and squares. In order to compare the number
of squares without the effect of the number of triangles in the network, as in
section 6.1.2, we consider also the case of a null model whereadditionally to
the degree distribution, the numberT of triangles is also the same. In this case,
Table 6.2 still shows an underestimation ofC3 and a much larger numberQ of
squares. Notice that, while the total number of triangles isthe same, the standard
clustering coefficient〈C3〉 can be nevertheless different, since it is an average
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over the local clustering coefficient of each node, which depends not only on the
number of triangles the node belongs to but also on its degree.
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Figure 6.14: Comparing clustering coefficientC4(k) in Eq. (6.3) between net-
works obtained from the agent model (solid lines) used to reproduce real net-
works of sexual contacts (bullets):(a)Monopartite case,N = 250. (b)Bipartite
case,N = 82. Same simulations of the model as presented in Fig. 6.8.

Using the same number of nodes as in the real networks illustrated in Fig. 6.7
and considering two types of nodes for the heterosexual (bipartite) case, we ob-
tain with the agent model similar results forC3 andC4, as shown in Table 6.2
where values represent averages over samples of100 realizations. As one sees,
in general, the agent model yields values much closer to the ones for the empir-
ical networks, than the two null models considered above. Remarkably, for the
bipartite case not only the number of connections and the number of squares are
numerically the same (as was shown in table 6.1), but alsoC4 is of the same order
of magnitude. Similar values of the topological quantitiesare also obtained for
the monopartite case, with the exception ofC4.

In Fig. 6.14a we show the clustering coefficient distributions for the monopartite
network of sexual contacts sketched in Fig. 6.7b, while in Fig. 6.14b we plot the
distribution for the bipartite network (Fig. 6.7a). In bothfigures bullets indicate
the distributions of the empirical data, while solid lines indicate the distributions
of the networks obtained with the agent model, imposing the same size as the
real network, i.e. stopping the simulation when the number of connected agents
equals the size of the corresponding empirical network, andtaking averages over
a sample of100 realizations.
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Figure 6.15: Estimating the number of cycles for the agent model using Eq. (6.5)
for N = 1000 (solid lines),N = 5000 (dashed lines) andN = 10000 (dotted
lines) in (a) a monopartite network and in(b) a bipartite network, both obtained
with the agent model.

The results above concern small empirical networks. To improve the particular
study of sexual networks reproduced by our model, larger networks of sexual
contacts should be also studied and comparisons with a null model [90] must be
carried out to validate the agent model. The main point here is that the results
above already show that the complementary clustering coefficient C4 is suited
to quantify the cliquishness of neighborhoods in either monopartite and bipar-
tite counterparts of the same complex networks, while the standard clustering
coefficient is not.

With the agent model one is able to construct larger networksthan the empirical
ones. In such large networks cycles of different size may appear and one impor-
tant question is to know the frequency of cycles of any order.Using the agent
model for large networks, and computing only their degree distribution and the
two clustering coefficients we can estimate the distribution of cycles in those net-
works. Figure 6.15 shows the distribution of the fractionNs/(Ngs) of cycles
as a function of their sizes, for a monopartite network (Fig. 6.15a) and a bipar-
tite network (Fig. 6.15b) composed ofN = 1000, 5000 and10000 nodes. Here,
while monopartite networks show an exponential tail preceded by a region where
the number of cycles is large, bipartite networks are composed of cycles whose
number depends exponentially on their size. Furthermore one observes a clear
transition at a characteristic size, which seems to scale with the network size.
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6.2.4 Sumary and discussion

We introduced a clustering coefficient similar to the standard one, which in-
stead of measuring the fraction of triangles in a network measures the fraction
of squares, and showed that with this clustering coefficientit is also possible
to characterize topological features in complex networks,usually done with the
standard coefficient. We showed explicitly that the range ofvalues of the proba-
bility to acquire long-range connections in small-world networks and the typical
clustering coefficient distributions of either random scale-free and hierarchical
networks are approximately the same. In addition, we showedthat this second
clustering coefficient enables one to quantify the cliquishness in bipartite net-
works where triangles are absent. Thus, one should take triangles and squares
simultaneously as the two basic cycle units in any network.

An application of both clustering coefficients was proposed, namely to estimate
the number of cycles in any network, either monopartite or multipartite. Using a
recent estimate which yields a lower bound of the number of cycles in monopar-
tite networks up to a sizes < kmax + 1 wherekmax is the maximum number of
neighbors in the network, we deduce a more general expression which not only
improves the previous estimate but is also suited for bipartite networks and en-
ables one to estimate cycles of size up to2kmax. Furthermore, in the particular
case of bipartite networks our estimate yields as a natural consequence that only
cycles of even size may appear.

To illustrate the applicability of the complementary clustering coefficient in bi-
partite networks, we studied a concrete example of two sexual networks, one
where only heterosexual contacts occur (bipartite network) and another with ho-
mosexual contacts (monopartite). The results obtained with the two real networks
were found to be similar to the ones obtained with the agent model introduced in
Sec. 6.1.1.

All in all, our analytical expression gives a simple way to extract information
concerning the distribution of cycles in multipartite networks, and in particular
the clustering coefficientC4 can be regarded as a suited measure of neighborhood
cliquishnesses in bipartite networks.



Chapter 7

Model of mobile agents for
social interaction networks

The topological features of networks of acquaintances fundamentally differ from
other networks [2, 115]. First, they are single-scale networks and present small-
world effect [33]. Second, they are divided into groups or communities [2]. Ad-
ditionally, while those networks are dynamical, evolving in time, their evolution
process differs from standard growth models as those that govern e.g. the World
Wide Web, or from copying mechanisms proposed for biological networks. An
interesting development in this area is given in [116] wherea simple procedure of
transitive linking is proposed to generate small-world networks. While each one
of the mentioned features can be reproduced with some previous model, there
is still no single model that incorporates simultaneously dynamical evolution,
clustering and community structure.

In this chapter we show that all these characteristics can bereproduced in a very
natural way, by using standard concepts and techniques fromphysical systems.
Namely, we propose an approach to dynamical networks based on a system of
mobile agents representing the nodes of the network. We willshow that, due
to this motion, it is possible to reproduce the main properties [1, 2] of empiri-
cal social networks, namely the degree distribution, the clustering coefficient (C)
and the shortest path length, by choosing the same average degree measured in
the empirical networks, and adjusting only one parameter, the density of the sys-
tem. The community structure emerges naturally, without labelinga priori the
community each agent belongs to, as in previous works [117].Moreover, this ap-
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(a) 

Pajek

(b) 

Pajek

(c) 

Figure 7.1: Snapshots of the system of mobile agents, where the edges between
two agents indicate that they already collided with each other. (a) Snapshot after
the first collision,(b-c) two subsequent snapshots within one cluster of colli-
sions. Filled nodes (blue) and unfilled nodes (red) represent two different types
of nodes, e.g. males and females (see Sec. 7.5 for details).

proach gives some insight to further explain the structure of empirical networks,
from a recently available large data set of friendship networks [118] concern-
ing 90118 students, divided among84 schools from USA, constructed from an
In-School questionnaire (see details of this database in chapter 8). The acquain-
tance between pairs of students was rigorously defined. Eachstudent was given
a paper-and-pencil questionnaire and a copy of a list with every student in the
school. The student was asked to check if he/she participated in any of 5 activi-
ties with the friend: like going to (his/her) house in the last seven days, or meeting
(him/her) after school to hang out or go somewhere in the lastseven days, etc.
Other studies [33] have used a slightly different definitionof friendships and
obtained the same kind of degree distribution, an indication of the robustness of
the concept of friendship.

7.1 The Model

In this chapter we examine a stationary version of the model presented in
Sec. 6.1.1 and used to model growing networks of sexual contacts. Here social
contacts are introduced by setting a link joining the two agents after a collision,
till its removalwhen one of the agents leaves the system when reaching certain
age. Therefore, during the evolution of the system, each agent i is characterized
by its numberki of links and by its ageAi.
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Since collisions represent social contacts their dynamical rules should fulfill
some sociological requirements. Namely, it is known [88] that many social inte-
ractions occur more commonly between individuals having already a large num-
ber of previous contacts. For instance, here we keep the velocity up-date rule
(Eq. 6.1).

The exponentα in Eq. (6.1) controls the velocity update after each collision.
For α = 0 the velocity of each agent is constant in time, and consequently the
kinetic energy density12ρv2 of the system is constant. Forα > 0 the velocity
increases with degreek. In this range, the valueα = 1 (|v| ∝ k) marks a
transition between a sub-linear regime (α < 1) and a supra-linear regime (α >
1) with different degree distributions[69,123]. Throughout this chapter we will
considerα = 1 in most of the situations, showing that it produces the suitable
dynamics to reproduce real networks of social contacts. It should be noticed
that while positive values ofα yield dynamical laws which fulfill sociological
requirements, the equation of motion (6.1) is also able to consider completely
different situations, whereα < 0, i.e. where the ability to acquire new contacts
decreaseswith the number of previous contacts. In this research, we have focused
in the regimes forα > 0.

