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Chapter 1

Zusammenfassung

Ein Netzwerk stellt ein Gebilde aus Knotenpunkten dar, ditimander ver-
bunden sein kdnnen. Obwohl Graphen vielfach zeichnernisagestellt wer-
den, sind sie 'nur’ mathematische Strukturen. Dies bedeute allem, dass
verschiedene Visualisierungen denselben Graphen darsk&innen. Die Netz-
werktheorie ist ein interdisziplinares Forschungsgeloias mit Hilfe mathema-
tischer und statistischer Methoden Netzwerke aus untiedidthen Bereichen
untersucht. Beispiele fur komplexe Netzwerke sind dasrirt, soziale Netzw-
erke oder die dynamische Ausbreitung von Krankheiten (&pidlogie) sowie
die metaboliche und regulatorische Netzwerke. Insbegersteiale Netzwerke
bringen oft Phanomene hervor, die mit Hilfe statistischi@dellen beschrieben
werden konnen.

Die steigende Verfugbarkeit von Computerkapazitatidrialie Sammlung und
Analyse von Daten in einem Mal3stab, der heute viel groRelsgriiher. Obwohl
die genannten Beispiele fur Netzwerke ganz unterscleiegllFunktionen und
Eigenschaften haben kdnnen, teilen sie eine ahnlich&isir Diese Tatsache
suggeriert ein allgemeines organisierendes Prinzip, mdsrtden Einzelkompo-
nenten und ihren Wechselwirkungen steckt. StatistischesiRlist als Teilge-
biet der Physik geeignet um Netzwerktheorie zu betrachtek®mplexe Net-
zwerkesind normalerweise nuztlich zur Darstellung komplexest8gne. Ein
komplexes Systemird je nach Autor und Wissenschaftsgebiet unterschibdlic
definiert. Eine allgemeine Definition ist folgendeEin komplexesSystem ist
ein System, das die Beschreibungen seines Gesamtveehaidtemer beliebi-

Ihttp://de.wikipedia.org/wiki/Komplexitat



gen Sprache erschwert, selbst wenn man \éolldige Informationeriiber seine
Einzelkomponenten und ihre Wechselwirkungen bedliet gemessenen Struk-
turen von komplexen Netzwerken kénnen weder durch stathuvelene Gitter-
modelle noch durch Zufallsgraphen modelliert werden.

Neuere Erkenntnisse auf diesem Forschungsgebiet [1,&}keh es, Modelle,
die das Entstehen von realen Netzwerken mit besonderendgilgaften erklaren
sollen, empirisch zu Uberprufen. Ein Teil dieser Disstioh betrachtet an-
hand der Entwicklung entsprechender Modelle zum Beispedisbreitungs-
dynamik von Systemen, deinungsbildung@derinfektionen Wir stellen Mod-

elle von Kontaktnetzwerken vor, die nicht ursprungliclti der Graphentheorie
basieren, sondern aus Agenten bestehen, die aufeinanttenwind durch die
Netzwerke erzeugen. Das Netzwerk ist demmResultat der Wechselwirkungen
zwischen den KnoterlUm unsere Modelle zu testen, werden wir verschiedene
empirischesoziale Netzwerkietrachten.

Die Forschungsschwerpunkte dieser Dissertation werd&olgenden getrennt
vorgestellt:

Modelle zur Meinungsbildung

Wir entwickelten ein Modell zur Meinungsbildung eines auédbachtun-
gen begrundeten selbstahnlichen Gitters, welches eaieréschend gute
Ubereinstimmung mit den Wahlergebnissen gewisser St&Btesilien, Indien)
lieferte. Darauf vervollstandigten wir auch noch diesesdll theoretisch durch
einen Renormierungsgruppenansatz. Das selbstahnliittee Ghd ein Beispiel
der Ergebnisse dieser Rechnungen sind in Fig. 1.1 darljésiehe z.B. Artikel

| und V). Alle vorherigen Resultate, die auf selbstahrdiclGittern formuliert
sind, wurden mit Ergebnissen stochastischer skalenfiig&ezwerke verglichen.
Die gleiche Art von Resultaten ist auch mit einem allgemeineMeinungsbil-
dungsmodell formuliert worden (siehe z. B. Artikel X).

Ausbreitung von Epidemien auf Netzwerken mobiler Agenten

Wir konstruierten einen vollig neuen Typ von Netzwerkerlaher auf der Be-

wegung von Agenten beruht. Wir studierten auf diesen Natzsveinsbesondere
die Ausbreitung von Epidemien und entdeckten eine Reiltawaricher Eigen-

schaften. Zwei bekannte Resultate der Literatur verbirgieim durch unseres
Modell: Ausbreitung von Epidemien durch Mean Field-Naher (M F) und
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Wahrscheinlichkeit des Konsens (P+)

Figure 1.1. Vergleich: Renormierungsgruppenansatz (dygzogene-Linie),
Resultat der Simulation auf einem selbstahnlichen G{ieeiecke mit Fehler-
balken) und auf einem stochastischen skalenfreien Nekz{&terne).
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Figure 1.2: Numerischer Wert des kritischen Exponeriteder epidemischen
Ausbreitung. Inset: Momentaufnahme des Clusters infeiekgenten fir ein
System der Dichtg = 0.20
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Modelle zur Ausbreitung von Epidemien auf regularen zwe@hsionalen Git-

tern. Ein Beispiel des Modells und der Ergebnisse ist in Eigdargestellt (siehe
auch Artikel Il und I11).

Modelle mobiler Agenten zur Bildung von sozialen Netzwerke

Figure 1.3: Momenteaufnahme des Systems von bewegten émgenDie
Verbindungen zeigen Kollisionen. Geflillte KnotenpunkBiau) und leere
Knotenpunkte (Rot) stellen zwei verschiedene Arten vont&npunkte dar, z.B.
verschiedene Geschlechter.

Wir haben das System von mobilen Agenten mit einer speniétantaktregel
und dem daraus entstehenden Kommunikationsnetz erweitemschlieRend
haben wir die Eigenschaften von diesen Netzwerken genautersucht und
Ahnlichkeiten zu empirischen Daten sowohl bei sexuellemtikten als auch
bei Freundschaften an Schulen gefunden. Der Arbeit zu #erul€ontakten
hat erstmalig verschiedene topologische Eigenschaftererpirischen Netzw-
erken reproduziert (siehe Artikel IV und VI). Die Arbeit @ibFreundschaftnet-
zwerke wurde mit einer sehr grof3en Datenbank vergleichdnegsrentstanden
sehr aufschlussreiche Querverbindungen (siehe ArtikeuNd VIII). Beispiele
der sexuale Netzwerke des Modells sind in Fig. 1.3 dardestel

Gemeinschaftsstruktur und die Rolle von Merkmalen in Fre-
undschaftnetzwerken

Es wurde erfolgreich eine Methode zur Auswertung der Satmimerke entwick-
elt (siehe Artikel IX). Es wurdemNetzwerke von Gemeinschaftens Freund-
schaftnetzwerken extrahiert, die nicht-triviale Struktaben. Diese sind skalen-
freie Netzwerke und zeigen zudem starke Korrelationen. idésain Kontext,
beschreiben Korrelationen ethnischen Gruppen. Unserbddetermoglicht die
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Figure 1.4: Netzwerk der Schulgemeinschaften. Die Farlg dér ethnischen
Mehrheit in der Gemeinschaft zugewiesen. Die Knotengresgsgroportional
zur Anzahl der Knoten in der Gemeinschaft.

Quantifizierung und den Vergleich dieser Segregation éiisehiedene Schulen.
Ein Netzwerk von Gemeinschaften einer Schule ist in Figdasestellt.

Die hier vorgestellten Modelle bieten einen Ansatz zur dieddsuchung kom-
plexer Netzwerke, die aus den Kontakten von mobilen Ageatestehen. Die
gefundenen Eigenschaften konnen auf die Anwesenheit v@meBschaften
zuruckgefuhrtwerden. Der vorgestellte Ansatz présergine Verbindung zwis-
chen der granularen Gastheorie und der Modellierung kaxapleetzwerke. Im

quasi-stationaren Fall ist es moglich, verschiedendisfohsregeln granularer
Gase zu Uibernehmen. Eine mogliche Fragestellung fliirdtige Forschung,

unter Verwendung der vorgestellten Methode, wavdie kann ein Netzwerk
charakterisiert werden, das anhand von Kollisionsregegbifylet wird, die aus

dem Schwarmverhalten von Fischeibgéln oder Insekten hergeleitet wurden?

Es ist wichtig zu betonen, dal3 das Ziel unserer Methode disviEklung
eines moglichst einfachen Modells ist, welches sich auf Alggregatzustands
und nicht auf die Ebene der Komponenten konzentriert. Iseate Sinne ist
unser Modell idealisiert und vielleicht ein anderer Ansg¢éngeniibeAgenten-
basierter Modelle die sich mit dem individuellen komplexen Verhalten - z.B.
Lernen und Anpassungbeschaftigen. Die hier vorgestellten mobilen Agen-
ten beinhalten Elemente der granularen Gastheorie um lexeetzwerke zu



modellieren.



Chapter 2

Introduction

A network is a set of entities referred as vertices or nodé@svise connected
among them through edges or links. Systems taking the fornebforks are

all around us. Examples include the Internet, the World Vb, social sys-
tems of acquaintances like friendship networks, infrastme systems like the
airport networks, biological systems like metabolic nategp among many other
examples [1,2]. The nodes represent the components of a gixsdem, e.g.,
computer severs, web-pages, people, airports, molecatesthe links repre-
sent existing interactions among them, e.g., physical ections, virtual links,

friendships, flights, chemical reactions.

The increasing availability and capacity of modern computeas allowed the
collection and analysis of data on a scale far larger thawiquely possible.
While the listed networks examples are totally differentfreach other in their
function and attributes, they share a similar structurggesting general and
common organizing principles beyond the specific detailhefindividual sys-
tems. In this context, a statistical physics approach has bgploited as a very
convenient method because of its deep connection with dghegainy and because
of its ability to quantitatively characterize macroscopfenomena in terms of
the microscopic dynamics of the various systems. The cdricemplex net-
works” refers to a network that is often the representatfam@amplex systerh.
So by studying the network one can study the underlying cexgystem itself.
Complex networks contain much randomness but they conéataio structure

1A commonly accepted definition aomplex systeris a system consisting of many interacting
units whose collective behavior cannot be explained froerbishavior of the individual units alone.

7



that cannot be modeled as purely random graphs.

After some recent intensive research on the statisticgdeti@s of complex net-
works important open questions remain. One aspect of oaarels focuses on
the development of appropriate models of spreading dyramich as diffusion
models of opinion formation and spreading of infectiongtiPalarly, we present
models of contact that differ from the traditional statiagh modeling that is at
the core of classical graph theory: We incorporate undeglgigent interactions
that generate dynamical contact networks. The networK issthe result of the

interactions among nodes.

Motivated by the close relations of the field with real worl@asurements, we
collect and incorporate in the context of Statistical Pbyditerature new sets
of empirical networks in order to test and validate the medwre proposed.
The contents of the chapters and the main achievementslinoédlcem can be
summarized as follows:

Modeling opinion dynamics on hierarchical networks

Stochasticity is a common feature of all network modelstes¢mble real world
topologies. That is, nodes are connected using probabiliges. This random-
ness present in the models makes it harder to gain a visuatstagiding in how
all the nodes relate to each other. There are some modelsubedssfully lead
to realistic topologies and are constructed in a deteriirfigshion [3,4]. It is
of major theoretical interest to solve the mechanisms ofagling dynamics in
deterministic networks.

In Chapter 4 we adapt a recognized model of opinion formatiwhuse it to sim-
ulate elections processes on a hierarchical network. Wagrobote distributions
which resemble those observed in real elections in Brazilladia (published in

paper I).

Further, we take advantage of the hierarchical structuthetieterministic net-
work and provide analytical expressions for the case of tpinions. The ob-
tained expressions reproduce very well the results of thelsitions on random
complex networks (as published in paper V).

In a third study in this area, we develop a continuum modelofginions. In
contrast to Ising-like models where the opinion of an ageniepresented by
a integer number, in our proposed model an agent can eaoginions at a
time, represented by a vector with positive real componiardas n-dimensional
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space. We show that even in such a sophisticated model abopthe spreading
mechanisms that lead to opinion formation are the same bareitdeterministic
or on a random complex network (as presented in paper X). btered results
imply the possibility of using hierarchical networks for analytic solution of
the model that, as before, would predict well the dynamicsamaom complex
networks.

Spreading dynamics in a system of mobile agents

Previous advances in modeling spreading dynamics congistdovering the in-

fluence of the network topology on the spreading dynamicesélstudies which
constitute an important advance in the understanding &asling mechanisms,
are at the same time, a static picture of the process.

In Chapter 5 we characterize the mechanisms of infectiogesfing in a system
of mobile agents and show that compared to the static casy et of critical
exponents governs the dynamics of infection (as publish@aper II).

As a second study in the field, we calculate the size distdhatof the spatio-
temporal clusters of infected agents, finding the relatamsng the characteris-
tic cluster size and the total number of infected agentsl{ghdd in paper IlI).

Dynamical model of growing social networks

Motivated by the mentioned influence of the mobility on theesgling mecha-
nisms, in Chapter 6 we develop a contact network of mobile&sgaat success-
fully resembles empirical networks of sexual contacts.

We present, for the first time in the literature, a model tsatble to reproduce
many topological features of the empirical sexual netwaesting it with respect
to a null model given by the randomized version of the emainetworks (see
paper VI).

For the appropriate structural analysis and comparisdmeafietwork model with
the empirical data, it was necessary for us to develop aldai@nalytical ex-
pression that measures the probability of occurrenagyoles of even lengtim
networks. Our proposed expression appears to be particukseful in the char-
acterization of bipartite networks, like is the case of iath from heterosexual
contact networks (published in paper V).



10

Dynamical model of stationary social networks

One important application of complex networks are the figp relations
among people. Using a model of mobile agents we studied ignedships form-
ing by collisions and found very convincing agreement witidges in American
schools concerning 90118 pupils.

We present all the details of this model in Chapter 7 (as phbbt in papers VII
and VIII).

Community structure and and role of attributes in friendship
networks

In Chapter 8 we propose a novel method of analysis that unsovganizational
aspects of the large data set of friendship networks.

Our study is able to give a new insight into the data concertire detection
of communities in the friendship networks. The role of weggand attributes
are shown to be of particular importance in the analysis efcllected empir-
ical data. We develop a method that is able to quantify ragglegation in the
studied empirical networks (as presented in paper I1X).

Additionally in Chapter 3 we present some basic conceptslamdost promis-
ing advances already proposed in the field. We divide it inr 8®ctions about
static measures of networks, examples and structure cflswtivorks, proposed
models of networks and spreading dynamics. Chapter 9 ersdthtsis present-
ing the main conclusions and discussing the results of thiys



Chapter 3

Basics

3.1 Networks measures

In this section we present a set of measures that charagetiz topological
structure of networks. The concepts presented here aretoass for the appro-
priate evaluation of the developments presented alongstef this work.

3.1.1 Definitions and notations

A network is a set of items, called nodes or vertices, with samannections
between them called links or edges. Graph theory [5, 6] im#tteral framework
for the exact mathematical treatment of complex network&raphG = (N, £)
consists of two setdV" and £, such that\V # 0 and £ is the set of pairs of
elements of\. The number of elements ¢f and £ are denoted bw and K,
respectively. A node is usually referred by its inder the set\. Each of the
links is defined by a couple of nodés j), and is denoted as;.

Single nodes joined by links is the simplest type of netwdikg. 3.1a). For
instance, there may be more than one type of node in a networkore than
one type of link (Figs. 3.1b-e). Nodes or links may have algfemrnt types
of properties associated with them. Taking the example oicéabnetwork, the
nodes may represent men or women, people of different ragespr many other
things. Links may represent friendship, but also couldesent animosity, or a

11



12 3.1 Networks measures

professional acquaintance. They can carry weights, reptieg e.g. the time
two people know each other. They can also be directed, pgirti only one
direction; like a network representing telephone calls.twéeks may be also
partitioned in different ways. We will see here examplesiphltite networks:
networks that contain nodes of two different types with dimanning only be-
tween unlike types of nodes. Along this work, we will find exales of each of
the variations of the networks previously described.

() (b)

directed link

mutual links

node

o,
(c) % (d)? ;

Figure 3.1: Examples of types of networks: (a) An undirectetvork with only
a single type of node and a single type of link. (b) A directetivork, in which
each link has a direction. (c) A weighted network: Differénk weights. (d) A
bipartite network: Connections are present only betweentyye of nodes. (e)
A network with various node and link types.

3.1.2 Node degree, degree distributions, and degree corael
tions

Thedegreé:; of a node is the number of edges incident with the nodes [7]. If the
network is directed, the degree of the nodes has two comp&rite number of
outgoing linksk¢“! (out degree) and the number of ingoing lirk& (in degree).
The total degree is then defined as:= k¢t + ki".
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The basic topological characterization of a network is gibg thedegree distri-
bution P(k), defined as the fraction of nodes in a network having degr&éhe
nth-moment ofP (k) is defined as

(k") =Y k" P(k). (3.1)
k

The first momentk) is the mean degree of the network. The second moment
(k?) measures the fluctuations of the degree distribution. Thergience of k2)

in the limit of infinite network size, radically changes thehavior of dynamical
process that take place over the network as it will be shoveeation 3.4.1.