As one may notice, contrary to collision interactions wherethe velocity vector is
completely deterministic [89], here momentum isnotconserved. This is a conse-
quence not only of the increase ofv but also of the fact that after one collision the
moving direction is randomly selected. The main reason for this random choice
is that, as a first approximation it is plausible to assume that social contacts do
not determine which social contact will occur next.

Concerning the residence time or ‘age’ parameterA, during which the agents
remain in the system, ifA → ∞, each agent will eventually collide with all
the other agents forming a fully connected network. Whereas, when the average
residence time of the agents is finite the system will reach a nontrivial quasi-
stationary states [33, 119], as described in section 7.2.

The aging scheme considered here is simply parameterized bysome threshold in
the age of the agents. More precisely, each agenti is initialized with a certain
ageAi(0) which is a random number uniformly distributed in the interval [0, Tℓ]
with Tℓ being the maximal age an agent may have. Being updated according to
Ai(t+∆t) = Ai(t)+∆t, the age eventually reachesAi(t) = Tℓ, when the agent
i leaves the system, yielding a total residence timeTℓ −Ai(0). Computationally
the replacement of an old agent by a new one is carried out simply by removing
all the connections of the old agent and updating its velocity to the initial value
v0 with a new random direction.
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Before proceeding in characterizing the behavior of such a system it is important
to a/-ddress three last points to understand the parallel between the model and
real systems.

First, the two-dimensional continuous space where nodes move isnot the phys-
ical space where individuals travel, meet or establish social acquaintances. In-
stead, it represents a projection of a highly dimensional Euclidean space whose
metric may be related to a so called the social distance [115,117]: two close
nodes have similar affinities (same tastes, same behavior, etc.) and therefore it
is probable for them to establish an acquaintance, i.e. to collide. It should be
stressed that the metric isrelatedto social distance, but also incorporates effects
of random factors promoting two persons to meet or establishfriendship con-
nections. We have no rigorous explanation for the fact that atwo-dimensional
projection of such a ‘large’-dimensional space suffices to reproduce empirical
data of acquaintances. But the fact is that it does, and therefore for simplicity
we will consider a two-dimensional system. One could also consider higher di-
mensional systems of mobile agents but then the ‘projected’velocity in Eq.(6.1)
would change.

Second, since the system of mobile agents is used to extract acomplex network,
one could ask where the main parametersρ andTl appear in the network struc-
ture. One easily concludes that increasing the densityρ confines the accessible
region of agents thus promoting the occurrence of collisions among them which
are more confined in space. In other words, increasing the density one increases
the clustering coefficient [13]. As forTℓ, the larger the residence time, the larger
the number of collisions an agent may have. Thus, increasingTℓ increases the
average number〈k〉 of connections.

Finally, in a space of affinities what is the meaning of a velocity?. The velocity
can be interpreted as measure of the accessible region of a given agent within this
social space which increases, decreases or remains constant after each collision,
depending on the value ofα.

7.2 The quasi-stationary regime

In the QS state the dynamical and topological quantities fluctuate around an
average value after a transient time of the order of2Tℓ. Figure 7.2 illustrates
the convergence toward the QS state for two different valuesof Tℓ, namely for
Tℓ = 30.75 andTℓ = 73.35. Here, the convergence is characterized by plotting
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Figure 7.2:(a) Average ageĀ(t) vs. time.(b) Number of links per agent,M/N ,
vs. time. (c) Average energy vs. time. Two different time of life are shown:
Tl = 73.35 andTl = 30.75, at one realization of a system ofN = 4096, with
v0 =

√
2 andρ = 0.02

the effective coordination given by the fractionM(t)/N between the total num-
ber M of connections and the total numberN of agents (Fig. 7.2a), the mean
energy1/2v̄2(t) (Fig. 7.2b) and the mean agēA(t) (Fig. 7.2c), as function of
time t, the bar ’−’ for v̄(t) andĀ(t) represents the average over all the agents
in a given time,t. In all three cases, the above quantities increase in the earlier
stages of the network growth attaining a maximum value around t ∼ Tℓ/2 where
the agents start dying, resulting in the decrease of their values till a minimum at
t = Tℓ. For the studied initialization ofAi, uniformly distributed in range[0, Tl],
the maximum att ∼ Tℓ/2 is due to the fact that the agents have on average a
life-time equal toTℓ/2, while the minimum is due to the extinction of all the first
‘generation’ of agents.

When the average residence time is too small, two agents willhave no time to
collide at least once, and consequently no network is formed. On the contrary,
whenTℓ is too large, each agent will cross the entire system and a fully con-
nected network appears. To avoid these two extreme regimes we consider an
average residence time which is neither very small nor largewhen compared to
the characteristic timeτ between collisions.
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Figure 7.3:(a) Numerical simulation of average age,〈A〉 vs. Tl/τ0 (circles), the
straight line has slope5/8τ0 (Eq. 7.3).(b) Results of the numerical simulation of
λ vsTl/τ0 (diamonds) compared to the result of Eq. 7.12 (solid line).(c) velocity
modulus from the simulation (stars), compared to Eq. 7.10 (solid line). The sim-
ulations represent averages in the quasi-stationary regime, over 100 realizations,
in a system ofN = 104, with ρ = 0.02, v0 =

√
2, for different values ofTl.

For that, we define a collision rate, as the fraction between the average residence
timeTℓ − Ā(0), and the characteristic timeτ of the mean free path defined as

τ =
1√

πρ2r〈v〉 , (7.1)

where〈v〉 is the average velocity of the agents. With this assumptionsour colli-
sion rate reads

λ =
Tℓ − Ā(0)

τ
=

1

2v0τ0
〈v〉(Tℓ), (7.2)

where〈〉, means an average over the value for each agent at different snapshots
in the quasistationary state (QS), τ0 is the characteristic time of the system with
the initial velocityv0, i.e. τ0 ≡ 1/(2

√
πrρv0) andĀ(0) = Tl/2 is the average

initial age of the agents.

At t = 0 we haveĀ(0) = Tl/2, later att = Tl/2, half of the population has been
replaced by new individuals which have〈A〉1st = Tl/2, while the other half has
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〈A〉2nd = 3Tl/4, these processes of birth and death produce a mean age which
is the average of the two values〈A〉1st and〈A〉2nd:

〈A〉 = 5Tl/8. (7.3)

In Fig. 7.3a we show numerical results of〈A〉 vs. Tl/τ0 (circles) and the straight
line has slope5/8τ0, which confirms Eq. 7.3.

The number of collisions of an agentnc,i in a two dimensional diluted gas, in-
creases with time and is proportional to the radius of the agents (r), its velocity
vi and the density of agents (ρ) [120]:

nc,i(t) = ρr
√

2πvi(t)t, (7.4)

The inverse of the coefficient in Eq. 7.4 is the characteristic time between colli-
sions. For simplicity we write it in terms of the initial velocity (v0), and thus we
have:

dnc,i

dt
=

1

τ0v0
vi(t). (7.5)

Because links are produced due to collisions, we write the degree of an agent as
a function ofnc,i,

ki(t) = (1 − fi(t))nc,i(t), (7.6)

wherefi(t) is the fraction of neighbors of agenti that leave the system due to
their age. Changes in the degree of an agent affect its velocity (according to the
velocity up-date rule of Eq. 6.1):

vi(t) = v0 + v1ki(t) (7.7)

With Eqs.[ 7.4−7.7], we can write a differential equation forvi(t)

dvi

dt
= v1

dfi

dt

√
2πρrvi(t)t +

v1

τ0v0
(1 − fi(t))vi(t). (7.8)

Because we do not know an exact expression forfi(t), we have to make some
approximations. We asumefi(t) = −t/(2Tl), which implies that aftert = Tl the
degree of an agent equals half of its collisions ,ki(Tl) ≈ nc,i(Tl)/2. Substituting
fi(t) into Eq. 7.8, we obtain:

dvi(t)

dt
=

v1

τ0v0
(1 − t

Tl
)vi(t), (7.9)
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summing over all the particles and integrating it over the interval[0, Tl] gives:

〈v(Tl)〉 = v0e
T

l
v1

2τ0v0 . (7.10)

Note that the resulting value is a constant that depends onTl and the selected
initial conditionsτ0, v0. Figure 7.3c compares the expression of Eq. 7.10 to the
average velocity modulus obtained from the simulations. The result of the simu-
lation represents an average in the quasi-stationary regime, over 100 realizations,
in a system ofN = 104, with ρ = 0.02, v0 =

√
2, for each value ofTl.

From Eq. 7.2 we defineλ,

λ ≡ 〈nc〉 ≡
Tl

2v0τ0
〈v〉 (7.11)

as a characteristic quantity, which gives the number of collisions during the av-
erage life time of agents, and using Eq. 7.10, its approximation is given by,

λ ≡ 〈nc〉 =
Tl

2τ0
e

T
l
v1

2τ0v0 (7.12)

Figure 7.3b presents the comparison between the numerical calculation ofλ and
Eq. 7.12. Both expressions Eq. 7.10 and Eq. 7.12, estimate better the results for
lower values ofTl/τ0.

In Figure 7.4 we compare the values obtained from simulations of the average
degree〈k〉 vs. Tl/τ0 with Eq. 7.13. This is calculated substituting Eq. 7.12 with
the previous approximation〈k(Tl)〉 ≈ λ/2, which gives:

〈k〉 =
Tl

4τ0
e

T
l
v1

2τ0v0 . (7.13)

Equation 7.13 works better for lower densities and lower values ofTl/τ0.

In contrast, as we show in the inset of Fig. 7.4b, we find that〈k〉 = λ/2 (solid
line) is valid for all densities. In fact, given this linear relationk(λ), λ being the
appropriate control parameter to determine the emergence of a giant connected
component in the system. By varying the collision rateλ, one finds a critical
valueλc marking a transition from a state composed by several small clusters to
a state where a giant cluster emerges after attaining theQS. In the next Section
7.3 we characterize the critical transition occurring atλc.
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Figure 7.4: Comparison of the average degree〈k〉 of the components of the net-
work coming from the simulation (circles) with Eq. 7.13 (solid line). Inset:
Numerical results of〈k〉 vsλ (circles), the straight line is a guide to the eye with
slope0.5. The simulations conditions are the same as those describedfor Fig. 7.3

7.3 Critical behavior

A cluster is defined as a group of agents connected by links. Note that in contrast
to lattice models, were clusters are given by occupied lattice sites connected by
nearest-neighbors distances, for this model, each clustergives a group of agents
in contact at a certain time. Isolated agents are regarded asclusters of size unity
and any cluster consisting ofs connected agents is called ans-cluster. We borrow
again the notation from Stauffer’s book on percolation theory [81] and define here
ns = Ns/N as the number ofs-clusters per agent, whereNs is the number of
clusters of sizes andN the total number of agents in the system. In Fig. 7.5
we show from left to right: the fraction of agents in the largest clusterG/N , in
Fig. 7.5a, the total number of clusters

∑

ns, in Fig. 7.5b and the mean size of
clusters

∑

s2ns. As we see qualitatively from the figure forλ = 2.04 clusters
of small sizes coexist in theQS and forλ = 11.04, there is one giant cluster
with a large fraction of the population. For a given value ofTl, we calculateλ
numerically in theQS state and average at different times the value ofG. The
result is plotted in Fig. 7.6b, for different number of agents,N = L×L, with L =
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∑

ns vs. time. (c) Mean size of clusters
∑

s2ns vs. time.
Two values ofTl/τ0 are presented, namely,Tl/τ0 = 2.2 andTl/τ0 = 5.02, other
simulations conditions like in Fig. 7.2.

32, 46, 92, 128 and256. At the same timeχ ≡ ∑

s2ns is calculated excluding
the largest cluster from the sum (Fig. 7.7b). According to the standard method of
scaling theory [121], we expectG andχ to follow

G = L−β/νF [(λ − λc)L
−1/ν ] (7.14)

χ = Lγ/νG[(λ − λc)L
−1/ν ]. (7.15)

This is confirmed by the collapses of the curves near the transition (λ− λc ∼ 0),
in the Figs. 7.6a and 7.7a, for the values ofν, β, andγ reported in the central
column of table 7.1, withλc = 2.04.

In order to test the scaling relation for the cluster numbers. For a system with
N = 216 agents, we calculate bins of the cluster size distribution at different
values ofλ. Following Ref. [81], we take4 bins (16 − 31, 32 − 63, 64 − 127,
128 − 255) and plot them for differentλ, like shown in the inset of Fig. 7.8. For
each bin we take the rations/ns(λc) and plot it vs.(λ − λc)s

σ usings as the
geometric average over the two extremes of the bin size and

σ =
1

β + γ
, (7.16)
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Figure 7.6:(a) Confirmation of the scaling relation in Eq. 7.14, for the systems
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2.04. (a) Fractions of agents in the largest clusterG/N vs. λ (numerical results
in theQS for a fixed value ofTl/τ0). Results for different numbers of agents:
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MF mobile agents Percolation (2d)[81]
ν 0.5 1.3 ± 0.1 1.33333
γ 1 2.4 ± 0.1 2.38888
β 1 0.13 ± 0.01 0.13888
σ 0.5 0.40 ± 0.01 0.3956

Table 7.1: Critical exponents related to the emergence of the giant cluster in a
random graph model (percolationMF ), for the network of mobile agents pre-
sented here, compared to the exact results of2d percolation.

using the values ofβ, γ andλc obtained previously. Eq. 7.16, confirms that
the scaling relation of the phase transition belongs to the universality class of
2d percolation. It is known that the emergence of a giant cluster for a random
graph depends on〈k〉 with its critical value at〈k〉c = 1, and the phase transition
belongs in the same universality class as mean field percolation (see exponents
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2.04. (a) Mean cluster size

∑

s2ns vs. λ (same simulations as in Fig. 7.6).

in the first column of table 7.1) [122]. For our model we observe, in the same
way, the emergence of the giant cluster at〈k〉c = 0.5λc = 1.02, and in contrast
the universality class corresponds to2d percolation, as shown in table 7.1).

Before ending this Section, we stress that the correlation exponentν presented
in the Tab. 7.1 is the one obtained from finite size scaling. This exponent can
be also explicitly calculated as the linear size of clusters(see [81]), namely by
computing the correlation lengthξ(λ),

ξ2 =
2

∑

s Rs
2s

2ns
∑

s2ns
. (7.17)

Being2R2
s the average squared distance between two cluster sites, which is cal-

culated for each cluster explicitly fromri the spatial position of the agents with
respect to the position of the center of mass of the clusterr0 =

∑s
i=1

ri

s , as
follows:

R2
s =

s
∑

i=1

|ri − r0|2
s

. (7.18)
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Thus, apart from a constant factor, the correlation length is the radius of those
clusters which give the main contribution to the second moment of the cluster
size distribution near the percolation threshold. We expect ξ to diverge asλ
approachesλc, as

ξ(λ) ∼ |λ − λc|−ν . (7.19)

The result of the numerical calculations of Eq. 7.19 is shownin Fig. 7.9, where
the solid line has a slope of−1.3 yielding a correlation exponent in agree-
ment with the previous results (see Tab. 7.1). Since the agents move on a two-
dimensional plane and have only a finite life time, they can only establish con-
nections within a restricted vicinity, and this effect corresponds to a connectivity
which is short range at each snapshot of the system. Thus, although the clusters
in the agent model are not quenched in time, the underlying dynamics yields a
short range2d percolation.
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Figure 7.9: Correlation lengthξ as a function ofλ − λc. Symbols indicate the
result of simulations performed for different values ofλ and the solid line has a
slope ofν = −1.3.

7.4 Properties of the network

In this section we will study the degree distributionP (k), the clustering distribu-
tionsC(k) characterizing the cliquishness of the agents neighborhoods, and the
average path lengthℓ in the QS state.

In Fig. 7.10 we compute the degree distributionP (k), by counting the fraction
of nodes havingk neighbors. Two different velocity updates are illustratedhere,
namelyα = 0 (triangles) andα = 1 (diamonds). Clearly, the degree distribution
depends strongly on the collision update rule, i.e. on the value ofα in Eq. (6.1).

More precisely, forα = 0, the velocity of each agent is always constant, the
resulting degree distribution being a consequence of the effective timeTl to create
links and of the collision rate, yielding a Poissonian,

P (k) =
〈k〉k
k!

e−〈k〉. (7.20)

For this valueα = 0, the distribution of degree was calculated for a fixed value
of Tl/τ0 = 9.5 the resulting network has〈k〉 = 2.52, introducing this value
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Figure 7.10: Degree distribution of the giant cluster in thequasi-stationary state,
averaged over100 iterations for a system ofN = 104 agents. Results are pre-
sented for the velocity update rule1 with Tl/τ0 = 9.5 (diamonds), compared to
Eq. 7.20 (solid line), evaluating the resulting〈k〉 = 2.52. And also for the veloc-
ity update rule of section 6.1.1, withTl/τ0 = 3.0 (circles), compared to Eq. 7.21
evaluated at the resulting〈k〉 = 2.62.

in Eq.7.20, we obtain the solid line in Fig. 7.10, which showsthat the degree
distribution of the network is well approximated by a Poissonian. In this way,
one can argue that forα = 0 the system produces a two-dimensional geometric
random graph [124] in the QS state.