A large number of real world networks acerrelated[9], in the sense that the
probability of a node of degrek to be connected to another node of degree
k', depends ork. In these case®(k) does not fully characterize the network
structure and it is necessary to introduce toaditional probability P(k'|k),
being defined as the probability that a link from a node withrdek points to

a node with degre&’. The direct evaluation oP(k’|k) gives extremely noisy
results for most of the real world networks because of thaeitefisize. This
problem can be overcome by defining neerage nearest neighbors degieie
nodes with degrekg, as:

knn (k) = K P(K'|k). (3.2)
™

If there are no degree correlations, Eq. 3.2 gil&s$ / (k), i.e. k,,, (k) is indepen-
dent ofk. Correlated graphs are classifiedaasortativef k., (k) is an increas-
ing function ofk, whereas they are referreddisassortativavhenk,,,, (k) is an
decreasing function df [10]. In other words, in assortative networks the nodes
tend to connect to their degree peers, while in disassegtagtworks nodes with
low degree are more likely connected with highly connecieeo

3.1.3 Shortest path length and betweenness

A measure of the typical distance between two nodes in a gsagiien by the
average shortest path lengttiefined as the mean shortest distant¢) ©Ever all
couples of nodes [7]:

1
l=———— > dy (3.3)
N(N -1) i,JEN i)



14 3.1 Networks measures

Note that¢ diverges if there are disconnected components in the gtagivpid
this divergence the summation is limited to the largest ested component.

The communication of two non-adjacent nodes, gaand k, depends on the
nodes belonging to the paths connectjrgndk. In consequence, a measure for
the relevance of a given node can be obtained counting théauoh geodesics
going through it, which defines the so-calledde betweennesJogether with
the degree, the betweenness is one of the standard meaftireaade central-
ity, originally introduced to quantify the importance of aniiridual in a social
network [8]. Thebetweenneds of a nodei, also referred awad [8], is defined

as: ,
b= Y nyi(d), (3.4)
. ) Njk
J,kEN j#k
wheren,y, is the number of shortest paths connectjnand k, while n;(7) is
the number of shortest paths connectingnd & and passing through Two
commonly used algorithms to find shortest paths are the téjlkagorithm and
the burning method [11, 12].

3.1.4 Clustering

Clustering is a measure for the probability that two neighlwd a node are con-
nected between each other. In a network, high clusteringietb& presence of a
high number of triangles. More precisety,thelocal clustering coefficienf a
nodei, is a measure introduced by Watts and Strogatz in Ref. [b8]jadefined

as follows:
261’

ki(ki — 1)
It is obtained by counting; the actual number of links connecting any two neigh-
bors ofi divided byk; (k; — 1) /2, the maximum possible number of links among

all the neighbors of. The clustering coefficient of the network is then given by
the average of; over all the nodes in the network:

(3.5)

C;, =

C =)= % > e (3.6)

ieEN

It is also useful to consider(k), which is the average local clusteringtaken
over the nodes with degrée defined as [14]:

c(k)y =" Pk K" |k)pwr, 3.7)
k/,k//
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where the functiomy . is the probability that nodels’ andk” are connected.
Note thatc(k) is a measure for three nodes correlations. Its recent edienlon
real world networks has been of particular interest, bee#us used to study the
level of hierarchyandmodularityin real complex networks [15].

3.1.5 Motifs

ANVANY/\NWAY
1O N K

Figure 3.2: Examples of subgraphs analyzed for motifs detecShown are the
two types of three-node and the six types of four-node nagctid subgraphs.

A motif M is apatternof interconnections occurring in a graghsignificantly
more often than imandomized versionsf the graph [7].Randomized versions
also callednull models are graphs generated with the same number of nodes,
links and degree distribution as the original one, but whieedinks are re-wired

at random. Apatternof interconnectionsis a-node subgraph af. As an exam-

ple, the2 possible types 03-node and thé possible types of-node undirected
subgraphs are illustrated in Fig. 3.2.

The statistical significance @f is then described by thé-score, defined as [16,
17]:

Ny — nrand
Zyv = %, (3.8)
M

wheren,) is the number of times the subgraph appears inG, and (n;3"4)
and cr;‘j\;‘d are, respectively, the mean and standard deviation of thebauof
appearances in the randomized network ensemble.
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The concept omotifswas originally introduced in Refs. [16, 17] by Alon and
co-workers. They analyzed a broad spectrum of networksn toamchemistry,
neurobiology, ecology to engineering. They found that Bgemotifs are as-
sociated to different types of networks. These measures giaen a particular
understanding on thiecal structure and functionality related to each type of net-
work, and it represents an important complement togllobal characterization
of a network measured by the degree distribution.

In the last chapter of this thesis we show that in real worladvoeks motifscan
emerge not only looking at the topological patterns but gisging attention to
the colors omattributesof the nodes. As remarked by Stauffer et. al. in his re-
cent book on interdisciplinary Physics [49Mbre than two thousand years ago
Empedocles observed that some groups of people are likeanthevater, mixing
well, while others are like oil and water, mixing batllyBased on the methods
presented in this section, we quantify the level of ethnicagral preferences in

a large data base of schools friendship networks in U.S.A.

3.1.6 Community structures

The notion of community structure in networks and the firsirfal concepts of

it have been proposed in the social sciences [8]. Given ahgka@community

is a subgraplts’ whose nodes are tightly connected, i.e. a cohesive subgroup
Since the structural cohesion of the nodegfcan be quantified in different
ways, there are different formal definitions of communitywestures. Next, we
illustrate two widely accepted concepts of community thgetvith two different
methods of detection of community structure recently peggb

Betweenness algorithm

The concept of community structure is based on the frequehtipks: Com-
munitiesare group of nodes within which node-node connections amsedand
between which connections are sparser. A schematic exahpleetwork with
such a community structure is shown in Fig. 3.3.

The method presented in this section was developed by Nevamartowork-
ers [18]. It is based on identifying those links that are nlikedy to be between
communities. Groups of communities are then identified réngpthose links
from the network. The method is based on the concept of betwess presented
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Figure 3.3: Schematic representation of a network with comity structure. In
this network there are three communities of densely comdanbdes (enclosed
by circles), with a much lower density of connections betwt#em. By con-
struction, the communities are also example8-ofiques of different sizes (see
Sec. 3.1.6).

in section 3.1.3 generalized to the linksnk betweenness the fraction of short-
est paths between pairs of nodes that runs along a link. ié tisemore than one
shortest path between a pair of vertices, each path is weidght the inverse of
the existing number of paths, such that the sum of all thespiathinity. Those
links connecting communities will have high betweennesg.r@noving these
links, groups are separated and so the community strucfuregraph is re-
vealed. The procedure can be halted at any point, and thiimgstcomponents
in the network are taken to be the communities. The entirgression of the
algorithm from top to bottom, can be represented in the fofma wee such as
shown in Fig. 3.4.

In order to evaluate if the divisions are meaningful, at agbl of the tree the
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O O

Figure 3.4: An example of a small hierarchical clusterirggtrThe circles at the
bottom of the figure represent the nodes in the network. Fognta bottom, the
tree shows the sequential split of the network. The shapeedbdttom denotes
two communities in the graph, which corresponds to a peakéncilculated
modularityat the level shown by the dotted line.

modularitym for this division is calculated, defined as [19]:

m="> (ex—aj), (3.9)

%

wheree;; denotes the fraction of ends of links in groufor which the other
end of the link lies in groug, anda; = Zj ei; is the fractions of all ends of
links that lie in groupi. Modularity measures the difference between the total
fraction of edges that fall within -rather than between-gre(the first term) and
the fraction one would expect if edges were placed at randespécting node
degree). Thus, high values of the modularity indicate @wis of the network

in which more of the edges fall within groups than one wouldext by chance.
This indicates a strong significant split in the network aad heen found to be

a good indicator of functional network divisions in many €a$20]. The best
division in the process is the one which gives the maximumurteady.

Clique percolation method

A stronger definition of community requires that all pair€ommunity members
choose each other. Such a requirement leads to the defioftioelique a fully
connected subgraph @f nodes. Weakening the requirement of adjacency by
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the requirement of reachability, Vicsek and collaboragid21], introduced the
concept ofk-clique communityas a union of alk-cliques that can be reached
from each other through a seriesajacentk-cliques. Adjacencyhere means
sharingk — 1 nodes. As an example, the communities of Fig. 3.3 are example
of groups from adjacer#t-cliques or3-cligue communitiesf different sizes4,

5 and6.

A particular feature of this method, in contrast to the otimathods based on
network divisions as e.g. the one presented previouslas eéach node can
be memberof different communities. It allows the identification oftémesting
features in the@verlapsor number of nodes belonging to different communities.
Thus, it is possible to analyzeetworks of communities/here the nodes are the
k-cliqgue communities and the links are the members they share

Although different numbers gf might be optimal for the local community struc-
ture around different nodes, there is a global criterionxatsi value for a given
network:k is selected such that it gives the highest structure of conities pos-
sible from an analyzed network. In other words, in the relagercolation phe-
nomena [22] a giant component appears when the number sfdirkincreased
above some critical point. The smallest valueg:a$ selected for which no giant
community appears. In this way, it is possible to find as mamraunities as
possible, without the negative effect of having a giant camity that smears out
the details of the community structure by merging many senalbmmunities.

This method is more accurate but consumes much more CPU hisnetlie one
described previously. The running time of the algorithmdaasn between-
ness scales with system size @6N?), much better tha®(expN) based on
the clique percolation method. Recent algorithms basedaisthe concept of
modularity have been proposed and scale as well(@g log n) [23, 24].

In chapters 7 and 8 we use this method of community detedationdracterize the
community groups that emerge from our proposed model of lmalgients and to
compare it with the community structure observed in meaksoeial networks.

3.1.7 Summary

In this section we presented the basic concepts and the neeasuot tools that
have been developed in the last few years for the study an@daiesization of
complex networks. To summarize, in order to compare netww#els with real
world networks based on solid statistical grounds varieuslk of analysis must
be fulfilled. These are: degree distribution, degree cafia@ts, clustering and
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community structure. Additionally, the identification agsificant local patterns
can be made through comparisons with appropriate null nsaxfehe network.

3.2 Networks in the real world

A recent boom of works from statistical physics to the stufipetworks has
been largely driven by observations of the propertiegaf world networksand
attempts to characterize and model them. There is data gofmim different
kinds of networks, from different branches of science: 8laoétworks, informa-
tion networks, technological networks and biological nates. In many studies
they have been examined simultaneously and it is well astedal that, from the
statistical point of view, they share common mathematicapprties [1, 2, 13].
In the following, we describe this commonly observed mathtical structure;
but we put particular emphasis on examples coming from koetavorks, which
are the kind of systems particularly studied along thisaege

3.2.1 Examples of social networks

The academic discipline with the longest history in the ditative study of real
world networks are the social sciences: Among the early siorkthe subject are
the work of Jacob Moreno in the 1920’s and 30’s on friendslaiftguns within
small groups [25]. In more recent years, studies of businesgnunities [26]
and of sexual patterns [27] have attracted particular ttienReference [2] is a
review directed to the statistical physics community arti@same time contains
a rich recompilation of references from the social sciences

We mention here only some of the most cited examples of saei@orks for
which their statistical properties have been studied. & aee examples from af-
filiation networks, e.g. the collaboration network of filmaws, where two actors
are connected if they have appeared together in a film [13¢c2&)pany directors
networks [26], two directors are linked if they belong to Hzene board of direc-
tors; or the scientific Co-authorship networks in which uidlials are linked if
they have Co-authored one or more papers [29]. Another samfneliable data
are communication records of certain kind, for example #taork of telephone
calls [30] and e-mails communications [31]. Still, the moséd method of data
recompilation for social networks, are the traditional sfignnaires or direct in-
terviews, that have been used, for example, to build netsvofKriendship and
acquaintances [32].



Basics 21

In the next section we present some of the common topologinattures mea-
sured in real world networks.

3.2.2 Basic structures observed
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Figure 3.5:(a) An example of a small Co-authorship network among scientist
at a private research institution (figure from Ref. [36]).) {etwork of sex-
ual and romantic relations from adolescents in a high scffomin Ref. [27]).

(c) Network of friendships between individuals in the karafub study of
Zachary [37](figure from [38]).

In d-dimensional lattices, the mean number of nodes one hasstiparder to

reach an arbitrary chosen node, grows with the lattice s2€'d%. In contrast,

in most of the real networks, despite of the large size, tiseeerelatively short
path between two nodes, that depends, at most, logarithynarathe network

size; this property is known asmall-world effect It was first investigated by
Milgram in the 1960s in a series of experiments to estimageattiual number of
steps required for a letter passing person to person to aeaarbitrary target, it
was reported to be in average only six steps [2].

The small diameter is a characteristic of networks withdomlylinked nodes.
As consequence of their randomness, the so calledom graphshave small
diameter and small clustering coefficient (Eq. 3.6). Butamtcast to random
graphs, most real world networks have large values of th&teling coefficient.
This paradoxical observation was addressed in the semiodd by Watts and
Strogatz [13], who proposed the first model svhall-world networkshaving

small diameter a high clustering.

Further studies of the statistical properties of diverss weorld networks have
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shown the existence of three classes of small-world netsysdsumed by Ama-
ral et. al. as follows [33]:

e Scale-free networks, characterized by a degree distoibdliat decays as
a power law:P (k) ~ k~7.

e Broad-scale networks, characterized by a degree diswibthat has a
power law-regime followed by a sharp cutoff(k) ~ k=7Ye /=,

e Single-scale networks, characterized by degree distoibsitwith a fast
decaying tail:P(k) ~ e~*/%.

A natural question emerges “what are the reasons for such eamge of possible
structures?”. A crucial advance in this explanation wa®giey Barabasi and
Albert [34] who proposed the first model for scale-free nekgoand showed
that they emerge in the context of growing networks in whietvmodes connect
preferentially to the more highly connected nodes in thevaek, calledhubs
“rich get richer”.

In this context, there is also a possible explanation [3B}fie appearance of a
power-law with cut-ofeind thesingle-scalalegree distributions. That is, that the
preferential attachment can be hindered by two classesctdrg theaging of
the nodes, i.e. with time the nodes stop making new links thedostassociated
to a limited capacity of the nodes for making links.

We illustrate with examples of social networks the threedkiof degree dis-
tributions mentioned above. An example sifale-freesocial network are the
Co-authorship networks [29] for scientific contributiofshis is clearly a grow-
ing network where the more prestigious researchers attradarger number of
new ones, e.g. students. In reality, the aging effect, ofsmmust be present,
but according to the observations, it seems to be low enondlabows the for-
mation of a power-law degree distribution in most of the &dcases®. On
the other hand, friendship networks are observed to haveoagly peaked or
single-scaledegree distribution. Here the explanation associated @agtap-
plies well for this kind of network: There is a recurrent ciwsterms of time and
effort for maintaining a friendship, giving those limitedsources, people can
only maintain a certain number of friends, these networksigle scalg35].
Indeed, other relations that may imply little cost or 'oiirad’ cost to increase
the degree, is the case of sexual contacts which are obserbetbroad-scale

1Among all the sample of measured Co-authorship networke teme that arbroad-scale
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Just for illustrative purposes, we display in Fig. 3.5 theeell real networks of
the kind mentioned before. Fig. 3.5a is from Ref. [36] andriseaample of a
small Co-authorship network at a private research ingtitutNodes represent
scientists and a line between two nodes indicates that they Go-authored a
paper. The shape of the nodes correspond roughly to diffespits of research.
This network has gower-lawdegree distribution. Fig. 3.5b represents the
romantic and sexual network among adolescents in a highesdhis from the
research conducted by Moody and co-workers [27]. Its dedisebution has
apower-lawregion with a cut-off. In contrast, Fig. 3.5c¢ is a friendshgtwork
among members of a Karate Club, which later divided into tiubg, which are
marked by two different symbols. This belongs to the groupary networks
analyzed in social sciences, the research was conducteadtya#®/ [37], this
small network is today a commonly used network to test methoddietection
of community structure; the figure is reproduced from Re8][3The degree
distribution is peaked aingle scale

3.2.3 Some particularities

According to recent observations, social networks shaaeatiteristics which are
fundamentally different from other types of networked syss [39]. It has been
observed that the degrees of adjacent nodes are positivaiglated in social
networks but negatively correlated in most other netwoBcial networks are
assortative (see section 3.1.2). There is also some ewdbat the clustering
is far larger than expected by chance; while the level oftelirsg in non social

networks does not differ from the clustering of its randoadizersions; i.e. it
depends mainly on the given degree distribution. Additiigrgocial networks

are divided into groups of communities. Some of them grownrete.g. Co-

authorship networks, and others remain roughly fixed in,sizg. friendship

networks at the work place.

The appropriate modeling of all these characteristics withinimum number of

parameters has been an open question. In one attempt, Neandaroworkers

in Ref. [39] propose that community formation is the meckaniesponsible for
the presence of high clustering and of assortativity. lirttm®del, they propose
a priori for the distributions of group membership and th&trithution of sizes

of groups, together with a paramegefor link formation within a group and a
generating function formalism, they produce networks Wlite assortative and
with high clustering.