Forα = 1 the velocity in Eq. (6.1) increases linearly with the numberof previous
collisions. As we will see, this kind of dynamics reveals to be most suited to re-
produce the statistical features of real social networks (see Sec. 7.5). In this case,
the initial age of agents uniformly distributed (see Sec. 7.1) yields an exponential
velocity distribution and consequently an exponential degree distribution

P (k) =
1

〈k〉 − 1
e−( k−1

〈k〉−1
). (7.21)

In Fig. 7.9 the dashed line indicates Eq. (7.21) evaluated at〈k〉 = 2.62, which
results beingTl/τ0 = 3.0 used in the numerical simulation (triangles). So, for
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this valueα = 1 the agent model is capable of producing a two-dimensional
exponential graphs in the QS state.
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Figure 7.11:(a) Degree distribution of the giant cluster in theQS, for several
values ofλ = 5.24, 8.04, 13.04, 23.76 and57.36 (symbols). Lines indicate the
corresponding exponential fit with an exponential (see Eq. (7.21)). HereN =
64 × 64 andα = 1. For other system sizes the results are similar.

In the following we will consider the valueα = 1 in Eq. (6.1) and study how the
degree distribution depends on the collision rateλ.

Figure 7.11 shows the degree distribution in the QS state forλ = 5.24 (circles),
8.04 (squares),13.04 (diamonds),23.76 (up triangles) and57.36 (left triangles),
plotting with lines the exponential in Eq. (7.21) evaluatedwith the corresponding
〈k〉. As one sees, while for smallλ the exponential expression fits well the ob-
served degree distributions, for larger〈k〉 the numerical results have a lower cut-
off than the analytical expression. Therefore, one concludes that the agent model
is able to reproduce exponential distributions for low values of the collision rate
(λ < 10) and that other non-trivial distributions are generated increasing the col-
lision rate. The latest ones are the ones observed in empirical social networks
(see Sec. 7.5).

Another property of interest to characterize in the networkis its clustering coef-
ficient (see Sec. 3.1.4). Figure 7.12 shows the mean degree-dependent clustering
coefficientC(k) for the same mobile agents systems in Fig. 7.11. It is interest-
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Figure 7.12: Clustering coefficient distribution for the same simulations of
Fig. 7.11, namely for (left to right)λ = 5.24, 8.04, 13.04, 23.76 and57.36. The
solid line is a guide to the eye with slope1/2 (see details in text). Hereα = 1,
N = 128 × 128 and averages over100 realizations were taken.

ing to note that, in contrast to random graphs, which have a clustering coeffi-
cient independent onk, here we observe a dependence of the form∼ k−α with
α ∈ [0.4, 0.6]. In other words, Fig. (7.12) shows that the clustering coefficient de-
creases with the degree, a feature which indicates the existence of an underlying
hierarchical structure[101]. An analytical approach to understand this structure,
remains to be performed and is beyond the scope of this work.

To investigate small-world effects in our system, we compare the networks
of the model of mobile agents with random networks having thesame num-
ber N of nodes and where each pair of nodes is connected with a probability
p = 2M/(N(N − 1)). With this probability one obtains a random network
with approximately the same effective coordinationM/N (same〈k〉) as the one
observed in the model of mobile agents.

As seen from Fig. 7.13a, the average path length of the model is small compared
to the system size. Moreover, as seen in Fig. 7.13b the cluster coefficient in
the agent model (circles) is much larger than in the random counterparts (trian-
gles). However, the networks generated by the model of mobile agents are not
small-world, since to have the small-world property[1] it is also required that the
increase of the shortest path length with the system size is not faster thanlnN .
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Figure 7.13: Thermodynamic limit of the networks in the system of mobile
agents. (a) Shortest path lengthℓ as a function of the system sizeN , for
Tl/τ0 = 5.02, compared tolnN (dashed lines). For large network sizes the solid
line indicates a fitℓ = e−3

√
N (see text).(b) Average clustering coefficient (C)

as a function ofN for the agent model (bullets) compared to the corresponding
random graph with the same〈k〉 (triangles), having a fit (solid line) ofC ∼ 1/N .
Hereρ = 0.02.

From Fig. 7.13a one sees that this is only true for small system sizes (N < 104).
For larger systems, the fitted numerical results yieldℓ = e−3

√
N .

In Fig. 7.13b one sees the behavior of the average cluster coefficient when the
system size is increased. Interestingly, one clearly sees an independence on
N , beyondN > 103, whereC ∼ 0.08. For higher density valuesρ this N -
independent value ofC increases. This result is quite in contrast toER random
graphs which scales with1/N , as illustrated in Fig. 7.13b with triangles.

7.5 Real world network of social interactions

In this section we show that the presented model is suitable to reproduce empi-
rical networks. As we showed in the previous section, while for small〈k〉 the
degree distribution of the giant cluster is exponential of the form of Eq. (7.21),
for larger〈k〉 it deviates from this shape. The same deviation as〈k〉 increases is
in fact found in empirical data, from the friendship networks of the84 schools.
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Figure 7.14: Reproducing the distribution of friendship acquaintances in empiri-
cal social networks [118] with the agent model. In all cases circles represent the
empirical data, while solid line indicate the result of the model of mobile agents.

Figure 7.14 shows several plots of the degree distributionsfrom nine of the
schools (circles) compared to the distributions obtained with the agent model
(solid lines) for the same number of agents. The values for the collision rate in
the simulations were taken fromλ = 2〈k〉 where the average degree is the one
found in the corresponding school. As one sees, in all cases the tails of the distri-
butions are well fitted by the model. We found very convincingagreement with
the model and the entire database of empirical networks.

For each of the schools, Fig. 7.15a shows the average shortest path lengthl (cir-
cles), and the clustering coefficient C (triangles). Solid lines indicate the results
obtained for the agent model using the same range of values of〈k〉, averaged over
100 realizations withN = 2209 andρ = 0.1. Sincel depends on the network
size, it is divided by the shortest path lengthl0 of a random graph with the same
average degree and size. Clearly, the agent model predicts accurately both the
clustering coefficient and the shortest path length for the same average degree.

By computing the average degree〈k〉 of each school one is able to obtain the
value ofTl/τ0 for which the agent model reproduces properly the empiricaldata,
as illustrated in Fig. 7.15b. Here solid lines indicate the prediction curve for the
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Figure 7.15: Reproducing statistical and topological features of empirical social
networks with the model of mobile agents.(a) Average shortest path lengthl and
clustering coefficientC as functions of the average degree〈k〉. Symbols repre-
sent the results of empirical data and dashed lines the simulations. (b) Plot of
Tl/τ0 as a function of〈k〉 for the agents models (solid line). The curve is used as
a prediction for the suitable value ofTl/τo to reproduce a given school by know-
ing its average degree〈k〉. Stars illustrate two particular schools for Figs. 7.16
and 7.18 havingTl/τ0 = 4.75(school 1) and6.0 (school 2) respectively.(c)
Second moment〈k2〉 for each school vs. the second moment calculated for the
corresponding simulation with the agent model, the solid line is a guide to the
eye with slope one.

agent model, while triangles indicate the values ofTl/τ0 chosen to reproduce the
social network of the schools with the resulting value of〈k〉. Moreover, the sec-
ond moment〈k2〉ag obtained with the simulations of the agent model is a rescal-
ing of the same quantity〈k2〉Sch measured for the empirical school networks, as
shown in Fig. 7.15c.

Figure 7.16a shows the degree distribution averaged over all the schools, com-
pared to the average of the ones obtained from the agent modelsimulations using
the chosen values ofTl according to the relation sketched in Fig. 7.15b. As one
clearly sees, the degree distribution obtained with the agent model fits much bet-
ter the empirical data than the exponential (dotted line) orPoisson (dashed line)
distributions for a given〈k〉. The inset in figure 7.16a shows the comparison of
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Figure 7.16:(a)Degree distributionP (k) averaged over all the schools (symbols)
compared toP (k) of the simulations averaged over10 realizations (solid line)
with the given selection ofTl/τ0 (see Fig. 7.15). The inset shows the results for
a particular school (school 1).(b) Average degreeKnn of the nearest neighbors
as a function ofk. Dashed and dotted lines indicate the Poisson and exponential
distributions respectively, for the same average degree〈k〉.

the network of one particular school (school 1 in Fig. 7.15),and the average over
20 realizations of its corresponding model (withTl/τ0 = 4.75).

It has been recognized that social networks show degree correlations, in the sense
that the degree of the nodes at the end points of a link are not independent [2].
This can be quantified by computingKnn(k), the average degree of the nearest
neighbors of a vertex of degreek [115]. Figure 7.16b shows a good agreement of
this value between real data and the model for the same networks of Fig. 7.16a.
Similar to other social networks the mixing is assortative [2], i.e. Knn increases
with k, but in contrast to networks with scale free degree distribution (i.e. collab-
oration networks),Knn(k) for friendship networks presents a cutoff due to the
rapid decay in the degree distribution.

Further, the typical community structure found in social networks, namely the
existence of several subnetworks highly interconnected with a few connections
between each other, is also reproduced by the agent model. Here, we use a precise
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Figure 7.17:(a) Enclosed in a box is an illustrative example of trajectoriesof
4 agents (labeled from1 to 4) forming a 3-clique sketched in(b). The inset
enlarges the region bounded by the box. The arrows indicate two other regions
of the system, where one3-clique community is observed. In these cases the
communities are composed by10 nodes as sketched in(c).

definition of network community recently proposed [21] based on the concept of
k-clique community. In Fig. 7.17 we plot the system of mobile agents, drawing
only the trajectories of the agents which belong to two3-clique communities,
having4 and10 agents and sketched in Fig. 7.17b and Fig. 7.17c respectively.
Agents that form a community share a region in space and agents with larger tra-
jectories are responsible for building up the community. Itshould be pointed out
that the agent motion in the system does not have the straightforward meaning of
human motion in physical space, but may be better related with affinities among
individuals.

Figure 7.18a shows the size distribution of3-clique communities in a particular
school (school 2) compared to the simulation for the suitable value ofTl/τ0 (see
Fig. 7.15), while in Fig. 7.18b the average over all schools is compared to the
average over10 realization of the corresponding model for each school. In both
cases, the agent model reproduces the distribution of community sizes observed
for the empirical data, particularly the feature related tothe existence of a big
community having a large fraction of the population, namelys ∼ 103 agents.

In the particular case of sexual contacts it has been reported that the degree distri-
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Figure 7.18: (a) Distribution of community sizes of 3-clique communities
for one particular school (school 2)(b) the corresponding average over the84
schools of the data set. Symbols indicate the distribution of the empirical data,
while lines indicate the results of the corresponding simulation, with error bars.

bution presents a power-law [83]. The agent model may also reproduce networks
with power-law distributions as subsets of the social networks simulated above,
by assigning to each agent an additional property. Figure 7.19 shows with trian-
gles the cumulative degree distribution of the sexual contact network presented
in Fig. 6.7b from Sec. 6.1.2. The dashed line indicates the degree distribution
of a social contact network simulated with the agent model while the solid line
is the degree distribution of a subset of contacts from the social network. The
contacts in the subset are chosen by assigning to each agent an intrinsic prop-
erty which enables one to select from all the social contactsthe ones which are
sexual. Namely, when two agents form a link, as stated before, this link is now
marked as a ’sexual contact’ if the sum of the property valuesof the two agents
is greater than a given threshold. These values are assignedto the agents with
an exponential distribution and the conditional thresholdis lnN/2, following the
scheme of intrinsic fitness proposed in another context by Caldarelli et. al. [92].
Interestingly, one is able to extract from the typical distributions of social con-
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Figure 7.19: Cumulative degree distribution of the numberk of sexual partners
in a real empirical network of sexual contacts (triangles) with 250 individuals,
compared to the simulation of the agent model (solid line), the dotted line is a
guide to the eye with slope2. The simulated sexual contact distribution (dashed
line) is in fact a subset of the total social contact distribution (see text). Here
N = 4096, Tl/τ0 = 5.5 and〈k〉 = 7.32 and the average size of the resulting
sexual network is220.

tacts shown throughout the paper, power-law distributionsin QS which resemble
much the ones observed in real networks of sexual contacts.

7.6 Summary

We presented a novel approach to construct contact networks, based on a system
of mobile agents. For a suitable collision rule and aging scheme we have shown
that one is able to produce quasi-stationary states which reproduce accurately
the main statistical and topological features observed in recent empirical social
networks. TheQS state of the agent model is fully characterized by one sin-
gle parameter and yields a phase transition belonging to theuniversality class of
two-dimensional percolation. Moreover, we showed that, byintroducing an ad-
ditional property labeling the ability to select a particular type of social contact,
e.g. sexual contacts, the degree distributions reduce to power-law distributions as
observed in real sexual networks. Summarizing, we gave evidence that motion
of the nodes is a fundamental feature to reproduce social networks, and therefore
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the above model could be important to improve the study and may serve as a
novel approach to model empirical contact networks.
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Chapter 8

Community structure and
and role of attributes in
friendship networks

8.1 Motivation

Schools are a primary social system, besides the family in which any adolescent
participates. They constitute a representative social system where it is possible to
identify recurrent patterns of human interactions. The identification ofgrouping
patterns in schools can provide a valuable source of information; used to elabo-
rate preventive/organizational plans in direct benefit of the analyzed schools and
their surrounding communities. Typical in-school questionnaires provide infor-
mation about friendship nominations made by students [32, 125]. Such data sets
can be organized and analyzed as social networks: nodes are the students and
links are the reported friendships.

Previous analysis in the social sciences [8, 32, 125–127] usep models to identify
how some of the attributes of the network members are correlated with their incli-
nations in choosing group relationships. In particular, desegregation of schools as
a function of the racial diversity has been a topic of analysis in multi-ethnic coun-
tries in Western Europe [125] and the USA [32, 118]. These studies suggested
that the way schools organize students could affect the level of racial friendship

131
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Grade 7th 8th 9th 10th 11th 12th
% 17 ± 1 16 ± 2 19 ± 2 17 ± 1 15 ± 1 14 ± 1

Race White Black Hispanic Asian Other
% 58 ± 3 14 ± 3 13 ± 2 4 ± 1 10 ± 1

Gender Female Male
% 49.6 ± 0.7 49.7 ± 0.7

Clustering Coefficient Friendship nets. Community nets.
〈C〉 0.32 ± 0.09 0.2 ± 0.1

Shortest-path length Friendship nets. Community nets.
〈ℓ〉 4 ± 1 3 ± 1

Table 8.1: Average over all the schools of the percentage of the students popu-
lation in each grade (7th-12th), by different races: white, black, hispanic, asian,
mixed (or other), and per Gender (Female and Males). The average of two topo-
logical characteristics of the networks of friendship and communities (see expla-
nation in text) is also shown: the clustering coefficient andthe average distance
among students in the network.

segregation in a school.

Despite these advances, there is clear need to decipher the main statistical fea-
tures of overlapping community structure in such data sets which is a key ques-
tion to interpret the global organization of networks. Thischapter approaches this
issue proposing a different set of tools from those used previously [128–131]. Re-
cent works in the context of statistical physics have approached the analysis of
empirical social networks [20, 33, 90, 132–134]. These contributions are strongly
related to the study of the structural and hierarchical ordering of the networks,
with the aim of characterizing emerging collective phenomena. In this chapter,
in addition to a topological study, we incorporate the analysis of attributes, or
(colors) of the nodes, and show that this is a crucial aspect for identifying pref-
erences from the different ethnic groups. To anational representativesample
of school networks presented in [32, 118], we apply threshold analysis, do net-
work characterization and community extraction and propose a novel approach
for quantifying ethnic preferences. The presented method of analysis gives a new
insight into the data.
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8.2 Networks of Friendships

The friendship networks presented here are constructed from an in-school ques-
tionnaire of the Add-Health [118] friendship nomination study; 90118 students
took this survey in 1994-1995. The analyzed data are limitedto students who
provided information from schools with response rates of50% or higher. Each
student was given a paper-and-pencil questionnaire and a copy of a list with ev-
ery student in the school. In the data files the activities aresummed to create a
weighted network. Weights are in the range from1, meaning the student nomi-
nated the friend but reported no activity, to6 meaning the student nominated the
friend and reported participating in all five activities with (him/her).