In Chapter 6 we present an alternative approach for growirngak networks
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based on mobile agents; the results compare favorablyrimstef degree distri-

bution and clustering distribution or three point degreeaations to real social
networks and their randomized versions. With the same agprmn its quasi-

stationary version, i.e. non-growing networks, in Chaftere are able to repro-
duce the observed degree correlation and community steusfithout labeling a

priori the groups each node belongs to. Our model constitutetil now, a suc-

cessful approach to dynamical social networks with thet ieasmber of adjusting
parameters.

3.3 Networks Models

This section focuses on the mathematical modeling of nddsviWe present here
some of the more cited models of networks. Further detaileefmodels can be
found e.qg. in Ref. [7].

3.3.1 Random graphs

The systematic study of random graphs was initiated by £ediil Rényi (ER)

in 1959. Starting withV disconnected nodeER random graphare generated
by connecting couples of randomly selected nodes with fitiba0 < p <

1. Graphs withK links will appear in the ensemble with probability (1 —
p)N(N=1/2=K "|n the limit of largeN — oo, the graph has fixed average degree

(k) = p(N — 1).

The structural properties of ER random graphs vary as a ibmdf p, they
present a critical phase transitionzat = 1/N, corresponding to a critical av-
erage degreék). = 1:

e If p < p. the graph has no component of size greater thélm N), and
no component has more than one cycle.
e If p = p. emerges a largest component of si2gV>/3).

e If p > p. the graph has a component@{N) with a numberO(NV) of
cycles, and no other component has more thém N') and more than one
cycle.
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The transition is of second order and belongs to the uniligr&dass of mean
field percolation. The degree distribution is well approated by a Poissonian
distribution:

oy (B

k!
ER random graphs are uncorrelated grapt#;| k') andk,,,, (k) are independent
of k. The average shortest-path variesas In N/in(k) and the clustering

coefficient is equal t&© = p = (k)/N [7]. Hence ER random graphs have
vanishingC' in the limit of large system size.

Pk)=e (3.10)

3.3.2 Small world networks

The model presented by Watts and Strogatz (SW) is a methamhgircict graphs
that have the small-world property and high clustering ficieht [13]. It is
started with a ring ofV nodes in which each node is symmetrically connected to
its 2m nearest neighbors for a total 6f = m /N edges. Then, for every node,
each link that is connected to a neighbor is rewired to a rariglchosen node
with probabilityp, and preserved with probability— p. Note that forp = 0 we
have a regular lattice, while far= 1 we have a random graph with the constraint
of minimum degreé:,,;,, = m.

Increasing slightly above zero, the shortest path lengtiecreases non linearly
and depends logarithmically on the network size. Conversé(p) decreases
much slower, at most linearly with This leads to a region of values gfwhere
one has both small path length and high clustering, which @bserved property
in real world networks. As for the degree distribution, whes: 0 it is a delta
function centered i2m, while forp = 1 it is similar to that of a ER random
graph.

3.3.3 Scale-free networks

The Barabasi-Albert modeHA) is a model of growth inspired by the formation
of the World Wide Web. The basic idea is that in the World WidebJVsites
with high degree acquire new links with higher rates than tegree nodes.
Starting withm + 1 nodes all connected among them, at each time step,
1,2,...,N — (m + 1), a new nodg with m links is added to the network. The
probability that nodg connects to an existing nodés linearly proportional to
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the actual degree of
k;

Pri= = r (3.11)
Because every new node hadinks the network at timewillhave N = m+1+
t nodes andy = m(t + 1) + 1 links, corresponding to an average degfele=
2m for large times. In the limit — oo, the model produces a degree distribution
of the form P(k) ~ k=7, with v = 3. The average shortest-path in thed
model increases &s~ log N/ log(log V) and the clustering coefficient vanishes
with the system size a8 ~ N 275, The BA model has attracted an exceptional
amount of attention in the literature, many authors haveased modifications
and generalizations to make the model a more realistic septation of the real
world, resulting in a more flexible value of the exponentbr to reinforce the
clustering coefficient and degree correlation.

3.4 Spreading Dynamics

In the previous sections we have focused on the static piep@f contact net-
works. However, in real systems there is another importsypéet to add to the
study of contacts, that is flow or spreading dynamics thrahgtcontacts.

Spreading processes in networks are often modeled by aebuitomata [40].
Each node of the network represents an agent that can beyiroasl of a fi-
nite numbers of states. Time is discrete, and at each tinpetiséenext step of
each agent is computed as a function of its state and theddt@teneighbors
on the network. In particular, in section 3.4.1 we will dissutheS7.S model
of epidemic, or spreading without immunization and in set.4.2 models of
opinion. These two classes of processes are radicallyeiffeWe will focus on
the discovered influence of the inclusion of network top@egn those standard
models.

3.4.1 Epidemic spreading

In the S1.5 model each node exists in one of the two states, healtlsyscep-
tible andinfected The infection spreads through nearest neighbors corgact,
infected site passing the disease to its healthy neighlboatea\. Infected sites
recover at raté — )\ and are immediately susceptible to infection. The rates for
a node with4 neighbors are shown in Fig. 3.6. Since an agent must have an
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Figure 3.6: Example o615 model for a chosen node with = 4 neighbors.
An infection event is chosen to occur with probabilltyand it occurs if the cho-
sen node is susceptiblelfite) and if one randomly chosen neighbor is infected
(blacK. With probabilityl — A, the node is cured, only if it is infected.

infected neighbor to become infected , the disease-frée stabsorbing; per-
sistence of the epidemic depends on the infection xafehe boundary between
survival and extinction is marked by a critical point thaacdcterizes transitions
into an absorbing state.

Each step involves randomly choosing a proceasgectionwith probability
andcurewith probabilityl — A. and choosing a node In a cure event a node,
if infected, is cured. Infection proceeds onlyiifs susceptible and a randomly
chosen nodg is infected; if so; is infected. Time is incremented iyt = 1/N
after each step, successful or not, so that a unit time iateom a network ofV
nodes, corresponds on average to one attempted eventeg¥igit

Following Ref. [42], we consider the relative densify(t) of infected nodes with
given degreé; i.e. the probability that a node withlinks is infected. The mean
field rate equation can be written as:

Spk = —pk(t) + Ak[1L = pi (1) P(p(1)), (3.12)

The creation term considers the probability that a node witimks is healthy
[1—px(t)] and gets the infection via a connected node. The probabfiityis last
event is proportional to the probability of infectionthe number of connections
k and the probability that a given link points to an infectedl@® (p(t)). For
uncorrelated networks, its is given by:

PN = ok kl:;g;)pk(/\) (3.13)
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Using the relations:

p= / P(k)prdk. (3.14)
For a network with scale-free distribution of the forf(k) = (1 +
y)m k=277 with 0 < v < 1 and first moment:
(k) = I, (3.15)
Y
The set of Egs. [ 3.12 - 3.13] can be used to calcuit®) and then
o~ A=), (3.16)

This means the total absence of any epidemic threshold &naisfociated criti-

cal behavior; i.eA. = 0. The higher the node’s degree, the smaller the epidemic
threshold. Thus, in scale-free networks the unboundeduiiticins in the num-
ber of links emanating from each nodg&f) — oo) eliminates the epidemic
threshold.

Epidemic spreading on complex networks has recently atiamuch attention
in the literature. Various features have been investigaddterent analytic for-
malisms, models with immunization, the incidence of degareelations, strate-
gies for halting the epidemics outbreak or fluctuating disesa(see details in
Ref. [7]).

In chapter 5 of this research we investigate a novel aspéehtdriopic. The SIS
model of infection described in this section is studied avenobile population
of agents, showing that a family of critical exponents isaitd as a function of
the spatial correlations in the population.

3.4.2 Opinion formation

An interesting application concerning the structure ofalatetworks is the mod-
eling of the dynamics of opinion formation. Specific measugats that charac-
terize the statistics behind the existence of differentigeoand affiliations within
human populations, makes plausible the intents to modél aspect of human
behavior. The idea behind this field is to find simple rulemntéiiactions among
the nodes oagents each of which carries its own changing coloraginion,
trying to reproduce the emergence of complex patterns wbdén reality.

Suchopinionscan be defined by a finite number of integers as in the model pro-
posed by Sznajd et. al. [43] or can even be representegdbypumbers, having
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a rich spectrum and opening the possibility for as many opisias agents; like
in the model proposed by Deffuant et. al. [44]. Here we sunmaahese two

characteristic models of opinion formation. Others mo@sithe Hegselmann
and Krause [45], the voter model [46], the Galam’s majoritier{47] and the

Axelrod’s model [48] will not be discussed.

r:l/ \r:2
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Figure 3.7: Example of the two different outputs generatethk Sznajd model
on a cell with the same initial configuration and the rulescbnvince”, with

r = 2 andr = 3. Here, for the case = 2 consensuss reached, i.e. an
absorbing state where all the agents share the same opivhiate)( for » = 3 the
cell remains unchanged because there are3matighboring nodes sharing the
same opiniondolor).

In the Sznajd model, the opinian is an Ising like variable, assuming the value
+1 and—1. At each time step randomly selected neighboring agents transfer
their opinion to all their neighbors if and only if they shale same opinion.
Fig. 3.7 presents an example in a cell of 5 nodes and the twoars presented
as black and white. In the example, for the same initial caméigon and the
same pair of node@, j), if the model is run with- = 2, “2 convince” consensus

is reached, while for “3 convince” the cell remains unchahge

In the Defuant modely; is a real number(( < o; < 1). At each time step,
two randomly chosen interacting agenind; check their opinions; ando;.

If the two opinions differ by more than a fixed threshold pagtene (0 < ¢ <

1), called theconfidence boundoth opinions remain unchanged. If, instead
lo; — 0] < €, then each opinion moves into the direction of the other by an
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amount,u]ol- — 0,4, with u being a second tunable parameter{ 1 < 1/2).

Both dynamics have a natural absorbing state, in which albthents share the
same opinion oconsensus For a given initial configuration the dynamics is
followed until the system reaches an equilibrium state atigrized by the exis-
tence of one or several opinion groups, depending on theagarameters of
the model.

As recently pointed out in Ref. [7] very few and not conclesresults exist for
the consensus models on complex networks. We dedicate shetfapter of this
thesis to investigate some aspects in this area. The grsatzess of the Sznajd
model is the possibility to reproduce numerically some & #&mpirical laws
observed in political elections with a version of the mod@éhwnany different
opinions, each representing the preference of the node byea gandidate. In
chapter 4, we demonstrate that this result is independethieaopology of the
complex networks used; we reproduce previous observatibtiee model on a
BA network, on a hierarchical network. This gives a powerfgight into the
analytical treatment of the model, which allows us to prepas expression that
coincides with the numerical simulations for the Sznajd eiadn on complex
networks of growing and fixed size. Finally, in an attempt emeralize this
observation to the case of more complex representationsioioms, we propose
a model where each agent can hawvdimensional vector, which represents
different opinions and each component of the vector is lik@efuant type of
opinion, i.e. a real numbdr < o; < 1. We show that even for this kind of
sophisticated model the transition to consensus does petdeon the details of
the complex network used to model the interaction.



Chapter 4

Modeling opinion dynamics
on hierarchical networks

In this chapter we study spreading dynamics on deterministiworks as a suit-
able theoretical approach to predict spreading dynamiceandom scale-free
networks. This chapter comprehends three related studkssipted in three sec-
tions.

In the first section, the Sznajd model of socio-physics, tnat a group of people
sharing the same opinion can convince their neighbors, péiexpon a scale-
free network modeled by a deterministic graph. We study aahfad elections
based on the Sznajd model and the exponent obtained fordtniddtion of votes
during the transient agrees with those obtained for reatieles in Brazil and
India. Our results are compared to those obtained usingabBai-Albert scale-
free network.

In the second section, we present a renormalization apptoaolve analytically
the Sznajd model of opinion formation on the same detertidérgsaph. For the
case of two opinions, we present an expression for the pilitlyadf reaching

consensus for a given opinion as a function of the initiatticm of agents with
that opinion. The calculations reproduce the observedpstransition of the
model on a fixed network, as well as the smooth function forrtuelel on a
growing complex network.

In the last section of this chapter, we propose a more sogditisti model of

31
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opinions where the agents interact with a non-linear ruid,each of them has
opinions, represented by the positive real components afdimensional vec-
tor. We compare the behavior of this opinion model with therdg interacting
through different networks, i.e. deterministic versusd@m structures.

4.1 Opinion Formation on a Hierarchical Network

The majority of networks used to generate a scale-free ¢gyois stochastic,
i.e. the nodes appear to be randomly connected to each dthese scale-free
random networks have naturally a continuous degree digiin. But recently it

has been shown that discrete degree distributions of soteendeistic graphs
asymptotically also exhibit a power law decay [50]. Furthere, scale-free
random networks are excellently modeled by such detertigrgsaphs [3, 4].

However the comparison between the behavior of stochastiadaterministic

networks in the simulation of a particular model still remaopen.

Opinions can either be made up by a person or taken over frathanperson.
Sometimes some people try to force their opinions on otheigeneral, all peo-
ple are free to form opinions. The mechanism of opinion fdromais “norma-
tive”, in the sense of whatught to beopposed to a “positive” mechanism, which
is based on observatiavhat is[51]. Based on this facts, and with the necessary
simplifying assumptions, socio-physics gave the oppatyua apply techniques

of statistical physics to model opinion formation amonged¢47, 49, 52, 53].

One of the opinion formation models that has generated inateéhterest in
many authors on the field is the Sznajd model [43], which istam the slo-
gan “together we stand”: Individuals are represented byatiiee nodes (one-
dimensional in its first version), and each randomly seteg@ir of neighbors
convinces all their neighbors of their opinions, if and offilihe pair shares the
same opinion; otherwise, the neighbors’ opinion are nacadfd. It differs from
other consensus models by dealing only with communicawéen neighbors,
and the information flows outward as in rumor spreading: edites not follow
what the neighbors tell the site; some details of this moéellwe found in sec-
tion 3.4.2.

Initially, two opinions (+1 and—1) are randomly distributed with probabilify
and1 — p respectively over all the nodes of the lattice. The basiagzmodel
with random sequential updating always leads to a cons€afisites have the
same opinion and the whole system reaches a fixed point aentain simula-
tion time). A phase transition is often observed as a funatibthe initial con-
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t=0 t=1 t=2

Figure 4.1: The three first generations of the scale-freaquséractal graph. At
each iteration stefy every edge generates an additional vertex, which is athch
to the two vertices of this edge.

centration of opiniorp. A generalization to many different opinions (instead of
only +1) simulated on a Barabasi-Albert network [34] reproduceitawell the
results of the complex elections of city councillors in thats of Minas Gerais
in Brazil in 1998 [54].

Next, we present the deterministic scale-free network taded. Further, we
simulate an election process, using the Sznajd model im#tisork. We com-
pare our results with the same simulations carried out onchastic scale-free
network (the Barabasi-Albert network) and with state &gt from Brazil and
India.

4.1.1 Hierarchical network

The deterministic scale-free graph used in this work grosvollows: At each
time step, every edge generates an additional vertex, vidhattached to both end
vertices of this edge. Initially, at = 0, we have a triangle of edges connecting
three vertices, at = 1, the graph consists @f vertices connected b edges,
and so on (see Fig.4.1). The total number of vertices attiterais

331+ 1)

N = 5

(4.1)
This simple rule produces a complex growing network. Suchaalyis called a
pseudo-fractal The resulting graph is not a fractal, as was already poiated
in Ref. [3]. The graph is surrounded by a long chain of edgettha resulting
structure has not a fixed fractal dimension.
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The presented hierarchical network has a discrete degs&édiion. To relate
the exponent of this discrete degree distribution to thedstedy exponent of a
continuous degree distribution for random scale-free odgts; we use a cumu-
lative distributionP.,,, (k), which follows

P (k) ~ k=7 (4.2)

and is the probability that a node of the network hat at léastighbors. It de-
creases as a power éfwith exponenty = 1 + In3/1n2. In a similar way,
the average clustering coefficient [3], which is the probigbof existence of a
link between two nodes when they are both neighbors of a sade, tan be
calculated for the infinite grapl; = 4/5. One obtains a shortest-path-length
distribution which tends to a Gaussian of widthv/In N centered at ~ In N
for large networks [3]. These properties concerning theekedistribution, the
clustering coefficient and the mean length, are also présemtwide range of
stochastic scale-free networks reported in the literatirkey make our sim-
ple deterministic networks suitable to examine applicativery often found on
stochastic networks. In the next section we implement thaf@izmodel on our
scale-free pseudo-fractal.

4.1.2 Monte Carlo simulations of the Sznajd model

We let the fractal of Fig.4.1 grow and at each step assiga witd random opin-
ion +1. At every step > 0, we have the following process:

1. The network grows, i.e3! new sites are added.

2. Arandom opinion+£1) is set to each new node of the network, with prob-
ability p (1 — p) for opinion+1 (—1).

3. N, Sznajd runs are performed. For each réfrsites chosen randomly are
analyzed and updated, i.e., one visits for the Sznajd modelnaber of
sites equal to the number of sites added at that step to theret

Three variations of the Sznajd model on the pseudo-fraetaiark have been
investigated:

e 1 site convincing: For each sité chosen, we change the opinion of all its
neighbors to the site’s opinion.
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e 2 sites convincing:For each siteé chosen, we select randomly one of its
neighbors. If this selected neighbor has the same opinitimedsite, then
all their neighbors follow the pair’s opinion. Otherwis@thing is done.

e 3 sites convincing: For each site chosen, we select 2 of its neighbors
at random. If all these three sites have the same opinion,dhange the
opinion of all their neighbors.
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Figure 4.2: Sznajd model on a 29576 nodes pseudo-fractabrietvith N, =
1, 10 and 50 runs per time step for (a) 1 node convincing, (lhdza convincing
and (c) 3 nodes convincing.

Figure 4.2 shows the mean opinion for the three rule2 énd3 sites convincing)
for different initial concentrationg and N, Sznajd runs per step (rps): rps
(N, = 1) corresponds to one realization of Sznajd per step, thdtéaeh step,
one chooses! nodes of the network at random to simulate Sznéfdps (Vs =
10) and50 rps (Vs = 50) correspond, respectively, to choasex 3¢ and50 x
3! nodes randomly per step. We let the network grow upae76 sites, that
corresponds td0 iterations. Forl node convincing, the model cannot reach
consensus, the results become more unpredictable, thes thlgnumber of runs
per step (Fig.4.2a). However, for two and three nodes cainn full consensus
is observed (Figs.4.2b and 4.2c). We clearly see that feistudnd3 the order
parameter (opinion) jumps drastically and shows strongengsis. Our results
are very similar to the ones obtained on the Barabasi-Alhetwork when the
same rules are applied [56], except that the latter requiea® Sznajd runs for
the network to reach a fixed point, i.e., a full consensus.

Since after some time steps the rudesnd3 always lead to a consensus and the
whole system reaches a fixed point, in Fig.4.3 we show the euwmisamples,
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Figure 4.3: Monte Carlo simulation on a 29576 nodes pseualtidl network
counting the number of samples, outl®00, for which the fixed point all “up”

is obtained when different values for the initial concetitrap of nodes “up” are
simulated. As we can see, the fraction of realizations witkdipoint up depends
on the probabilityp and on the rule implemented, for Sznajd models with 2 and
3 nodes convincing.

out of 1000, for which the fixed point all “up” (all with opiniont1) is obtained
when different values for the initial concentratipiof nodes “up” are simulated.
As we can see, the fraction of realizations with fixed poiri™depends on the
probabilityp and on the implemented rule. This is opposed to the resulisradal
with the same rule2(or more nodes convincing) on a square lattice, where an
abrupt change is observed fpr> 0.5 [55]; but in agreement with the ones
on a Barabasi-Abert network [56] and on a 1-dimensionainf4d]. For 1 node
convincing the system does not tend to a fixed point (con&@nstile on square
lattices it does [57, 58], although without the abrupt cheaofg sites convincing.

4.1.3 Simulation of elections with many candidates

We create a network of interacting nodes by using the pséuadtal network
prescription as described before (Eq.4.1). In additionuo reetwork, we also
simulated the rule presented in [54] for modeling electionsa Barabasi net-
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work. We summarize the generation of the Barabasi netwsifoliows: At the
beginning of the simulation we hagdully connected nodes. After that, we add
more and more nodes and connect them witti the present nodes chosen with
a probability proportional to the number of nodes alreadynemted to them. For
comparison we generate both networks with the same numberdgfs (voters),
and the same number of candidates.

After generating a network, one starts with the “electioogess”.N candidates
are randomly distributed. The value(l < n < N) of a node on the network
represents that this voter has preference for the candidatéially, all sites start

with value zero, meaning that there is no preference for amgiclate, except
for IV sites that have the number of a candidate. Now, the eleatarapaign

starts (only voters with preference for a candidate can énfte other voters,
a la Sznajj. At each time step all the nodes are randomly visited: aoand
list of nodes assures that each node is reached exactly &nceach visit, we

implement the following process:

e We choose a nodeat random, if it has preference for a candidate, we
choose among its connected nodes, a npdérandom. Otherwise, we
randomly select another node.

¢ If node j has the same candidate as nédeach node convinces all the
nodes connected to it with probability:

p(k) = — <z 4.3)

n(k)1/¢
wheren(k) is the number of nodes connected to either j, and¢ > 1 a
switching factor that is analyzed later and is a paramettrefmodel.

¢ If nodej has no candidate, node€onvinces it to accept its own candidate
with the probabilityp(i) of Eq. (4.3).

¢ If nodej has a different candidate from nofleve choose another node

As in real elections, we do not wait for a kind of fixed point wiihere would
correspond to all the nodes preferring the same candidatteyéocount the votes
at an intermediate time. We group in a histogranrthmber of candidateshich
received a certain numberwodtes Because the bin size for tetesincreases by
a factor2 for each consecutive bin we divide each point of the histogog the
bin size, for this reason we have numbers lower than one éhigtogram of the
number of candidates, this kind of “voting distribution”used in the literature
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Figure 4.4: Plot of the voting distribution of an electioropess on the pseudo-
fractal compared to the simulation on a Barabasi networithBietworks have
797163 sites (voters) and 500 candidates. We average 2Weealizations for
each network. The distribution for the pseudo-fractal itaoted after 15 itera-
tions of the convincing process with= 2 (Eq. 4.3) . The distribution for the
Barabasi network is obtained aft& iterations. In the inset we show the results
of the simulation on the pseudo-fractal o= 1, 2, 4, 8 and16, after400, 20, 4,

2 and1 iterations respectively. We see that the results depenkeorute chosen.

for analyzing similar results [54,61]. In Fig.4.4 we seettthee results of the
voting distribution for the simulations on the pseudo-fahand on the Barabasi
network agree very well, using = 2 (Eq. 4.3) with the pseudo-fractal. In the
inset we show the results of the simulation on the pseudddrdor & = 1, 2,

4, 8 and 16, after400, 20, 4, 2 and1 iterations, respectively. The results differ
for each choice of: the system reaches a fixed point more rapidly for larger
parameteg, i.e, one needs less iterations in order to reach the sarmibdion’s
width. Using the same value used in the simulations on thalisi network,

& = 1, after nearly2000 iterations, a fixed point (consensus) on the pseudo-
fractal network could not be reached. A similar result iseslsed on the square
lattice for the Sznajd model, where if convincing happenly evith a certain
probability, no complete consensus is found [55, 59].

For the simulation on the Barabasi network we §se- 1, like reported in
Ref. [54]; this choice means that on average each node agwine other node
at each process. As we show in Fig. 4.5 the degree distribofithe pseudo-
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Figure 4.5: Comparison of the degree distributions of theaBasi network
P(k) ~ k=7 (y = 2.9), and of the pseudo-fractal network,(k) ~ k'~
(y=1+1n3/1n2).

fractal is discrete and is given by(k) = k= 3/n2 'while the degree exponent
for the Barabasi network presented in this work is- 2.9 [34]. Knowing P (k)
we can calculate the probability distribution to convind®asing one site at
random, that is the probability of convincing Eq.4.3 muléd by the degree dis-
tribution P(k). For the convincing distribution of both networks to be sami
one has to chose Eq. 4.3 wigh= 2 for the simulation on the pseudo-fractal. We
obtain qualitatively the same results in both simulatidresng12 time faster on
the pseudo-fractal than on the Barabési network, becatesguires less memory
space and computation time (see Fig.4.6).

In Fig. 4.7 we see that the shape of the voting distributiaeraf given number
of iterations does not change with the size of the networlar@ing the number
of candidates doesn't alter the form of the distributiore(8ee inset of Fig. 4.7).

We consider the results from two Brazilian states (Sdodantl Minas Gerais)
for the positions of local state deputies. In such electtbessoters vote directly
for the candidate and not for parties. Some elections ocihravhigh number
of candidates, of the order of thousands, and with a numbeatefs of the order
of millions. The official results for each state are avaitath the Internet [60].

In Fig.4.8 we see the results of a simulation ofbagenerations pseudo-fractal
(21523362 nodes) and 144 candidates, and compare it to the results of real elec-
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Figure 4.6: CPU time (seconds) on a PIV 2.4 GHz vs. size of tteark for
the pseudo-fractal network and for the Barabasi networksiviulate an election
process with 100 iterations of the convincing model, on weks of sites: 88575,
265722 and797163 with 500 candidates. The computation time on the pseudo-
fractal grows linearly with the size of the system, whilettoe stochastic network
it grows exponentially.

tions. For the moment we do not take into account abstentmmiavalid votes
in the simulation. The pseudo-fractal tends to consensassimilar way as the
real elections. After averaging over more thid realizations we see, that the
deviations from a perfect line in the intermediate regiohsaies, seen in the
real elections, are not of statistical nature but seem dtleetdeterminism of the
network. The general behavior of the distribution of caatid of the simulation
on the pseudo-fractal, however, agrees with the one obs$érveal results. The
results of the distribution of candidates for the simulated the real cases follow
a hyperbolic law,
Nw) < 1/v, (4.4)

for the numberV of candidates having votes, extending over two or three order
of magnitude, with deviations only for small and large nunstaf votes [61].

In addition we analyzed the behavior of the voting distridstfor the elections
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Figure 4.7: Test for size effects on the distribution of ddates for the sim-
ulation of elections on the pseudo-fractal with 12 genersti(diamonds), 13
generations (triangles) and 14 generations (circles) @it candidates each,
after 15 iterations of the election process. In the inset we make ithalation
with a number of candidates proportional to the number eksif the network,
keeping the relatiogtCands/#voters = 0.005, we see that the results are
size-independent. The solid lines are guides to the eyeslifies—1 and—2.

in India to the lower house of the Parliament (Lok Sabha). sEhaections are
events involving political mobility and organizational bitity on an amazing
scale. In the 1998 election to Lok Sabha there we@) candidates fron38
officially recognized national and state parties seekiegten 1048 candidates
from registered parties not recognized a0d35 independent candidates. A total
number 0596185335 people voted. The Election Commission employed almost
400000 people to run the election. The official results of thesetalas are avail-
able on the Internet [62]. In contrast to the Brazilian etat, in this process the
country is divided intdb43 parliamentary constituencies, each of which return
one representative to the Lok Sabha. That is, not all thers@tect among all
the candidates of one state (like in Brazil), but there is eleetion process for
each of theb43 representatives, that occurs in each parliamentary ¢oasty.
These parliamentary constituencies are selected by apéndent Delimitation
Commission, which creates constituencies which have rdgubk same popu-
lation, subject to geographical considerations and thetlaty of the states and
administrative areas.
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Figure 4.8: Result of the simulation of an election procdssr 20 iterations

on a pseudo-fractal network 81523362 nodes and 144 candidates (triangles).
Compared to the voting distribution for the state of Minasaiein 1998 (circles)
(819 candidates] 1815183 voters) and the state of Sao Paulo (1998) (squares)
(1260 candidates23321034 voters). Both axis are plotted on a logarithmic scale.
The dashed straight line is a guide to the eye with slepe The bin size for

the votes increases by a factd for each consecutive bin. The height of the
distribution of the pseudo-fractal is multiplied b9 to better see the comparison
of the results.

At the end of the process one can analyze the voting disinibutf each state
of India. In Fig. 4.9 we observe the results for 5 states: {Rt@adesh, Goa,
Andhra Pradesh, Haryana and Kerala, with 85, 2, 42, 10 anda8tituencies

respectively. The voting distribution for each state isghperposition of differ-

ent electoral processes for all the constituencies of the.st~or each election
in a constituency there is a voting result that correspooadew candidates, be-
tween5 and10. The difference between the Indian and Brazilian resulpeaps

at this stage.

If one analyses the election process of each parliamentargtituency, even
though one does not have a large number of candidates fotatistiss, a dis-
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Figure 4.9: \oting distribution for state elections of ladn 1998. For Uttar
Pradesh (squares) witth, 015, 804 voters andi49 candidates. Goa (diamonds)
with 532,766 voters and 12 candidates. Andhra Pradesh (triangles up) wit
31, 829, 338 voters and01 candidates. Haryana (triangles down) with 6, 884
votes and 84 candidates and Kerala (stars) witl)36, 581 voters and 08 can-
didates. We obtain results qualitatively comparable te #ind of processes
on a pseudo-fractal with 12 generations a&fidcandidates, after few iterations
(5). The solid lines are square fits to the data, in the interatediegions. The
slopes are:-1.32 (Uttar Pradesh);-0.97 (Goa),—1.51 (Andhra Pradesh);2.06
(Haryana)—1.26 (Kerala) and—1.32 (Pseudo-fractal)

tribution with slope~ —1 is observed. However, the final results of the process
for each Indian state provide a different profile far from ttyperbolic one {/v
type of distribution) (see Fig.4.9), which was observedfiany Brazilian states
[54,61]. In order to analyze the number of candidatewhich received a cer-
tain fraction of vote® for the nationwide voting process, we have normalized the
votes of each candidate by the total number of voters (Rif)4As can be seen,
the number of candidatés follows a power lawN (v) < v, with @ = —1.3

(for Brazil, o = —1).

The differences in the Sznajd simulations on the pseudddraetwork for the
Indian and the Brazilian elections are mainly due to the nemaf candidates
considered for each one. In the latter, the number of cateidaalmos0.005%
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Figure 4.10: Voting distribution for India in 1998 (squaresompared to the
simulation on a pseudo-fractal (circles) with 12 generetiand80 candidates,
after few iterationsq). The solid lines are guide to the eye with slopé.3

of the lattice nodes, while for the former itGs01%. The fixed point (consensus)
is reached the faster, the larger the density of candid&esause of that, the
comparison of the real elections in India with our simulasavere made taking
account only iterations of the Sznajd model on the pseudo-fractal né¢\&ir
iterations for Brazilian elections).

4.1.4 Summary

We studied the behavior of a deterministic scale-free netveimulating a
spreading of opinion model on it. We solved the Sznajd’s rhodea grow-
ing deterministic scale-free network, obtaining alwaysoasensus of opinion
after some runs of the model. The final opinion presents a 8mtaansition as
a function of the initial concentration of opinions in thetwerk for rules2 and
3. The results coincide with the results reported for a stetibhacale free net-
work [56]. We found that there is not scaling in the finiteesaut-off showing
that the system is not critical (Fig.4.7). We simulated &tecprocesses on the
network. The probability of convincing of the model has toduapted{ = 2,
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in Eq. 4.3) in order to avoid the differences in the valuesheaf €xponents

of the degree distribution of our deterministic network nely exponent of a
typical stochastic network (Fig. 4.4). We obtained the sa@selts, reported for
a stochastic scale-free network, but with computation sim@nsiderably lower
(see Fig.4.6). We could use our model to reproduce quakigtgood complex
electoral processes, such as the state elections formparitzin Brazil and India.

4.2 Renormalizing Sznajd model on complex net-
works taking into account the effects of growth
mechanisms

In this section we take advantage of the deterministic ataraf the scale-free
network from the previous section and present an approasblve analytically
the Sznajd model on it.

On networks with fixed size, the results of the Sznajd modelat@lepend much
on the spatial dimensionality and type of neighborhoodctetk(i.e., two nodes
convince the others, three convince the others, etc.) B%4. In the case
of ¢ choices of opinion, the model hgshomogeneous absorbing states, where
all individuals choose the same opinion; in the context ahimm, one says the
system reaches consensus. The case of two opinjoas2) has been the most
studied, denoting opinions as Ising variables “up™ar, and "down” or—1. In
more than one dimension, the probabiliy,{) of reaching consensus “all up”
depends on the initial fractignof individuals with opinion "up”; forp > 0.5, the
probability of reaching “all up” as stationary state is @ds one, while fop <
0.5 it is negligible, having a sharp transitionzat= 0.5, which can be interpreted
as a dynamical phase transition. Computer simulationsShif@licate that the
universality class associated to this dynamical phaseitian is different from
the universality class of the Ising model. The distributaddtime needed to reach
the stationary state is a peak followed by a fast decay [66].

Much less is known about the Sznajd model on growing netwdnksractions of
groups of people in some circumstances can be thought of amséng system,
i.e., in a city with positive rate of immigration. In a first@simple approxima-
tion, it can be modeled by a growing scale-free network [1¢ $&owed in the
previous section that if the Sznajd model is simulated dyittie growth of either
a Barabasi-Albert network or a hierarchical network [Bg system reaches con-
sensus [56,67]. But in contrast to the sharp transition mieskfor the networks
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of fixed size, the probability that the system reaches “dllifapa growing com-
plex networks is a smooth function pfthe initial fraction of opinion “up”. In
addition, this function depends on the type of neighborhsmected.

In this section, we present a real space renormalizatioroaph [68] to calculate
the probabilityP,,, (p) of reaching consensus on opinion “up” as a functiop.of
Our results are for two common rules of neighborhood, narhelgonvince all
their neighbors”, withr = 2 andr = 3. We have obtained the two well-known
results known for the model: a smooth functiorpdbr the growing case and an
expression which approximates the step function for fixed/oks.

Next, we present the renormalization approach and the ticellyexpressions
obtained, each case is compared with the results from therncahsimulations,
previously reported in [67], as well as for tli#A scale-free network.

4.2.1 Renormalization Approach

Our method can be very intuitive and is based on the methqubgex by Galam
to study bottom-up democratic voting by majority rule in aiacg lattice [47],
where the predictions of the results on the lattice are bardtle application of
the majority rule to a basic cell of neighbors, called renaliration cell.