The structure files contain information on75871 nodes divided in84 networks
(schools). As a first view into the data, we identify how the whole population is
distributed according to the different known attributes, i.e. grade, race and sex,
the results are shown in Table 8.1. The amount of students through the different
grades and per gender are on average uniform, with percentages of∼ 16% and
%50 respectively. A relevant characteristics, however, is that in most of the ana-
lyzed samples of schools the majority of the population is white. In Figs. 8.1a-c,
we visualize the friendship networks for two schools with pajek [135]. Nodes
represent students, with a different color according to his/her race. A link is
drawn among nodes if at least one of the student nominates theother like a friend.
In order to provide the maximum information in the visualization of the networks,
we introduce artificially by hand the spatial distribution of nodes, corresponding
to the different grades, placed counter clockwise, starting with the 7th grade at
lower right corner and ending with the 12th grade. One already can see that
the links among the grades clearly differentiate the relations among the upper
grades (high school) and the lower grades (middle school). Separation of colors
within the6 groups, however, is not artificially introduced; the apparent cluster-
ing of nodes according to the same color is due to the fact thatthey are more
densely interconnected. Fig. 8.1a is a characteristic sample of the84 schools, we
call it here, school1, in this school the great majority of the population is white
(70%), which contrasts to two non-characteristic samples, school 2 and school
3 visualized in Figs. 8.1b and c, where blacks (40%) and hispanics (50%) are
overrepresented respectively with respect to the average.
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(a) (b)

(c)
(d)

Figure 8.1: (a)-(c) Networks of friendships from schools1, 2 and 3 (respec-
tively). Nodes represent students, with a different color according to his/her race.
Spatial distribution of nodes corresponds to the differentgrades, placed counter
clockwise, from 7th to 12th grade.(d) Left: G/N fraction of sites in the largest
connected componentG for the networks with mutual links only (circles) and
networks with mutual and not mutual links (squares) versus threshold weightwc.
Only links with average weight in both directionsw ≥ wc are kept.Right: Av-
erage cluster size excluding the largest component for the same analysis as in the
left part.

8.3 Role of weights and directionality

In a friendship network, one would expect the presence of mutual links, those are
links with nomination in both directions and even the weights should be close to
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each other. We apply threshold analysis to measure the influence of weights and
directionality in the links.

First, we analyze the network formed only by mutual links, which should have the
more reliable information about stronger relations or tight friendships inside the
networks. We introduce the mean of the weight in both directions to characterize
the weight of each link (w). We examine different thresholds of (wc) for creating
links, i.e. a link is created only if there is a mutual link andw ≥ wc. The values
of the weights is from1 to 6, the lighter possible restriction isw = 1, which
includes any mutual link present in the network with the minimum weight for
each direction. In the left part of figure 8.1d (circles) we present the calculations
of G/N , the fraction of nodes that belong to the largest cluster vs.wc. In the
right side,

∑

s s2ns, the mean cluster size excluding the largest cluster (G) is
presented. Interestingly the size ofG, when considering only mutual connections
is roughly half of the population, and the network is split invarious components.

In order to examine the influence of weights, we make the cluster analysis for a
threshold weight but now considering the network as undirected, a link is formed
if at least one nomination exists, and (w > wc); w is taken as zero if the link in
that direction is missing. For this case, we find that the population is connected
in a giant component only if weaker links below a critical value ofwc = 2 are
included. This effect is shown in both sides of Figs.8.1d (red squares).

With the direction and weight analysis we conclude that the population is con-
nected in a single component due to the weak undirected links.

In our further analysis of community detection we assume that a link exists if
any of the students nominates the other, and we do not consider any threshold
for the weight, a link exists due to the nomination and is independent on the
number of activities realized. Imposing the minimum restriction possible for the
creation of a link, perhaps we are dealing with a network of acquaintances or
affinities instead of real friendships; but those networks tell us something about
the preferred social relationships of the students at the schools.

8.4 Community detection: The role of triads

It is widely accepted that most of social networks have a community structure,
i.e., posses groups of vertices that have a high density of edges within them, with
a lower density of edges between the groups [136,137]. In order to detect the
community structure within each school we use the “clique percolation method”
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(d)

(b)(a)

(c)

Figure 8.2: Network of 3-clique communities at school 1 ((a)) and school 2 ((c)).
Compared to the corresponding networks of 4-clique communities ((b) and(d)
respectively). The color is assigned according to the race of the majority of nodes
in the community and the node size is proportional to the square root of the
number of nodes in the community.

, recently proposed in Refs. [21] and [22]. A community is defined as a group
of fully connected graphs that share many of their nodes. Thus we refer to a
k-clique community, as a union of allk-cliques (complete subgraphs of size k)
that can be reached from each other through a series of adjacent k-cliques (i.e.
sharingk − 1 nodes). The set of identified communities from each friendship
network constitutes itself, a network: Each community is a node, where the links
are represented by the original nodes (students) shared by two communities and
the size of each community is the number of its nodes. We show that this method
of community detection is a powerful tool for the visualization and representation
of the qualitative information from social networks, for this purpose we analyze
in detail the information that can be extracted from the two particular schools
mentioned above.

Fig. 8.2 shows the network ofk-clique communities extracted from the friendship
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networks of school1 and school2. Figs. 8.2a and c are the3-clique communities
of friendship networks of school1 and school2, respectively. In turn, Figs. 8.2b
and d are the4-clique communities extracted from the same schools. The area
of the circles represents the number of nodes and each node color is related to
a race. Although, each community can have students from different races, we
assign to it the color of the majority of the members of the community. We have
analyzed also the grades of the majority in each community (not shown) and keep
the counter clockwise distribution of nodes per grade. The separation among
middle and high schools friendships is observed clearly forschool2 which has
two large communities with majority of students from upper (9th − 12th) and
lower (7th− 8th) grades. For school1, the largest community has students from
all the grades.

A particular characteristic that we find for the friendship networks, is thatk =
3 is the optimal value where a highly structured network of communities are
observed (Figs. 8.2a and c) and the great majority of the students belong to any
of those communities. In contrast,k = 4 detect more cohesive communities
and less than20% of the school populations is present in those communities.
For other studied networks [21], like protein networks or collaboration networks,
the optimal value for detecting communities isk = 4 or 5, in contrast, triads
(triangles) are found to be the elementary unit of high school friendship networks.

One of the interesting aspects of such a study is that on the level of more cohesive
groups the number of communities becomes balanced even for cases when the
ratio of the sizes of the ethnic groups is far from 1. From here(see Figs. 8.2b
and d) we conclude that when in minority, the students tend toform stronger and
extensive ties, thus, the number of more densely interconnected communities
becomes over-represented compared to thek = 3 case.

8.5 Complex networks of Communities

Further, we characterize the structure of the extracted networks of3-clique com-
munities over all the schools. We calculate the degree and size distribution,
clustering coefficient, average degree of the nearest neighbors and shortest path
length; and compare the results with the original friendship networks.

In Fig. 8.3a we present the cumulative degree distribution,defined as the fraction
of nodes having degree larger thank, averaged over the84 friendship networks
at the schools, and compare it with the average of the corresponding84 networks
of communities. The networks of friendships have a scale, corresponding to the
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Figure 8.3: Different network properties averaged over thecomplete dataset
of schools, for the community networks (circles) and for friendship networks
(squares):(a) Cumulative degree distribution.(b) Degree-dependent clustering
coefficient.(c) Average degree of the nearest neighbor.(d) Cummulative distri-
bution of the membership number (m) and of(d) the overlap size (sov) for the
community networks.

natural cutoff in the number of friends; e.g.〈k〉 ∼ 4. Similar evidence was
reported previously for other friendship networks [33]. Interestingly, the degree
of the community networks have a much broader scale, following a power-law
of the form∼ k−γ with γ ∼ 1.5. Thus at the level of communities the ’rich get
richer’ [138], this information is relevant for the understanding of community
formation and should be taken into account for the formulation of models of
social networks [133].

Another property of interest to characterize the network isthe clustering coeffi-
cient. The local clustering coefficient (Ci) of a vertexi with degreeki, is defined
as the ratio of the number of triangles connected to it and allthe possible number
of triangles (ki(ki − 1)/2). The mean degree-dependent clustering coefficient
is the average of the local clustering over all vertices withdegreek. This quan-
tity is analyzed for the two types of networks and presented in Fig. 8.3b. For
the friendship networksC(k) varies slightly withk for most of the observedk-
range; decaying only for larger degrees. In contrast, for the network of commu-
nitiesC(k) follows a power law,∼ k−α, with α ∼ 2.8. This kind of dependence
of the clustering coefficient as an inverse power of the node degree, can be sig-
nature of hierarchical structure, related to the self-similarity of some complex
networks [15, 139, 140].

An interesting quantity in social networks is the average degree of nearest neigh-
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bors,knn(k). Assortativity, is a feature characteristic of social networks e.g.,
knn(k) follows a power law with positive exponent, which means thatnodes of
larger degree tend to be connected among themselves. We find that the ana-
lyzed friendship networks, can be identified as assortativebecauseknn increases
with k (Fig. 8.3c), but in contrast to networks with scale free degree distribu-
tion (i.e. collaboration networks),knn(k) present a cutoff due to the rapid decay
in the degree distribution. The networks of communities, incontrast, are disas-
sortative, i.e.,knn follows a negative power law,∼ k−β, with β ∼ 1.1. This
indicates that communities with larger degree do no tend to share members. As
observed in the two sample schools, large communities or thehubs in the com-
munity networks, represent groups with different kind of affinities , i.e. high and
middle/junior schools. Those communities in turn share students (have links)
with other smaller communities from people of the same age (grade), but do not
share many students among themselves. That is why in the networks of commu-
nities hubs are not strongly connected and the network is disassortative. Thus,
identifying differentiated community hubs with differentinterests of its mem-
bers, we expect that other social networks analyzed at the level of communities
to be disassortative as well.