We find that given a neighborhood rule, it is enough to choosgp@ropriate ge-
neration of a hierarchical network for calculati®y, (p)|- 4, which agrees with
the numerical results of the model on growing networks. Tiigssript index

r, g in P,,(p)| 4 denotes that the resulting function belongs to a chosenjézna
rule () in a growing network ¢). Subsequent self-iterations 8%, (p)|, 4 result

in a step function, i.e.P; (p)|rg = Pup(p)|rs, Where the subscript indek
corresponds to the result obtained for a network of fixed size

For a population fractiop with opinion “up”, the general method is as follows:

e Given a neighborhood rule the chosen basic cell corresponds to the min-
imum generatiort of the hierarchical network, such that> N, (ther
agents must have at least one agent to convince). We caltetigting
number of nodes in the cell,.

e The probability of each possible configuration in a elemegntell is easily
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calculated, such that
1= Pau(p)lr = > Bnup®(1—p)" " (4.5)
k=2

with the binomial coefficient,,, j:
By, i = ny!/[kl(ny — k)Y (4.6)

e Fromall the configurations calculated above, we selectitheet that gives
“all up” when applying the selected Sznajd rule on the chi, sum of all
of themisP,,(p)|r.¢:

Pup(p)|7‘,g = Pall(p)|r,up (47)

Next, we illustrate the result of the method with= 2 andr = 3.

4.2.2 Case =2
Growing

Forr = 2, the triangle of the generatign= 0 is the basic cell. Thus, = 3 and,
for a given fractiorp, all the possible configurations are:

1= Pup)l2=p*+2p°(1 —p) +2p(1 —p)* + (1 - p)* (4.8)

If we apply the selected Sznajd rule= 2 over the triangle, only the configura-
tions expressed in the first two terms of the sum give “all Ggierefore:

Pup(p)|2,g = p* + 2p°(1 — p) = 3p° — 2p° (4.9)

In Fig. 4.11, we can see the good agreement of Eq. 4.9 withutheerical results
[67] for the Sznajd model on a growing hierarchical, as welba the Barabasi-
Albert scale-free network [1].

Fixed

In order to recover the reported result on a fixed network,makes renormal-
ization iterations, which means simply self-composingie4.9:

Pup(p)l2,5 = Pop (p)l2,g, (4.10)
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¥ BA network (growing to N=29526)
@ - @®Pseudofractal (growing to Nt=29576)
—— RSRG calculation
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Figure 4.11: Comparison between the function presented]imt® (solid line)
with Monte Carlo simulations on a growing hierarchical netkv(triangles with
error-bars) and on a growing A scale-free network (stars). In both networks,
29576 nodes are considered. We count the number of samples, a000f for
which the fixed point all “up” is obtained when different vakifor the initial
concentration of nodes “up” are simulated for rute= 2.

and in the limit of a large number of iterations;(— 1), one recovers the step
function observed numerically for the model on fixed netvgorklote that the
number of terms and the coefficients sizes increase verydasine can observe
in the expression of only one composition:

P2,(p)|2,g = 27p* —36p° — 42p° + 108 p" — 72p° + 16 p°, (4.11)

therefore, the multiple compositions presented in Figl4fe iterated using a
computer. Figure 4.12 shows that the numerical simulat@nkarge networks
tend to the step function calculated from Eq. 4.11 with= 100.
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<& = <> Sznajd model (fixed Nt=29576)
3 - €1 Sznajd model (fixed Nt=797163)
@G - ©Sznajd model (fixed Nt=2391486)
—— RSRG calculation
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Figure 4.12: Eq. 4.10 witlw; = 100 (solid line) compared with simulations
on a fixed hierarchical networks witN; = 29576, 797163 and2391486 nodes
(dashed line with symbols). Other simulation conditionpEsented in the cap-

tion of Fig. 4.11.

4.2.3 Case =3

Growing

The core of the method is the selection of the correct cordtipms after applying
the Sznajd rule on it. As we will see for this rule, when the emof nodes in
the renormalization cell is even, there are some symmeétdcdigurations which
can have either “all up” or “all down” with the same probatyililn this case only
half of them are summed tB,,,. Forr = 3, the generation = 1 is the basic
cell. Thusn, = 6 and, for a given fractiop, all the possible configurations are:

1= Paui(p)ls = (14 (1 —p))°. (4.12)

Note that the values of the binomial coefficient in the consige terms are:
1,6, 15,20, 15,6, 1. From the20 configurations of theth term, there ar& that
give “all up”(shown in Fig. 4.15 at subsection 4.2.4), theresponding’ op-
posed cases which give “all down”, aisymmetrical configurations shown in



4.2 Renormalizing Sznajd model on complex networks takingnto account
50 the effects of growth mechanisms

3 BA network (growing to N=29526)
/& — 4\ Pseudofractal (growing to Nt=29526)
—— RSRG calculation
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Figure 4.13: Eq. 4.13 (solid line) compared with the resinis the simulations
on a growing hierarchical network (triangles with errord)aand on a growing
BA scale-free network (stars) when= 3. The other simulation conditions are
the same of Fig. 4.11.

Fig. 4.16 (subsection 4.2.4) that can give either “all up“airdown”. Therefore,
these group of configurations contribute with- 0.5 x 6, and we have:
Pup(p)lsg =1°+6p° (1—p)+15p* (1 —p)* +10p* (1 —p)°  (4.13)

In Fig. 4.13, we see that Eq. 4.13 agrees very well with theerigal results [67]
for the Sznajd model on a growing network when the ruie 3 is considered.

Fixed

The result of the composition for this case is far more coogpéid and only one
self-composition of Eq. 4.13»( = 2) already needs a computer, as shows the
following expression:

Pup(p)[3,, = —1249989 p'* + 390897 p'! — 158184 p'® 4 28561 p°—
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& — -© Sznajd model (fixed, Nt=29526)
@ - E1Sznajd model (fixed, Nt = 88575)

& = ©Sznajd model (fixed, Nt=797163)
—— RSRG=10)
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Figure 4.14: Eq. 4.13 self-composeddrsteps (solid line) compared with the
result from the simulations on a fixed hierarchical netwaetworks withr = 3
(dashed lines with symbols). The other simulation condgiare the same as

presented in the caption of Fig. 4.12.

643783179 p'® + 270741222 p'” — 100735317 p'® + 41109081
p'® — 17504838 p'* + 5585931 p'® — 15244686567 p>*+
11863411551 p*2 — 7642674243 p?2 4 4315583718 p*1 —
2347570026 p*° + 1281132990 p'® — 816731505 p>O+
2281401855 p*? — 5100164190 p** + 9199907505 p?"—
13440029166 p*® 4 15908268375 p2° — 2187 p>¢ + 65610 p>°

—925101 p>* + 8148762 p3 — 50268195 p>2 + 230706630 p>!

In Fig. 4.14 we see the step function obtained with ahBteps of composition
compared with the numerical results on a fixed network ofedéft sizes; as
we see the results agree very well with the simulations ofntioelel on large

networks.
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4.2.4 Additional Information: Configurations with the same
fraction of nodes “up” and “down”

Here we present some of the possible configurations appthi@dznajd rule
corresponding to the = 3 on its appropriate renormalization patteri (= 6).
In particular, we show the case of half of the nodes havingiopiup, mentioned
in Section 4.2.3,and represented by the fourth term in Bc.4.

Figure 4.15 shows theconfigurations that give as a result “all up”, when apply-
ing the Sznajd rule, i.e., three consecutive nodes withiopia-1 convince all
their neighbors. Note that interchangigand—, we have th& configurations
for the opposed case of consensus “all down”.

Figure 4.16 presents thesymmetrical configurations that hadeconsecutive
nodes with+1, as well as3 nodes with—1 giving consensus “all up” or “all
down”, respectively. Thus, these configurations contahbuit 0.5 x 6 to the
probability of consensus “all upk,), as showed in Section 4.2.3.

Figure 4.15: Configurations that generate consensus “aivith » = 3 and the
same fraction of opinions “up” and “down”.

4.2.5 Summary

Based on opinion formation rules of the usual Sznajd modelise a renormal-
ization approach to give an expression for the probabilityamsensus into one
opinion as a function of the initial fraction of this opinion
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Figure 4.16: Configurations that generate either conseéafiugp” or “all down”
with r = 3.

We show that for a given Sznajd rule it is enough to solve éxabe model
on an appropriate basic cell in order to find an expressioth®@ismooth func-
tion, found numerically for the model on a growing networkevéral self-
compositions of the obtained function give the step fumctibserved for the
model on a network of fixed size. Further renormalizatiortgzas should be
tested, but in order to reproduce the results of the Sznapiehun growingS F’
networks, aS F' hierarchical network must be chosen.

The proposed method could be, in principle, extended torditpes of neigh-
borhood and more interestingly to many choices of opinipr>(2) which, as
shown in section 4.1, can simulate elections processe$§587], obtaining re-
sults consistent with some empirical observations[61].

4.3 A general model of opinion on different topolo-
gies

In this section, we present a general model of opinion, whee@gents interact
with a non-linear rule, and intends to be a general versiopre¥ious models
where the opinion is represented by just an integer number.

Every agent is characterized by its own opinion vectof) of n = 1,..,0
opinions. Each element of this vector corresponds to aréifteopinion about
the same topic. For instance, aggm 20% communist and 80% capitalist (given
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0 =2). agj) =0.2, agj) = 0.8. Each time step every agent actualizes its opinion
vector by comparing its values to the onescajther agents. These other agents
are chosen by the topology of the graph, and the agent upitiatgsnion vector
due to the following rule,

a) () =Y al (H)al) (1) + ky(t), (4.14)

whereg(t) presents a stochastic variable, distributed uniformliyhia interval

[0, n]. This stochasticity can be interpreted to be due to misigtaedings among
the agents, the spread of wrong information, or other peirigractions. The
interaction term in this model is of second order, and thusri&astrong opinions

on one topic. The factak avoids that agents which have more connections feel
less noise. In order to guarantee that the sum of opiniongualdo one, the
vector is normalized afterwards,

a4 1) = (4.15)

The main parameter of this model is given by the maximal ngiseéhich we
will call from now on the control parameter. Its role corresds to the one of
a temperature in physical systems. Other free parametdéhe &ystem are the
number of agentsV, the number of opinion® of an agent and the number of
agentsk to interact with per time step, which depends on the topolofgthe
interaction network.

4.3.1 Influence of the interacting topology

We compare the behavior of the presented opinion model ihtfents interact
with their & nearest neighbors on different networks topologies. Wdystwo
different kinds of scale-free networks; i.e. networks watlpower law degree
distributionk—<.

Those are the Barabasi-Albert networBA) [34] and the Apollonian net-
work [4]. Those networks have considerable topologicdedénces, that can
be expressed in terms of their clustering coeffici€ntThe BA network has a
clustering coefficient(', which depends on the network size &is 7. It is
independent of the degree of the nodes. In contrast, theldxpah network has
hierarchical structure witlt’ depending on the degree of the node as a power
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law of the degree and its average value is highs 0.8) and independent of the
network sizelV. Both types of scale-free networks, with and without hienézal
structure have shown to be good models for rather differientskof social inter-
action networks, from social collaboration networks [1&hietworks of sexual
contacts [69].

Further, we show that despite of the structural differemmédésese networks, the
formation of consensus depends mainly on the noise and épéardient of the
specific topology of the scale-free network studied in theeaaf two opinions.
We compare the behavior of the dynamics of the two complewardts men-
tioned above, and analyze also the results on a regular rietwth £ = 6. The
chosen regular network is generated from a chair=(2), adding interactions
up to the third nearest neighbors. Simulations with mead {i&f F") interactions
are also simulated. By/ F', we mean that at each step an agent interactsivith
agents chosen randomly among all the others. We observehthansition to
consensus as a function of noise for the two scale-free mksyseems to belong
to the same type of transition a¢ F'.

At each time step pairwise interactions run over all the &gerhe results reveal
that there are two different absorbing states the systermeea. At small values
of the control parameter (maximum noigeone opinion completely dominates
the systemp,,.... FoOr a noisen larger than a critical value., each opinion
remains with the same frequenay,O. The order parametdp is the frequency
of the agents which have an opinion vector with the same damtippinion,
being itself dominant in the system. To be more precise: &mheagent we
search its strongest opinion and then count, for each apitid the number of
agents with this opinion as their dominant one. The largalstern ,, and so the
most dominant one of the system, determifies- np/N. (D) means, that we
averageD over many time steps. This order parameter is normalizethatdas
unity if all agents have the same opinion to be the dominaat arstate we call
the consensus state. The vall& corresponds to an uniform distribution of
opinions. A transition occurs between consensus and umifistribution, when
(D) goes froml to 1/2 in the case of two opinions (left side of Fig. 4.17).

In figure 4.17 we showD) vs. n for the model on the networkB A (trian-
gles), and Apollonian (solid line), compared to the resd@il\éF" connections
(plus signs) and the regular network (circles). The resafitthe figure are the
average ove20 realizations on systems &f = 124 agents an@ opinions. The
differences in the type of transition from consensgus- 1to D = 1/2is due to
differences in the dynamics of the model depending on thelogyy.

We illustrate this fact, from Fig. 4.17b to Fig. 4.17d, piotta,,, . vs. time, for
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Figure 4.17: (a)Influence of the topology of networks on thasition to consen-
sus (D = 1) as a function of noisejj. The transition on two different scale-free
networks, the Apollonian (solid line) and the Barabadbétt network (triangles)
is similar to the one observed in mean field interactionsggigns), and differs
from the transition on a regular lattice (circles). In theethinsets we plot the
value of the dominant opiniom,,,_ vs. time. (b) Comparison of the behavior
of a,,,,. (t) on the four networks: Apollonian (solid line), BA (dottedd), MF
(dashed-line) and Regular (long dashed line) for a fixedenfis= 0.2). One
observes that for this noise, which is below the criticakeoin the regular net-
work the emergence of consensus takes longer in scaleffddd &' interactions,
which have similar behavior (three upper curves). (c) Nedrelow the tran-
sition, forn = 0.4, we compare the response of the regular and the Apollonian
network. It is observed that for the former there is an inféency among con-
sensud = 1 anda,,,,, = 0.79 and not consensusd = 0.5 anda,,,,, = 0.5.
This behavior is not observed in the complex networks. (d)vathe transition
(n = 0.6) the consensus is broken and the dynamics of the opimign, vs.
time behaves similar by in regular and complex networks. skfiulation runs
are with systems of 124 agents.
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different values ofy with the corresponding arrows marking the value(b¥).
Forn = 0.2, which is below the critical noise, for each type of interatthe
system reaches consendis= 1, with a dominant opiniom,, . = 0.89. For

the scale-free networks and F' the consensus is reached considerably faster
than for the regular lattice as we see in Fig. 4.17b. Thiscefe due to the
metastable states of competing regions with the same apivinich takes longer

to reach consensus on regular structures.

On the regular lattice the system presents an intermitteeey but below the
transition point f. = 0.45). We observe this intermittency of the dynamics in
Fig. 4.17c, comparing the value of the dominant opinigy, . VS. time, for the
Apollonian and the regular network with= 0.4.

Above the critical noise, there is no consensus and theidracf agents with
dominant opinion i§D) = 1/2. The response of the system is similar for scale-
free and regular networks, as is shown in Fig. 4.17c¢ with 0.6.

In order to illustrate the behavior of the dynamics as fuorcof the noise, we
display each of the node<f the Apollonian network in a plane, and represent
the value ofagffm in the color scale presented in Fig.4.18. kpre= 0.2 in
Fig. 4.18a we see a snapshot before reaching stationagyo$tansensus, which
is observed in Fig 4.18b. In Fig. 4.18a there are two regioispace withu ~ 1.
Finally the region with a larger fraction of agents domisaad consensué)(=

1) can be reached witly,,, .. = 0.89 (Fig. 4.18b). In Fig. 4.18c for a larger noise
of n = 0.4 still below the transition, the value of the dominant opimis lower,
ao,,.. = 0.70, and almost consensus is observed with a high fraction aftage
(D) = 0.98, sharing the same opinion. In contrast, foe 0.6, a,,, ., = 0.55,

is shared only by approximately half of the agents.

4.3.2 Summary

The response of the system to reach consensus originatesimadel dynamics
as opposed to the particular features of the network. An mapbcharacteristic
of the transition to consensus is the dimension associatétetspace of agent
interactions. The dynamical response of the opinion moalebbth scale-free
networks is similar to the one observed fafF' interactions and each of these
networks represents long range interactions. In contldf#rences are reported
with a regular lattice, which has spatial dimension two, in@arest neighbors
interactions.
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Figure 4.18: Snapshots of the value of the dominant opinign,, for different
values ofn on the Apollonian network witt9844 nodes and opinions. (a)
With n = 0.2, before reaching consensus there are two competing regiitims
different dominant opiniona ~ 1. Note that only the value of one opinion is
shown and the darker nodes have the other opinion as domitt@nEnapshot
for the same noise as in (a) when consendls= 1) with a,, . = 0.89is
reached. (c) Below the critical noise with = 0.4, the great majority of the
nodes O = 0.98) have the same opinian, .. = 0.75. (d) Above the critical
noise withn = 0.6, no consensus is observed, . = 0.62 and is shared by
half of the populatio D) = 0.5.

As was previously observed for the Sznajd model of opiniomttion, for the

general model that we present here, the response of thesiysterms of opinion
formation is qualitatively the same for a deterministicledaee network, as for
a random scale free network. This implies a clear advantagarf analytical
treatment of this model in a similar way as was done for theafszmodel in

section 4.2 [70].



Chapter 5

Spreading dynamics in a
system of mobile agents

In this chapter we investigate the influence of agent mghilit spreading of
infections. For a two-dimensional system of agents modeietholecular dy-
namics, we simulate epidemics spreading. Our resultinger&tmodel is time-
evolving. In section 5.1, we study the transitions to spireg@s function of
density, temperature and infection time. In addition, walgre the epidemic
threshold associated to a power-law distribution of timaédction.

Clusters of infected individuals are defined from data froealth laboratories,
but this quantity has not been defined and characterizedpidemics models
on statistical physics. In section 5.2, we show that all tleemants of the clus-
ter size distribution at the critical rate of infection aleacacterized by only one
exponent, which is the same exponent that determines thavioelof the total
number of infected agents. No giant cluster survives inddpet on the magni-
tude of the rate of infection.

5.1 Scaling of the propagation of epidemics

The statistical spreading of infections, information ondee, involves non-
equilibrium phenomena. Fluctuations and spatial coriaiatplay an important
role and are often exactly not solvable. Usually these mse®are studied on a

59
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lattice that can be regular [41, 71], hierarchical or smaild [42]. But in most
cases the population in question is mobile. Therefore,iglork we study a
system of particles moving according to a simple dynamice. sithulate on it
a known contact process [72], described in terms of a 'SISdehof infection,
or infection without immunization, i.e. particles are eitthealthy or infected,
and are susceptible to re-infection after healing, thusiftiee of the model (SIS:
susceptible-infected-susceptible).

We characterize the transition to spreading of the epidéeymamics, and obtain
a continuous range of critical exponents changing the teasthe system. The
observed behavior results to be the 'SIS’ analogous of a hoddirred percola-
tion’ [73-75] which was used to describe epidemic dynamiits immunization
('SIR).

5.1.1 Model

The simulations are carried out on a square shaped cell eddigizel. with
periodic boundary conditiond. = /p/N, is given by the number of particles
(V) and the densityd). The particles are represented by 'soft-disks’ of radius
ro moving continuously on the plane. The interaction betweanparticles at
positionsr; andr; corresponds to a Lennard-Jones potential truncated at its

minimum,
( 270 >12 2< 270 )6
|7i — 75 7 — 75l
(5.1)

reduced units are used in whi€h, r , k5 (the Boltzmann constant) amd (the
particle mass) are all unity.

Along this work, the particles are considered to be 'agemésmodel the 'SIS’
process described above. In a simple version one can ashaingt ieach time
two agentd(7, j) interact or "collide’ (that is, iflr; — ;| < 2r), the infection
propagates from an infected agent to a susceptible one. $hafiour simulations
we used a simple initial condition: (i) at tinte= 0, IV agents are distributed reg-
ularly in the cell, (ii) have the same absolute veloeityith randomly distributed
directions, (iii) a central agent is infected and the restsarsceptible. At each
time step the positionér; }, velocities{v;} and the infection statés;} of the
system is updated. We use a molecular dynami¢gX) scheme of cell subdi-
vision with the leapfrog integration method [76]. Once aerdgs infected, it
heals and becomes susceptible again after a fixed numbenefsteps, that is
the 'time of the infection’ {\¢;,, ), and is a free parameter of the model.

u(ry,rj) = Ug + Uy, |ri —rj| < 270,
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Figure 5.1: Starting with one infected agent, the figuresvshimow the infection
spreads with time and after a certain period of time ('trans), the fraction of
infected agentsK;,,) fluctuates around a mean value. The fraction of infected
agents in this 'quasi-equilibrium’ state, increases wlith infection rate X).

5.1.2 Scaling

The dynamics of an epidemics is described in terms of thefioie rate ). That
is defined as the number of agents one agent infects befdiedieBherefore, in
this model

)\ = Atinf/Tcolh (52)

wherer.,; is the mean time between two collisions, and depends on tlaa me
velocity of agents (v)). Neglecting the interaction potential with respect to the

kinetic energy, one has:
wy = 1/ BT (5.3)
m

Thus, the mean number of collision8:(,;;)) of one agent during a period of
time t, is given by the area within which it interacs-¢(v)t), multiplied by the
density,

<ncoll> =p 2’{‘0<’U>t. (54)
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Figure 5.2: The plot shows the collapse of data of Fig. 5.2 Wértical axis was
divided by the mean field approximation &%,,(\) and the horizontal axis is
divided by the collision timex..;;).

The pre-factor in Eq. (5.4) is the collision frequency, atginverse, gives the
mean time between collisions,

L mn (5.5)

Tcoll =

p 2rg \l nTkp

In Fig. 5.1 we see the fraction of infected ageritsy (t) vs. time) for different
values of temperaturél(), density p) and time of infection {t;,f). In each
case we start with one infected agent and after a transhegytstem fluctuates
around a value;,;, which depends on. This mean value can be calculated
using a mean field approach,

OF (¢

%()Z—FIM@)-F/\F]M [1—F]M] (56)
The first term of the r.h.s is the fraction of agents that haatsthe second term, is
the fraction of agents that becomes infected. After thesteant,0 Fr(t)/0t ~
0. Thus

(5.7)

0 if A<
FIM()\)—{ if A <

1—1/X ifA> A
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where). = 1, is known as the critical rate of infection. In Fig. 5.2 we see
collapse of the realizations of Fig. 5.1, with the expressibtained in Eq. (5.7).
The dynamics of the system is characterized by the infeat&a A\, which
contains all the free parameters of the system.

5.1.3 Transition to spreading

0.8
.06
3 <
5 Q
W04 <
<
<
<
<
02+ < A p=0.05T=0.5
A p=0.23T=1 -2
SNy 107 L L
4.4 <1p=0.46 T=1 1072 -\ )10 B
—— Fy(Mean Field)=1-1/A c
0 i |
0 5 10

A(p, T,At)

Figure 5.3: Fraction of infected nodé3,, as function of\ for different condi-
tions of T" andp. The data agree with th&/ F' approximation (Eg. (5.7)) only
for low densities € 0.1). The inset shows thieg — log plot of Frar vs. A — A,
with 7 = 1 and increasing densitiep:= 0.05, A\, = 1.05 (diamonds)p = 0.1,

Ae = 1.06 (circles),p = 0.23, A\, = 0.862 (filled triangles),0 = 0.30, A = 0.73
(crosses), ang = 0.46, A\, = 1.05 (rotated triangles). The circles are linear
fits of the data and have respectively slopgs= 1.0, 5 = 0.92, 5 = 0.738,

8 = 0.66, ands = 0.599.

We analyze the transition to spreading of the epidemic. Bbiesys of1254
agents after the transiehy,, is averaged, oves00 initial conditions at a given

A. In Fig. 5.3 we see that the results agree with the mean figldoapnation

for densities lower thard.1. Increasing the density, changes the shape of
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Figure 5.4:Log — log plot of the fraction of infected nodes;;,; as function of
A=A for(p = 0.2, T = 1), with A\, = 0.935. The dashed line is a fit to the
form Frar ~ (A — X.)?, with exponent3 = 0.773.

the transition curve. Near the critical point thg,; follows a power law,
Frar ~ (A = \o)?. The inset of Fig. 5.3 in a double-logarithmic plot, demon-
strates this power law behavior, with straight lines of slgp As can be seen,
the value ofs depends on the density of the system. Smaller valugsmdicate
more significant changes @, (\) near the transition. Even for low densities
(i.e. p € [0.1,0.2]), where one expect&/ F' to be valid, the critical exponents
change with the density.

In order to confirm this observation, we study the transitiodetail. Fig. 5.4
shows thdog — log of Fypr vs. (A — A.), averaging ovett 000 realizations in
systems withp = 0.2, T = 1, and . = 0.935. We see that the data fit the
expression~ (A — \.)?, with exponenf3 = 0.773.

Other critical exponents, are obtained, if one averagestingval probability

of infection P(t), the number of infected agentst) and the square distance
of spreadingR?(¢) and plots them against time. At the critical point, they are
expected to display asymptotic power laws [77],

P(t) ~t79, n(t) ~t", R2(t) ~ t*. (5.8)
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Figure 5.5: Evolution of the survival probability of inféah P(t), the mean
number of infected agentst) and the mean square distance of spreadih@)

in time. Each graph contains three curves near criticalltjth p = 0.2, from
bottom to top:\ = 0.93, 0.94 and0.95. The circles are linear fits to calculate the
critical exponents

MF p=01 p=0.2 ContactProcess(2D)[41]

Ae 1 1.0(8) 0.9(4) 1.6488(1)
3 1 092 0.7(7) 0.583(4)

5§ 1 0509 0503 0.4505(10)
n 0 01(5) 02(5) 0.2295(10)
1 130) 1.2(7) 1.1325(10)

Table 5.1: Critical rate of spreading and exponentsS66 model on moving
agents withp = 0.1 and0.2, contact process in two dimensions, and estimates
obtained by mean field/ F'.

The relations in Eq. (5.8) apply at long times, and requieg the infection does
not reach the boundaries of the system. Results for the tumstitiesP (¢), n(t)
andR?(t), averaged over 10 realizations, with systems ef 10* agents, and
fixed temperaturel( = 1), are shown in Fig. 5.5 fos = 0.2.

The values of the critical exponents are reported in table 5The known
hyperscaling relation of the dynamids + 2n = dz, whered is the dimension
of the system, is recovered within the range of numericalrsrrincreasing the
density of the system we find a continuous change in the akiéigponents of
the epidemic dynamics, they go froi F' values to the exponents for contact
process on a two dimensional lattice [41]. Numerical estgmaf the critical
exponent3 vs. p are shown in Fig. 5.6.
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Figure 5.6: Numerical estimates for the critical exponénfor systems with
different density.

The dependence of the critical exponents of the dynamidsedénsity of agents
(p), is analogous to the dependence on the 'flammable’ fradfospace §),
observed in 'forest fire’ dynamics, or epidemics dynamicthviinmunization
[73,75], described through 'stirred percolation’ modelStirred percolation’
consists in random walkers transmitting charge at colisiand was proposed
by de Gennes [74] to describe the behavior of conductivitimary mixtures
[78].

5.1.4 Power-law distribution of infection times

Considering the same value of infection timest{, ;) for each agent corres-
ponds to situations with homogeneous connectivity. In orolextent the model
to some real world situations where the number of contacisvgreatly from
one agent to another, we assign;,, s to each agent following a power-law dis-
tribution,

P(Ating) = (v — DAL} Ating > 1. (5.9)
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Figure 5.7: Fraction of infected nodes vs. density, with pelaw distribution of
infection times (Eq. 5.9) foty = 2.4. Frar ~ (p — p.)” is shown in the upper-
left-corner inset withp, = 0.065 and = 2.6(5). The bottom-right-corner inset

is the main plot inog — log scale to see better the tail of the spreading curve, for

p< pe

As a result, for2 < vy < 3, the epidemic threshold tends to zero, like has been
observed foIS F' networks [42] (see Fig. 5.7).

However, the shape of the spreading curve has a point of fitite¢p.) above
which, the infection is much largeF{ys ~ (p — p.)?, pe = 0.06(5), 8 = 2.65,
fory = 2.4).

We see that the more 'connected’ agents are responsiblédaatisence of an
epidemic threshold (tail of the curve). The infection wosfgtead only if the
meanrate of spreading is larger than unity, that is

Aty -1 Tk
A, = Bling) _ 7 PRV LELI Y (5.10)
Teoll Y= 2 m

Ac = 1 givesthe inflection poing., which fory = 2.4is p. = 0.0718 (according
to Eq. 5.10, forry = 2'/6 andT = 1), and agrees with the numerical value
pe = 0.06(5), reported in Fig. 5.7 averaging over abdgf realizations with
about103 agents each.
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5.1.5 Summary

Novel effects are observed studying théS model of infection on a system of
mobile agents. A continuous range of critical exponentdbieoved as function
of the density of agents, recovering mean field predictianddwer densities,
two-dimensional exponents of contact process, incredbmgensity. Introduc-
ing a power-law distribution of infection times, the epiderthreshold vanishes
due to the more ‘infecting agents’; but still there isrétical rate of spreading,
which depends on the exponent of the distribution and thenrtieee of collision
among the agents.

5.2 Cluster size distribution of infection

In a small and highly urbanized nation like Singapore dermutbreaks or epi-
demics are identified as “clusters”. A dengtlaster or focus of transmission
is defined as at least two confirmed cases, with no recent tnastery, that are
located within 200 m of each other (taken as the flight ranghefedes ae-
gypt) and whose dates of the onset of symptoms are within threksaefeeach
other [79]. Most of the efforts have been directed towardS"8l2, 72, 77] mod-
els of infection, which was presented in the previous sactimalytical and nu-
merical expressions describe the dynamics of$h& model in terms of the rate
of spreading\, the evolution of the survival probability of the infectidt(¢), the
mean number of infected agent§&) and the mean square distance of spreading
R?(t) in time, which are quantities difficult to compare with realta of epi-
demics. This chapter suggests comparison with public Inekta, analyzing a
scaling function forclusters numberson aS7S model of infection.

An important ingredient of our work is the mobility of agentontrasted to
most of the models of epidemics where the population is nesbély static
networks [42,72,77]. As we showed in the previous chaptét {Be critical
exponents, which depend on the density of the system, iakparrelations
and mobility of the agents play an important role. Here we theemodel of
mobile agents to define clusters of infections and analygzddpendency on the
rate of infection\ and on the mobility of the agents.

We find that the network of clusters of infections remaingalimected and no
matter how large the rate of infection, no giant cluster isrfed. We show that
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in the transition to spreading, the moments of the clusger distribution are de-
scribed by an exponemt, which is the exponent that characterizes the fraction
of infected mass$ s = Ny, /N, defined as the ratio of the number of infected
agents V7, r) and the total amount of populatioV). Thus the number of clus-
ters depends on, and mobility and spatial correlation of the agents inflieenc
this dependency.

5.2.1 Method

Our objective is to characterize the behavior of the clgstéinfected individu-
als. When agent infects agent a link is created among them, the link lasts until
one of them heals, meanwhile each of them continues makikg vith other
susceptible agents through the same rule.

A cluster is thus defined as a group of infected agents coedédmxt links. Note
that in contrast to percolation, where clusters are givendnupied lattice sites
connected by nearest-neighbor distances, for this moaddl eluster gives a
group of agents infected in a given period of time linked bkation of con-
tagion. Isolated infected agents are regarded as clustesigeounity and any
cluster consisting of connected agents is an- cluster. We borrow the nota-
tion from Stauffer's book on percolation theory [81] and defheren; = N, /N
as the number of-clusters per agent, wheré, is the number of clusters of size
s and N the total number of agents in the system. For different \&abfe\, in
the next section we present the results of the calculatiahefirst three mo-
ments of the cluster size distribution. Namey:. ns, > . sns, >, s°ng. Those
guantities give us, respectively, information about: taltnumber of clusters,
the fraction of infected agents and the mean size of clustererder to keep
the analogy with percolation, we sum over all values @kxcluding the largest
cluster Gmajor). We also present, the calculationsif,qjor = Smajor/N, the
fraction of agents that belong to the largest cluster Apgh = N, ¢ /N, the
fraction of agents that are infected.

5.2.2 Results

For a fixed density, we vary (Eq. 5.10) changing the time of infectio{;,, r).
Starting with half of the population infected, for rate oféntions near\., a
given trial may end in the absorbing state after a few timpsste it maysurvive
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Figure 5.8: Left: Fraction of infected individuals from siuing trials versus
time atA = A, starting with half of the population infected. At the topet
results forp = 0.05 and X\ = 1.06 and at the bottonp = 0.46 and\ = 0.68.
System sizedV = 32 x 32, 64 x 64, 128 x 128 (from top to bottom). Right:
Quasi-stationary fraction of infected agents verstdisr the same densities (Top:
p = 0.05. Bottom: p = 0.46).

fluctuating with a quasi-stationary fraction of infecteceats, marked by win-
dows in the left-side of Fig 5.8. The calculations are madgagying on time at
thequasi-stationary statevhich is described by the surviving trials following an
initial transient. The number of time steps of this trans@epends ork and on

the system sizé (see left side of Fig. 5.8). The data here illustrate how team
fraction of infected agentB}}, (¢) (the superscript denotes an average restricted
to surviving trials) approaches its stationary vale, (\, N) (in the following,

we write Frar (A, N) just like Fras()\)). On the right side of the same figure we
see the graph afy (), for three system sizes. We analyze in detail the number
of clusters for the two density valups= 0.05 andp = 0.46, which have critical
rate of spreading. = 1.06 and\. = 0.68 respectively. Note that at the critical
density)\., surviving trials tend to stationary values only in the lihi— ooc.