For the available data we also calculate the membership (m) of each student,
which is the number of communities that the students belongsto. Fig. 8.3d dis-
plays the cumulative distribution of the membership numberP (m), which shows
that on average, each student belongs to a limited number of communities (less
than5). In turn, any two communities can sharesov nodes, which defines the
overlap size between these communities. Fig. 8.3e shows theaverage of the
overlap distribution for all the schools, which is a power law with exponent2.9.
We can conclude that a student belongs at most to4 different clique-communities
inside the school, and that there is no characteristic overlap size in the networks.
Similar characteristics have been observed in other socialand biological net-
works but not in their randomized versions [21].

Additionally, as shown in the table 8.1, the clustering coefficient,〈C〉 for friend-
ship networks and community networks have both a similar average value near
0.3, which is larger than an equivalent random graph of the same size. In turn,
the shortest path length,〈ℓ〉 is less than the logarithm of the number of nodes (not
shown). It means both the friendship and community networkspresent charac-
teristics of small-worlds.
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Figure 8.4: Measuring preferences of inter-racial connections r − r′.
(a)Probability of inter racial connectionsr − r′. From top to bottom: proba-
bility of directed links from whites (r = W ), blacks (r = B), hispanics (r = H)
and asians to racesr′ = W (circles),B (squares),H (diamonds), andA (tri-
angles). Racial preferences manifest themselves as systematic deviations of the
ratio P (r, r′)/〈Pr(r, r

′)〉 from 1. (b) P/〈Pr〉 in decreasing order from1 to 4,
for the nominations made fromr to r′. (c) Statistical significanceZ of these
deviations. The combination of(b) and(c) reveals relationsr − r′ that are signi-
ficatively absent. The results are the average over the84 school networks.

8.6 Ethnic preferences

We propose a quantitative method to measure ‘preferential’ nominations as a
function of the attributes of the students. A nomination canbe consideredpref-
erential, if pairs of nodes with given attributes are significativelymore recurrent
within the empirical networks than those in their randomized versions. In the
studied sample of friendship networks, we find the striking appearance of quan-
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titatively preferential nominations among students of thesame race, as a char-
acteristic behavior present in each grade and common to eachracial group from
all schools. Here we present in detail the measure of preferences in the school
networks as a function of the race known for the nodes, without separating the
information by grade.

In each directed network we identify the frequency of each ofthe 25 possible
race pairs, formed from the5 races attributed to the nodes. To focus on those
pairs that are significatively recurrent, we compare the real network to suitable
randomized networks.

The randomized networks have the same single nodes characteristics as those
of the real networks: Each node in the randomized network keeps its race and
the same number of incoming and outgoing edges as the corresponding node
has in the real network. For randomizing the networks we employ a Markov-
chain algorithm, based on starting with the real network andrepeatedly swapping
randomly chosen pairs of connections (A → B, C → D is replaced byA → D,
C → B) until the network is randomized [90, 134]. Switching is prohibited if
either of the connectionsA andD or C andB already exit in any direction. Thus
we preserve the number of mutual edges, switching only thosewith different
mutual edges. these deviations. The combination of(a) and(b) reveals

In Fig. 8.4a from top to bottom we present results for the mainfour races iden-
tified at the schools: white, black, hispanic and asian. For each racer, we plot
the probabilityP (r, r′) of existing a directed linkr → r′, to a node with race
r′. The presented results are the average over the84 schools,P shows that the
common behavior for each racial group is to nominate as friends students with
the same race (intra ethnic nominations) more likely than students from any of
the other races (inter ethnic nominations). The comparisonto randomized net-
works takes into account the effects of differences in the amount of each race
population. Racial preferences manifest themselves as systematic deviations of
the ratioP (r, r′)/〈Pr(r, r

′)〉 from 1. In Fig. 8.4b, we presentP/〈Pr〉 in decreas-
ing order from1 to 4, for the nominations made for each racer and indicating
with a different symbol the race of the nominated nodesr′. From this profile
becomes clear not only the preferences for intra-ethnic nominations, but also that
symmetrically, some inter-ethnic nominations are found4 times less than in the
randomized versions, e.g. those from asians↔ blacks and blacks↔ whites. In
Fig. 8.4c, we show the statistical significanceZ of these deviations, defined as:

Z(r, r′) ≡ P (r, r′) − Pr(r, r
′)

σr(a, a′)
, (8.1)

whereσr(r, r
′) is the standard deviation ofPr(r, r

′) in 100 realizations of a ran-
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Figure 8.5: Relative significance of nominations (P/Pr) vs. the number of nodes
in each school network (N ) (a)For white → white andwhite → black nom-
inations. (b) For black → black andblack → white nominations.(c) and(d)
display same results as in(a) and(b) vs. fraction of the minority, i.e. black pop-
ulation (fb). P/Pr can be fitted by a negative power law of the formf−α

b , with
α = 0.6. for black ↔ black nominations andα = 0.5 for black ↔ white nomi-
nations. This shows that although heterogeneity decreasesthe relative frequency
of b ↔ b , it does not favor inter-ethnic relationsb ↔ w.

domized network. The combination of these two plots revealsrelationsr ↔ r′

that are significantly absent.

Next, we illustrate how the measured quantityP (r, r′)/〈Pr(r, r
′)〉, can be used

to obtain certain characteristics of the groups of schools as a whole. In the fol-
lowing, we focus on the relations of two ethnic groups: blacks (b) and whites
(w). In Fig. 8.5a we represent the obtained value ofP/Pr vs. N , the number of
nodes in each school network. We present the values for the nominations from
whites, intra ethnicw → w and inter ethnicw → b. Equivalently, in Fig. 8.5b the
corresponding nominations from blacksb → b andb → w. These figures show
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a sample of64 schools which have at least0.2% of any of both races (white and
black). In Fig.8.5a and Fig.8.5b, it is clear that intra ethnic nominations occur
equally or more frequently than in the randomized networks (P/Pr ≥ 1), while
inter ethnic nominations are less likely to occur (P/Pr < 1), and these results do
not depend on the total number of the population (N ).

When we plot the same quantities as function of the fraction of the minority it
is possible to extract some relevant tendencies from the entire sample. Note that
P/Pr vs. fb, for b → b is greater than unity and tend to one only whenfb ∼ 1
(top of Fig. 8.5c), just for such valuesP/Pr of w → w is then considerably
greater than unity (top of Fig. 8.5b). These figures show thatboth races present
the following behavior: When the population of a given race,is the majority
(fractionf ∼ 1), then their intra-ethnic nominations resemble those of the ran-
domized networksP/Pr ∼ 1, but when they represent a minority (f ≪ 1) such
population tends to make intra-ethnic nominations of friends (P/Pr ≫ 1).

In contrast,P/Pr for inter-ethnic nominationsw ↔ b can for both groups, be
fitted by a negative power-law of the formfα

b , with α ∼ 0.5 (lower parts of
Fig. 8.5b and of Fig.8.5c). These results suggest that the increase of racial hetero-
geneity does not favor the inter-ethnic nominations among the increasing minor-
ity and the race of the majority, but has the opposite effect.A similar conclusion
has been reached for the same Add Health data base of friendship nominations
with a totally different method of analysis [32].

8.7 Summary

To conclude, a network-theory approach coupled with the analysis of attributes
is demonstrably useful in analyzing the structure of friendship nominations at a
national representative sample of schools in the USA. The study enables us to
unveil a number of significant results. We measured that although racial hetero-
geneity decreases the relative frequency of intra-ethnic friendship nominations of
the minority, it does not favor inter-ethnic relations. Triads are the basic build-
ing block of highly structured network of communities whichare scale free and
dissasortative. Mutual strong nominations of friendship do not form a single
connected component in the friendship samples.

The non-trivial community structure has implications in the spreading of infor-
mation at schools. The reported features related to triads and ethnic preferences
give insight into the social organization and should be taken into account in the
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formulation of agent based models of social systems. We think that the results
and the set of analytical tools presented here will be of interest for further studies.