The top of Fig. 5.9 is only for pedagogical reasons, in ordeltustrate how the
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Figure 5.9: Top: Snapshots of cluster sizes of infected gen systems with
different densities: (@)= 0.05, (b)p = 0.20, (c)p = 0.40 and (dp = 0.80, in
all cases\ = 1.5. Bottom: Quasi-stationary fraction of infected agentsyiray
A over three orders of magnitude (Average oX@realizations fop = 0.05 and
N = 32 x 32). The insets show the fraction of infected agents in theelstrg
cluster (lower value) and the first moment of the cluster diz&ribution (upper
value) vs. time, ah = 1.08, A = 10.0 and\ = 108.0.

number of clusters looks in the quasi-stationary state, egesmapshots of the
clusters of infections fodifferentsystem densities and tisamerate of infection
A = 1.5, hereN =10 x 10.
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Forp = 0.05 andX € [1,200], the bottom of Fig. 5.9 shows the variation of
Frpy (M) and N = 32 x 32 averaged ove?0 different realizations. The insets
show the change in time @,,, ., and)__ n, for only one realization withh =
1.08, A = 10.0 and X = 108. In contrast to percolation, in this model there is no
significant variation of’,, 4o With A, and the relatio},,q o < Frp remains.
Moreover, the number of clusteps  n, grows considerably only near.. In
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Figure 5.10: First three moments of the cluster size digtidin , fraction of
agents in the largest cluster,q;.-) and fraction of infected agents'(s;) vs. A.
Average over 50 trials, system sizé= 64 x 64. Left:;p = 0.05. Rightp = 0.46

Fig. 5.10 forp = 0.05 andp = 0.46, we plot the behavior of the cluster numbers
near their respectivi.. As the largest cluster remains small compared to the total
number of agentsY,qjor < N), we haveFy(A) ~ > sn,. Additionally one
can see tha}_, sns and)__ s>n, show the same critical behavior &%,/ (),
plotted in detail in Fig. 5.11. We observe that all the momsesftthe cluster
size distribution present exactly the same critical betvathan F;;, namely

(A — X\.)?, wheres depends on the density of the system.

5.2.3 Summary

This section showed that the cluster size distribution éddted individuals is
described in terms of the spreading rak¢ &nd the same exponents)(previ-
ously known for the total mass of infection. Although the @igeare free to move
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Figure 5.11: Same results of Fig. 5.10 plotted ¢s.— A.). The solid lines are
regressions of the formm; (A — \.)? with m; the coefficient of théth moment.
Left: Ae = 1.06, ﬁ = 0.66, mg = 0.321, m1 = 2my, andmg = 6my. nght

Ae = 0.68, 8 = 0.56, mg = 0.386, m1 = 2.3mg, andms = 7.5mg

there is a homogeneous size distribution of infected clasiethe critical rate

of infection, and we did not find any critical exponent asatem to the cluster

sizes. Comparing with the tradition&l S model on a static network we confirm
that mobility and spatial correlations change the valudefdritical exponent

of the fraction of the infected population, and to the samtergxthe cluster size

distribution.
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Chapter 6

Dynamical model of growing
social networks

In section 6.1 we present a novel model to simulate real boetaorks of com-
plex interactions, based in a system of colliding parti¢sgents). The network
is build up by keeping track of the collisions and evolvesrimetwith correlations
which emerge due to the mobility of the agents. Therefoagissical features are
a consequence only of local collisions among its individigaants. Agent dynam-
ics is realized by an event-driven algorithm of collisionisase energy is gained
as opposed to physical systems which have dissipation. Tuelmeproduces
empirical data from networks of sexual interactions, nevpusly obtained with
other approaches.

Next, in section 6.2, we investigate the clustering coeffitin bipartite net-
works where cycles of size three are absent and therefostahdard definition
of clustering coefficient cannot be used. Instead, we usthanocoefficient given
by the fraction of cycles with size four, showing that botleffizients yield the
same clustering properties. The new coefficient is compfaethe empirical
networks of sexual contacts, one bipartite and anotherevherdistinction be-
tween the nodes is made (monopartite). In both cases thehgs coefficient
is similar. Furthermore, combining both clustering coéffits we deduce an ex-
pression for estimating cycles of larger size, which imgoprevious estimates
and is suited for either monopartite or multipartite netegoand discuss the ap-
plicability of such analytical estimates.

75
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6.1 Model of mobile agents for sexual interactions
networks

A social network is a set of people, each of whom is acquainiddsome sub-
set of the others. In such a network the nodes (or verticggesent people
joined by edges denoting acquaintance or collaboratiorpiftal data of social
networks include networks of scientific collaboration[28f film actor collabo-
rations[13], friendship networks[33] among some othdrs{ne kind of social
network is the network of sexual contacts[82—-85], whereneations link those
persons (agents) that have had sexual contact with each dtheempirical in-
vestigation of such networks are of great interest becauge the topological
features of sexual partners distributions help to expldig persons can have the
same number of sexual partners and yet being at distindesisks of contracting
HIV [86].

The simplest way to characterize the influence of each iddalion the network
is through its degreé&, the number of other persons to whom the individual is
connected. Sexual contact networks are usually addressetexample of scale-
free networks[1, 83—85], because of having a tail in its degfistribution, which
is well fitted by a power-lawP (k) ~ k=7, with an exponeny betweer and3.
However, another characteristic feature, not taken intoauwt, is that the small
k-region, comprehending the small-k values varies slowthwj deviating from
the power-law. Moreover, the size of the smaltegion also increases in time,
yielding rather different distributions when considerting number of partners
during a one year period or during the entire life, e.g. fdirerife sexual con-
tacts, the degree distribution shows that at least half@htides have degree in
the smallk region [82,83]. A model predicting all these different distitions
shapes for different time spans is of crucial interest, bsedhe transmission of
diseases occur during the growth of the network.

One of the main difficulties for validating a model of sexuakractions is that

typical network studies of sexual contacts involve thewdation of surveys, or

anonymous questionnaires, and only the number of sexutrdgrarof each in-

terviewed person is known, not being possible to obtainrinftion about the

entire network, in order to calculate degree correlatiolused paths (cycles), or
average distance between nodes.

In this section we propose a model of mobile agents in two daimas from
which the network is build by keeping track of the collisidmstween agents,
representing the interactions among them. In this way, trenections are a
result not of some priori knowledge about the network structure but of some
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Figure 6.1: Snapshots of the growing network of collisiama ilow-density gas
with N = 100, for (&) n = 0.02N, (b) n = 0.15N, (c) n = N. Two colors rep-
resent the two sexual genders and larger symbols emphhsge which belong
to the network (linked agents).

local dynamics of the agents from which the complex netwerkerge. Below,
we show that this model is suited to reproduce sexual contgatorks with de-
gree distribution evolving in time, and we validate the nmadgng contact trac-
ing studies from health laboratories, where the entireamimtetwork is known.
In this way, we are able to compare the number of cycles anthgeeshort-
est path between nodes as well as compare the results wittmfeobtained
with Barabasi-Albert scale-free networks [34], which arell-known models,
accepted for sexual networks[83—-85].

6.1.1 The Model

The model introduced below is a sort of gas [87], wh&r@articles with small
radiusr represent agents randomly distributed in a two-dimensisystem of
linear sizeL > +/Nr (low density) and the basic ingredients are an increase
of velocity when collisions produce sexual contacts, twodggs for the agents
(male and female), and/N, the fraction of agents that belong to the network,
which constitutes an implicit parameter for the resultiogdliogy of the evolving
network.

The system has periodic boundary conditions and is irdgdlias follows: all
agents have a randomly chosen gender, position and mowviegtidn with the
same velocity modululs/(7)|. We mark one agent from which the network will
be constructed. When the marked agent collides for the fing tith another
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one of the opposite gender, the corresponding collisioakiert as the first con-
nection of our network and its colliding partner is markedressecond agent of
the network (Fig. 6.1a). Through time, more and more caolfisioccur, increas-
ing the sizen of the network (Fig. 6.1b and 6.1c) till eventually all theeats
composing the system are connected.

Figure 6.2: (a) Cumulative distributionP..,,,(k) of the numberk of partners
among agents, when considering type-(i) and -(ii) intéoast (see text) for
n = 103 (circles),n = 10* (squares)p = 5 x 10* (diamonds) ane, = 10° (tri-
angles). For the same parameter val(lshows a pure scale-free distribution,
obtained when only type-(ii) interactions form links. Thadid line indicates the
slopey = 3 of the scale-free distribution. Here= 1 and N = 320 x 320.

Collisions between two agents take place whenever theartis is equal to their
diameter and the collision process is based on an evergrdailgorithm, i.e. the
simulation progresses by means of a time ordered sequeramlisfon events
and between collisions each agent follows a ballistic ttaje/[76].

Since sexual interactions rely on the sociological obgemmE88] that individuals
with a larger number of partners are more likely to get nevingass, we choose
a collision rule where the velocity of each agent increasiis the numberk
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of sexual partners. The larger the velocity one agent hasntbre likely it is
to collide. Moreover, contrary to collision interactionfere the velocity direc-
tion is completely deterministic[89], here the moving difens after collisions
are randomly selected, since in general, sexual interatio not determine the
direction towards which each agent will be moving aftervgardherefore, mo-
mentum isnot conserved.

Regarding these observations our collision rule for sekxuafactions reads
v(ki) = (k" + |[vo(i)|)w, (6.1)

wherek; is the total number of sexual partners of ageréxponenty is a real
positive parametety = (e, cosf + e, sin §) with § a random angle anek and
e, are orthogonal unit vectors. Collisions which do not cquoesl to sexual
interactions only change the direction of motion. It shduddoointed out that the
motion of agents occurs in a space which is not the commorigdiyspace, but
rather a general continuous Euclidean space, whose noraaied with some
'social’ distance, depending not only on the physical diseabetween each pair
of agents, but also on their common features and acquagganc

Collisions corresponding to sexual interactions, i.e hvdtvelocity update as
in Eq. (6.1), are the only ones which produce links, and oatuwo possible

situations: (i) between two agents which already belondéortetwork, i.e. be-
tween two sexually initiated agents and (ii) when one of sagénts finds a non-
connected (sexually non-initiated) agent. For simpljaitg do not take into ac-
count sexual interactions between two non-connected sgentl therefore our
network is connected (see the discussion in Sec. 6.1.3).

When interactions of type (i) and (ii) occur, both the diatition tail and the
small+ region are observed, as shown by the cumulative distributiq,,, (k)

in Fig. 6.2a. Here, we use a systemMf= 320 x 320 agents withp = 0.02,

«a = 1 and distributions are plotted for different stages of thevoek growth,
namelyn = 103, n = 10*, n = 5 x 10* andn = 10°> ~ N. As one sees, the
exponent of the power-law tail and the transition betweertdil and the smalk
region increase during the growth process. These featppesaadue to the fact
that at later stages most of the collisions occur betweeadlr connected agents.
Consequently, the average number of partners increasesllas w

If one considers only type-(ii) sexual contacts, the systpnoduces a stationary
scale-free network, as shown in Fig. 6.2b. In this case tleeage number of
partners, defined as[91k) = kpin(y — 1)/(y — 2) with k,,;,, the minimum
number of partners, is always(k,,;, = 1 andy = 3). As we show below,
while empirical data of sexual contacts over large periaigtdistributions like
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Figure 6.3: Cumulative distributions, when varyifa a parametes of selectiv-
ity which interpolates between Figs.6.2a and 6.2b (segfiaxér = 1 and(b) the
exponent in the update velocity rule, Eq. (6.1), fer= 0. Here a fixed stage of
growth is considered, namety= 5 x 10* = 0.5N.

the ones for regime (i)+(ii), data for shorter periodis{10 years) are scale-free
(only (ii)).

With our model one can easily interpolate between both attéon regimes,
(i)+(ii) and (i), by introducing a parameterof ‘selectivity’, defined as the prob-
ability that sexually initiated agents in case of collisiaith another initiated
agent, have no sexual contact. Physically, this selegtagtounts for the intrin-
sic ability that a node has to select from all its contact#lig@ons) the ones which
are sexual. These intrinsic abilities were already usedhieracontexts, e.g. as
a new mechanism leading to scale-free networks in caseswhempower-law
degree distribution is neither related to dynamical progsmor to preferential
attachment[92]. Fos = 0 one obtains the two regions illustrated in Fig. 6.2a,
namely the smalk region and the power-law tail, while fer = 1 one obtains
the pure scale-free topology illustrated in Fig. 6.2b. 1g.F.3a, we show the
crossover between these two regimes.

The shape of the cumulative distributions is also sensiblé exponent in
the update velocity rule, Eq. (6.1), as shown in Fig. 6.3bilgMor small values
of a < 1 one gets an exponential-like distribution, ter> 1.4 the distribution
shows that a few nodes make most of the connections. Hemicefee fix o =
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1.2.

Having described the model of mobile agents we proceed t@eifgpapplica-
tion, i.e. modeling empirical networks of sexual contacts.

100 SN
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Figure 6.4: Cumulative distribution of sexual partners metwork of heterosex-
ual contacts extracted from Ref. [83], where male (triagigged females (circles)
distributions are plotted separately, with a tota2®810 persons. Solid lines indi-
cate the simulations when plotting the distributions atshmme stage = 0.2V,
starting with a population composed 6§% of females and2% of males. Here
N=10%°s5=0
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Figure 6.5: Distributions of sexual partners in a networketerosexual contacts
using different amounts of female&) 58% as in Fig. 6.4(b) 52%, (c) 64% and
(d) 70%. In each plot solid and dashed lines indicate the cumuldisteibutions
of males and females respectively, for five different redlans. Clearly, the
exponent of the power-law tail of the distributions decesashen the percentage
of females or males increases (see dotted lines). Sameticosdas in Fig. 6.4
were used.

6.1.2 Reproducing networks of sexual contacts

We will show that, by properly choosing the parameter valnesir model, one
can reproduce real data distributions of sexual contagtarés. In Fig. 6.4 the
cumulative distributions of a real contact network[83] sinewn for females (cir-
cles) and males (triangles) separately, based on empiatafrom2810 persons
from a Swedish survey of sexual behavior, where each peggmrted the num-
ber of sexual partners they had in a given period of time (feegqy of sexual
relations with each partner is neglected). The solid limeSig. 6.4 are the sim-
ulated distributions. The simulated power-law tails haxpomentsy,, = 2.4
andyy = 4.0 for males and females respectively, compared with the ecapir
datay,, = 2.6 £0.3 andv; = 3.1 £ 0.3[83]. To stress that, while the power-
law tails are also well fitted by distributions obtained wéttale-free networks
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Figure 6.6: Comparing the average number of partners fde-$oeze networks
(stars) and the agent model (circles). For the scale-fregeank k,,;,, = 4 and
for agent modelNV = 520 x 520, s = 0.

(dashed lines in Fig. 6.4), these distributions have a minimumber of connec-
tions (partners) of,,,;,, = 5 for females and:,,,;,, = 7 for males, contrary to the
real valuek,,;, = 1 also reproduced with our agent model. In fact, the model
of mobile agents takes into account not only the power-lavofahese distribu-
tions, but also the smakl-region which comprehends the significant amount of
individuals having only a few sexual partneks¥ 1).

It is important to note that in order to reproduce the diffexein the exponents it
is necessary to hawd% females and2% males, which is far from the expected
difference among number of females and males in typical mupzgulations,
with ratios of females:males of the orderlot. The difference in the exponents
of the distribution tails for males and females separafalgsent in the data of
sexual surveys, has generated much controversy and isauftesidered due to a
bias either of sampling or honest reporting (see Ref. [8d]raferences therein).
The exponents,,, and~; on a bipartite network are expected to be nearly the
same when the percentage of males and females are simipwas in Fig. 6.5.

In each plot five different realizations are shown for makaid lines) and fe-
males (dashed lines). In Fig. 6.5a, we plot the results fersdime conditions
as in Fig. 6.4 {8% females andl2% males). Taking the average over the five
curves for each gender yields the curves shown in Fig. 6gures 6.5b-d show
the distributions obtained for other percentages illdstgathat when decreasing
the difference in the ratio females:males the differencdéexponents dissap-
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pears. A characteristic feature of our model is that theayenumberk) of

Figure 6.7: Sketch of two real sexual contact networks tgaga) only hetero-
sexual contactsN = 82 nodes and. = 84 connections) an¢b) homosexual
contacts (V. = 250 nodes and. = 266 connections). While in the homosexual
network triangles and squares appeatr, in the heterosegtwbrk triangles are
absent (see Table 6.1).

partners increases as the network grows, which is expextazttr in real sexual
networks according to the observed differences in the sbbfhe degree distri-
bution for yearly and entire-life reports of number of sexpartners [83, 84].
This feature is not observed in scale-free networks, astitited in Fig. 6.6. Of
course, that this growth also indicates non-stationarymeg, wheré€k) diverges
with the network growth. In the section 6.1.3 we explain hovotercome this
shortcoming.

We compare the model, with two empirical networks of sexwaitacts. One
network is obtained from an empirical data set, composeslysby heterosexual
contacts among = 82 nodes, extracted at the Cadham Provincial Laboratory
(Manitoba, Canada) and is a 6-month block data [94] betwemreMber 1997
and May 1998 (Figure 6.7a sketches this network). The oth&a det is the
largest cluster witlh = 250 nodes in the records of a contact tracing study [93],
from 1985 to 1999, for HIV tests in Colorado Springs (USA),erdamost of the
registered contacts were homosexual (see Figure 6.7b).

Figures 6.8(a)-(b) show the cumulative distribution of tluenber of sexual part-
ners for each of the empirical networks. For both cases teatagodel and
scale-free networks with,,,;, = 1 can reproduce the distribution of the number
of partners. However, the agent model with= 0.7 reproduces, as well, the
clustering coefficient distribution that we measure from ¢éimpirical network.