Chapter 9

General Conclusion

In this thesis different aspects of dynamical interactionson models of complex
systems have been investigated. In a first stage, we prescribed the agent inter-
actions through the topology of static networks, i.e. each node interacts with a
fixed set of neighbors. We demonstrated that the results ofopinion dynamicson
stochasticnetworks, which are common representations of social networks, can
be successfully mapped intodeterministic hierarchicalnetworks. This result im-
plied both numerical and analytical advantages. First we showed that the use of
hierarchical networks considerably lowers the computational time for simulating
realistic spreading dynamics, e.g. election processes. Further, we used the deter-
ministic structure to develop an analytical expression that accurately predicts the
results of the dynamics of opinion simulated on stochastic networks. The studied
kind of interaction came from previously accepted models ofopinion dynamics:
at each simulation step the resultingopinionor state of a node is represented by
an integernumber assigned as a function of its previous state and from the inter-
action with its neighbors. As a further aplication, we proposed a general opinion
model, where each node can havemultipleopinions each one represented with a
real number and anoiseterm is added. Even with those generalizations, the kind
of transition into the absorbing state of the dynamics showed to depend on the
effective dimension of the interaction, and to be independent of the topological
correlations of the prescribed networks. Thus, a hierarchical representation is
shown to be an appropriate representation to solve analytically general kinds of
opinion models.

Another kind of spreading dynamics here investigated was a model of infection
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propagation. Each agent could be eithersusceptibleor infectedthrough con-
tagion. An infection lasted a selectedtime of infection, after which, the agent
became susceptible again. Resembling real systems, a contagion was only pos-
sible through physical contacts among pairs of the type: ’infected-susceptible’,
and the possible contacts werenot prescribed a priori. The agents were free to
move in a two dimensional cell and the infection propagated troughcollisions
in the cell. In a first, theoretical approximation, the motion rule was simplified,
and given by a Lennard-John interaction potential. We showed that for different
densities of cell occupation the dynamics of infection spreading generates aset
of critical exponents. That is, we obtained a continuous variation of exponents
vs. the density of agents, that allowed us to recover in its limits previously known
results. In the limit of low densities the exponents coincide with the reported va-
lues formean-fieldcalculations, while in the limit of high densities, the obtained
exponents reproduce the results reported forregular2d lattices.

A mobile agent approach showed to be a very convenient way of generation of
contact networks. A contact network was generated startingfrom a colliding pair
of agents and keeping track of the successivecontacts, which in turn, increased
the magnitude of the velocity and created thelinks of the resulting network. In-
troducing a parameter ofselectivitydefined as the probability torejecta collision
as newcontact, one could obtain either perfect growing scale-free networks or
networks with accelerated growth, in which the average degree of the network in-
creases linearly with time. As an interesting application,the generated networks
compare favorably to the topology of empirical data from scale-free networks of
sexual contacts, in terms ofdegreedistributions anddegree-dependent clustering
distributions. It was shown that the observed numbers of cycles of the empirical
networks, are considerably less than from those of theirrandomized versions. In
other words, the cycle structure orclusteringobserved in the real networks is not
just a direct consequence of its degree distribution, but a non trivial property of
that kind of social networks. This observed structure is well reproduced by our
proposed model. Both the spatial correlation generated by the movement and the
increasing velocity with collisions happen to be the fundamental ingredients in
the generation of social contact networks.

This aspect was verified in a stationary version of the model.When introducing
a maximal ageafter which anold agent is replaced by anewone, the resulting
contact networks havesingle scaledegree distributions and are able to reproduce
all the observed topological features of a large data base offriendship networks.
With the two free parameters of the models:the maximal ageand thedensity
of agents in the cell, the averagedegreeand averageclustering coefficientcould
be adjusted to the observed values in the empirical data sets. Due to the spa-
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tial correlations,community structuresemerge naturally in the contact networks
generated by the model, which in turn, agree in terms of degree distribution and
degree correlations with the empirical friendship networks. The resulting model
constitutes a successful approach to reproduce the variousnon-trivial topological
characteristics of social networks with the least number ofadjusting parameters.

In order to properly analyze our empirical data sets we had insome cases to
develop appropriate tools of analysis, which constituted at the same time, some
contributions in the field of analysis of complex networks. For the case of bi-
partite networks coming from the data of empirical sexual contacts, we defined
a clustering coefficientC4 based on squares or cycles of size four, as a com-
plement to the standardC3 based on triangles. As a function of both clustering
coefficientsC3 andC4 we developed an expression that gives a good estimate to
the numbers of cycles of different sizes in a network. In particular, the given ex-
pression is suited for bipartite networks, like it is the case of heterosexual contact
networks.

In another context, we developed a method of analysis that uncovered novel as-
pects in the large data base of analyzed friendship networks. We showed that the
weight and directionality of links play an important role inthe data set and that
mutual strong links do not form a large connected component in the empirical
friendship networks. The friendship networks present a rich community struc-
ture, making it possible to identifynetwork of communities, where each node
represents a community or group of friends and two communities are connected
by the persons they share. We showed that the measured networks of communi-
ties are scale-free and present non trivial degree correlations. A crucial aspect of
the data set resulted to be the correlation of pairs of nodes as a function of its col-
ors orattributes. Comparing the empirical networks to its randomized versions,
we developed an appropriate method to quantify the degree ofracial segregation
in the analyzed sample of friendship networks. Measures based on correlations
among the colors or attributes have been far less investigated than the correlations
based on degree or topological patterns. As we showed for thecase of friendship
networks, this kind of analysis may constitute also a very important source of
information in the characterization of other social networks, and also networks
in other branches of research.
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9.1 Outlook

The results presented along this thesis constitute the standing blocks for some
issues that could be further investigated. We outline each of them separated by
topics1:

• Opinion dynamics
Our results presented some advances in the problem of solving opinion
dynamics on static networks. However, the observed independence among
the dynamics to consensus and the details of the network structure, as a
constant for diverse models of opinions, makes us to question weather a
static picture of a network is really an appropriate treatment for this kind
of models. Recent literature on affiliation networks has shown that the
structure of group memberships plays a major role in the spread of atti-
tudes or opinions which may affect, for instance, individual orientations
toward social interactions. These considerations rise thequestion:Does
the network structure determine the opinion interactions or the opinion
affinity determine the network structure?. A dynamical interplay of opin-
ion and social network formation is a topic that deserves to be investigated
and may lead to more realistic representations of opinion dynamics and
their associated networks.2

• Infection Spreading
We showed that a dynamical treatment of the interplay among infection
time and the time between contacts presents a rich behavior which clearly
affects the spreading of infections within a modeled population. An impor-
tant application of this aspect, concerning sexually transmitted infections,
is a systematic study of the infection dynamics incorporating the empirical
observations concerning the time (“gap”) between the end ofan individ-
ual’s partnership with one sexual partner and the start of the next partner-
ship. The gap can be positive, indicating that there is a non zero interval
between the two partnerships, or negative, indicating thatthe partnership
are concurrent, i.e., that they overlap [141].The incorporation of mea-
sured gaps with the required topology for the network of sexual contacts
and its interplay with infection periods, is a research topic that deserves
more attention.

1Currently we are investigating part of the open questions mentioned here.
2While writing this manuscript a recent contribution in thisarea has appeared in

http://arxiv.org/pdf/physics/0603023. A model is presented where with a probabilityφ a node con-
vinces a neighbor and with probability1 − φ it creates a new link with a node sharing its same
opinion. They showed a continuous phase transition to consensus as a function ofφ.
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• Networks of Mobile agents
The models presented here provide a framework for the study of complex
networks as a result of the collisions of mobile agents. The origin of the
found properties can be traced back to the very presence of communities,
due to the fluctuations in the number of individuals in an abstract represen-
tation of a social space. The presented approach establishes a wonderful
bridge between the developments of granular gas theory and the modeling
of complex networks. In the quasi-stationary regime it is possible to adapt
diverse rules of collisions and driving mechanisms investigated in the con-
text of granular gases [89, 142]. For example, a kind of question would
be: How is characterized the network emerging from collision rules that
model the coordination or grouping of animals during their motion, and
the swarming processes that are observed ubiquitously in nature?.

It is important to mention here that the aim in our method is todevelop
the simplest model possible, looking at the aggregate leveland not at the
level of its constituent units. In this sense, our models contrast or perhaps
could be seen as a convenient complement of the models in the discipline
agent-based modeling(ABM) [143] which deals withindividualcomplex
behavior, includinglearningandadaptation. Our mobile agentssuccess-
fully incorporate elements of granular gas theory in the modeling of com-
plex networks. This is clearly a challenging, even disturbing idea.

With this idea in mind I would like to finish this thesis, borrowing a remark
form Philip Ball [NatureEditor]:

’By seeking to uncover the rules of collective human activities, today’s
statistical physicists are aiming to return to their roots:Social statistics
also guided Maxwell and Boltzmann towards the utilization of probability
distributions in the development of the kinetic theory of gases’ Physica A
314(2002) 1-4.
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[67] M.C. González, A.O. Sousa, and H. J. Herrmann,Int. J. Mod. Phys. C, 15,
45 (2004).

[68] P.J. Reynolds W. Klein and H. E. Stanley,J. Phys C, 10, L167 (1977).
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