The clustering coefficien®(i) of one agent is defined [13] as the total number of
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Figure 6.8: (a) Cumulative degree distribution of a homosexual contact net
work[93] with n = 250 (triangles). (b) Cumulative degree distribution of a
heterosexual contact network[94] with = 82 (triangles). Each case is com-
pared with the average degree distribution @/@iterations, for theB A scale-
free model (dashed line) withy,,;,, = 1, andk.,.;;, = 2 and with our agent model
(solid line) withs = 0.7. (c) Cluster coefficient for the homosexual network em-
pirical data (triangles), the agent model (solid line) am&l® A modelk,,,;,, = 2.
The scale-freé,,;,, = 1 yieldsC(k) = 0 (hot shown).

triangular loops of connections passing at one node diviigetthe total number

of connectiong:;. AveragingC'(i) over all nodes withk; neighbors yields the

clustering coefficient distributiod'(k). While for the scale-free graph which
better reproduces these empirical data, the clusterinfjcdeat is zero, our agent
model yields a distribution which resembles the one obskirvéhe real network

(Fig. 6.8c). This feature is due to the co-existence of alikeesubstructure and

closed paths (see Figs. 6.7b).

For both heterosexual and homosexual networks of sexugcisnthe model of
mobile agents reproduces other important statisticalifeat namely the average
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N L T Q
Heterosexual 82 84 0 2 0
Homosexual 250 266 11 6 0.029

Heterosexual 82  83.63 0 1.45 0
(Agent Model)
Homosexual 250 287.03 8.23 10.52  0.023
(Agent Model)

Heterosexual 82 84 0 8.47 0
(Null model)
Homosexual 250 266 6.94 16.2 0.011
(Null model)

Homosexual 250 266 11.0 21.462 0.015
(Null m., sameT’)

Heterosexual 82 162 0 159.72 0
(Scale-free)
Homosexual 250 498 45.28 256.79 0.082

(Scale-free)

Table 6.1: Clustering coefficients and cycles in two realvoeks of sexual con-
tacts (top), one where all contacts are heterosexual antiemeith homosexual
contacts. In each case we present the values of the nuwmbénodes, the num-
ber L of connections, the numb@&t of triangles, the numbe® of squares and
the average clustering coefficiefit The values of these quantities are computed
for networks constructed with the agent model, with two mudidels (see text),
one where the number of triangles is fixed and another whégedhtriction is
not imposed, and with scale-free networks with;,, = 2. Fork,,;, = 1, one
has better values for the numbgof links in both the heterosexual and the ho-
mosexual networks, = 81 and L = 249 respectively, but there are no cycles
(not shown).

clustering coefficienC' and the number of loops of a given order. Table 6.1
indicates the numbéF of triangles (loops composed by three edges), the number
Q of squares (loops with four edges) and the average clugteoefficientsC'
given by [13] the average @f (i) over the entire network.

When using the agent model with the same numBeof nodes as in the real
networks we obtain similar results fdr, 7', @ andC, as shown in Table 6.1
(middle), where values represent averages over samplgg)géalizations. For
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the heterosexual network there are no triangles due to gaatiie nature of the
network. In order to ascertain possible non-trivial featuin these empirical
networks, we compare the topological measures of them Wwittohes of a null
model having the same degree distribution. The null model imndomized
version of the empirical networks, constructed by rewirragdomly selected
connections [90]. Namely, whenever one pair of links iscel@, say; < j and

k < [, we substitute these links by two other ones, one connectamglk and
the other connecting andi. Note that in the randomized versions the number
of triangles and squares is much larger than in the real m&swvadn order to
compare the number of squares without the effect of the nuwitgiangles in
the network, we consider also the case of a null model whedéiadally to
the degree distribution, the numbBErof triangles is also the same. In this case,
altough Table 6.1 shows a better estimaté’pthere is yet a much larger number
Q of squares. The heterosexual network is not compared tdet$ti&ind of null
model because it does not have triangles (it is bipartitayihidoe discussed in
section 6.2).

Note that the clear difference in the number of cycles ambegempirical net-
works and its randomized versions (or null model), impligst tthe stucture of
cycles in the real data are not just a statistical conseguehthe degree distri-
bution. Thus, the presented model is a good choice for reeing the observed
cycle structure.

At the bottom of Table 6.1 we also show the values obtainel sdale-free net-
works whose minimum number of connections was chosen 9. e = 2. The
chosen cask,,;, = 2, is that for which the clustering coefficient distributicare
as close as possible from the distributions of the real ndtsvcClearly, the agent
model not only yields clustering coefficients much closetht® ones measured
in the empirical data, but also does not show the formatidargier amounts of
loops (triangles and squares), a feature of Bhé scale-free networks w hich is
not observed in empirical data.

6.1.3 Summary and discussion

In this section we presented a new model for networks of cerjplteractions,
based on a system of mobile agents whose collision dynamigeverned by
an efficient event-driven algorithm that generates theslifdontacts) between
agents. As a specific application, we showed that the dyremites for inter-
actions in sexual networks can be written as a velocity wpdate which is a
function of a power of the previous contacts of each colliding agent. For suit-
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able values ofv and selectivitys, the model not only reproduces empirical data
of networks of sexual contacts but also generates netwoitkssimilar topo-
logical features as the real ones, a fact that is not obsevhed using standard
scale-free networks of static nodes.

Furthermore, our model predicts that the growth mechanfssexual networks
is not purely scale-free, due to interactions among intergants, having a mean
number of partners which increases in time. This should énfte the predic-
tions about spreading of infections [91]. The agent modesented here offers a
suitable approach to study the emergence of complex nesrafiikteractions in
real systems, using only local information for each agerd,raay be well suited
to study networks in sociophysics, biophysics and chemézadtions, where in-
teractions depend on specific local dynamical behavior@etementary agents
composing the network.

Since the results obtained with the present model are gleaote satisfactory
than the ones obtained with previous models, we think thatkéy feature of
mobile agents systems, namely mobility, is a keystone dfo@aact networks.

While given promising results the model may be improved io particular as-
pects. First, it should enable the convergence towardgiarsaay regime with a
growth process starting with all possible collisions iastef one particular agent
from which the network is constructed. Second, the deparalefithe above re-
sults on the velocity rule in Eq. (6.1) should be studied itadlenamely for the
case of constant velocity(= 0). In chapter 7 itis shown that a stationary regime
is easily obtained with the model described above by intcodya simple aging
scheme, while by varying the parameteone is able to reproduce other non-
trivial degree distributions. Moreover, we introduced sedectivity parametes

to select from all possible social interactions (colligpthe ones which are of
sexual nature. Without introducing this selectivity, thedal of mobile agents is
able to reproduce other social networks of acquaintandesily; the very few
cycles present in the available data sets, here analyzald be just an affect of
their small size. Therefore, larger data sets should béadkaiin order to analyze
and strenghten the applicability of the present model.
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6.2 Cycles and clustering coefficient in bipartites
networks

One important statistical tool to access the structure pfglex networks arising
in many systems [2, 6] is the clustering coefficient, introgliby Watts and Stro-
gatz [13] to measure “the cliquishness of a typical neighbod” in the network

and given by the average fraction of neighbors which aredéontenected with

each other. This quantity has been used for instance to ateairze small-world

networks [13], to understand synchronization in scale-fietworks of oscilla-
tors [95] and to characterize chemical reactions [96] ardoiks of social rela-

tionships [97, 98]. One pair of linked neighbors correspotaca ‘triangle’, i.e. a

cycle of three connections.

While triangles may be abundant in networks of identicalesthey cannot be
formed in bipartite networks [97-99], where two types of epexist and con-
nections link only nodes of different type. Thus, the stadddustering coef-
ficient is always zero. However, different bipartite netishave in general
different cliquishnesses and clustering abilities [98nsming for another co-
efficient which uncovers these topological differences agiuipartite networks.
Bipartite networks arise naturally in e.g. social netwd&, 100] where the re-
lationships (connections) depend on the gender of eacbmpénsde), and there
are situations, such as in sexual contact networks [69]yevbee is interested
in comparing clustering properties between monopartiter(iical nodes) and
bipartite (two types of nodes) compositions.

In this section, we study the cliquishness of either montiteaand bipartite net-
works, using both the standard clustering coefficient anadatitional coefficient
which gives the fraction of squares, i.e. cycles composetbby connections.
As shown below, such a coefficient retains the fundamentggaties usually as-
cribed to the standard clustering coefficient in regulagléavorld and scale-free
networks. As a specific application, the two examples of pdta/of sexual con-
tacts will be studied and compared, one being monopartdeanther bipartite.

Furthermore, we will show that one can take triangles andustuas the basic
units of larger cycles in any network, monopartite or mutigie. The frequency
and distribution of larger cycles in networks have reveidtednportance in re-
cent research for instance to characterize local orderingpmplex networks
from which one is able to give insight about their hierarehstructure [101],
to determine equilibrium properties of specific network misd102], to esti-
mate the ergodicity of scale-free networks [103], to defdaise transitions in
the topology of bosonic networks [104] and to help charateg the Internet
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structure [105]. Since the computation of all cycles in @abvily large networks
is unfeasible, one uses approximate numerical algoritd®3,[106, 107] or sta-
tistical estimates [108, 109]. Here, we go a step furtherdettlice an expression
to estimate the number of cycles of larger size, using batstefing coefficients,
which not only improves recent estimates [109] done for npamtite networks,
but at the same time can be applied to bipartite networks anltipartite net-
works of higher order.

We start in Section 6.2.1 by introducing the expression tictcaracterizes the
cliguishness of bipartite networks, comparing it to thealstlustering coeffi-

cient. In Section 6.2.2 we use both coefficients to estimatées of larger size
and show how they are applied to bipartite networks, whil8éction 6.2.3 we
apply both coefficients to real networks of sexual conta@itscusions are given
in Section 6.2.4.

6.2.1 Two complementary clustering coefficients

Figure 6.9: lllustration of the neighborhood of a centrad@¢) composed by its

first neighbors €) and its second neighborll}, i.e. the neighbors of its neigh-
bors. First and second neighbors are used to compute thel@memtary clus-

tering coefficientC, (see text).

The standard definition of clustering coefficierf is the fraction between the
number of triangles observed in one network out of the tatahiper of possible
triangles which may appear. For a nadeith a numbelk; of neighbors the total
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number of possible triangles is just the number of pairs @ajh®ors given by
k;(k; — 1)/2. Thus, the clustering coefficietit; (i) for nodei is

2t;

OB(Z) = kz(kz — 1)

(6.2)
wheret; is the number of triangles observed, i.e. the number of cctiores

among thek; neighbors. As in other studies, here and throughout the staipt
multiple connections between the same pair of nodes ardlnaieal.

Similarly to Cs(i), a cluster coefficien€y (i) with squares is the quotient be-
tween the number of squares and the total number of possjnras. For a
given nodei, the number of observed squares is given by the number of com-
mon neighbors among its neighbors, while the total numb@ossible squares

is given by the sum over each pair of neighbors of the prodettiéen their
degrees, after subtracting the common noded an additional one if they are
connected. Explicitly, for a given noddhe contribution of a pair of neighbors,
saym andn, to C4(i) reads

. Gimn
C mn = s 6.3

whereg;,.,, is the number of common neighbors betweerandn (not counting

1) andn;n = 1+ Gimn + Omn With 6,,,,, = 1if neighborsm andn are connected
with each other an@ otherwise. The numerator in Eq. (6.3) gives the number
of squares containing nodésm andn, while the denominator counts the total
possible number of squares containing these three nodes.

To illustrate the definition given in Eq. (6.3), we show in F6g9 a simple sketch
of a node ¢) neighborhood composed by its first and second neighleoand
M respectively), Considering the neighb@and3, one hasy;o3 = 2 squares
containing nodes, 2 and3 and there aré, = 5 andks = 5 neighbors of nodes
and3 respectively. Since nod@sand3 are not connected with each ottt =
0, yielding n123 = 3 and a denominator in Eq. (6.3) which equélpossible
squares: two squares which are observed and other foureseresponding to
the possible combinations of all pairs of non-common nedgbbFor neighboré
and7 a similar calculation can be done, this time with = 1 since the neighbors
are connected with each other. The clustering coeffidi&iit) is easily obtained
from Eq. (6.3) just by summing the numerator and denomirsgparately over
the neighbors of.

While C5(i) gives the probability that two neighbors of noflare connected
with each other(4(i) is the probability that two neighbors of nodeshare a
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common neighbor (different fror). AveragingCs(i) andCy(i) over the nodes
yields two complementary clustering coefficieni§s) and(Cy), characterizing
the contribution to the network cliquishness of the first aedond neighbors
respectively. For simplicity we write hencefortly andC, for the averages of
C5(1) andCy(7) respectively.

An important point to stress concerns the denominatorsaml#iinitions of both
clustering coefficients. The possible number of triangte&q. (6.2) does not
take into account the topology of the neighborhood, in paldr the number
of second neighbors. Instead, the standard way [13] to cten@y given by
Eq. (6.2), is to assume that all possible triangles are ebdarhen the neighbors
are fully interconnected. Consequently, possible degogeelation biases may
appear. The same occurs for the definitiolef Recently [110] another expres-
sion forC's was proposed with the aim to filter out these degree-coioelbiases
by taking into account the minimum number of neighbors ohgaair of nodes
considered. A similar approach could be donedgy substituting the denomi-
nator in Eq. (6.3) by a suited function of the minimum numbfargighbors ofn
andm. However, here we considél, as defined above, since it is our purpose
to establish a parallel betweér and the standard definition 6f;, which itself
does not take into account either the correlation removg@sed in Ref. [110].

Figure 6.10 shows both clustering coefficieatsandC, in several topologies.

In all case<”; andC} are plotted as dashed and solid lines respectively, and are
averages over samples 1d0 realizations. As an example of regular networks,
we use networks with boundary conditions where each nodexhasighbors
symmetrically placed, i.e. when arranged in a chain, eade has an even num-
ber of neighbors, half of them on one side and the other hatherother side.

In particular, forn = 2 one obtains a chain of nodes connected to its nearest
neighbors. For these regular networks, Fig. 6.10a showddpendence of the
clustering coefficients on the fractiorn’ N of neighbors, withV = 103 the total
number of nodes. As one se€s < Cs5 and for either small or large fractions

of neighbors both coefficients increase abruptly within the middle regiorCs

is almost constant, whil€', decreases slightly. Our simulations have shown that
in regular networks the coefficients depend onlygiV, i.e. for any size of the
regular network, similar plots are obtained.

Figure 6.10b shows the coefficients for small-world netvgonkth N = 103
nodes, constructed from a regular network with= 4 neighbors symmetri-
cally placed. The coefficients are computed as function$efprobabilityp

to rewire short-range connections into long-range conmestand they are nor-
malized as usual [13] by the clustering coefficiefifs, of the underlying regular
network. As one sees;, yields approximately the same characteristics as the
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Figure 6.10: Comparisons between the standard clusteoefficent C; in
Eq. (6.2) (dashed line) and the clustering coeffici€ntn Eq. (6.3) (solid line)
for different network topologieqa) in a regular network witlm neighbors sym-
metrically placed § = 103), (b) in small-world networks where long-range
connections occur with probability (N = 10® andn = 4) and(c) in random
scale-free networks where the distribution of the clustgoefficients is plot-
ted as a function of the numbérof neighbors v = 10°> andm = 2). In all
cases samples df)> networks were used. The distributio6%(k) andCy (k)
are also plotted fofd) Apollonian networks [4] withV = 9844 nodes ¢) and
pseudo-fractal networks [3] witlV = 9843 nodes ¢).
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standard clustering coefficiefit; being therefore able to define the same range
of p for which small-world effects are observed. While here timal-world net-
works were constructed rewiring short-range connectiotslong-range ones,
the same features are observed when using the construotioedure introduced

in Ref. [111] where instead of rewiring one just adds longge&connections.

To construct scale-free networks, we use the standard guoe®f Albert and
Barabasi with growth and preferential attachment prapoal to the number of
neighbors (see e.g. Ref. [2] for details). For such scae-fretworks, which we
call henceforth random scale-free networks, we plot in €ijOc the distribution
of both coefficients as functions of the numlieof neighbors, using networks
with N = 10° nodes and by given initiallyn = 2 connections to each node.
Here, one observes th@t (k) is almost constant dsincreases, reproducing the
same known feature as the standé@fk) apart a scaling factorCy(k)/Cs(k)
which is approximately constant for @l In Fig. 6.10d we plot the clustering
distributions for two different deterministic scale-fneetworks recently studied,
namely Apollonian networks [4], represented by bulletsand pseudo-fractal
networks [3], represented by circles In both cases, the same power-law be-
havior already known fo€’5(k) ~ &k~ in these hierarchical networks is also
observed for the coefficieid, (k) with the same value of the exponent

All networks in Fig. 6.10 are monopartite, i.e. no distinctibetween nodes is
made, to have the straightforward comparison between Hattiecing coeffi-
cients,C3 andCy. Of course, in the case that bipartite counterparts areig¢ons
ered, the standard clustering coeffici€it vanishes, and onl¢, is suited to
measure the clustering between nodes.

In short, the results shown in Fig. 6.10 give evidence €hais also a suited co-
efficient to characterize topological features of seveoahglex networks com-
monly done with the standard clustering coefficiét Furthermore, sinc€’,
counts squares instead of triangles, it is particularl{eslfior bipartite networks.
Next, we will use this coefficient to compare different madfdr networks of
sexual contacts, where both monopartite and bipartiteoré&sarise naturally.

6.2.2 Estimating the number of large cycles with squares and
triangles

Recent studies have attracted attention to the cycle steicf complex net-
works, since the presence of cycles has important effectsxf@ample on infor-
mation propagation through the network [112] and on epidespreading be-



Dynamical model of growing social networks 95

havior [113]. In order to avoid numerical algorithms couagtithe number of
cycles of arbitrary size which implies long computationgsgnan estimate of the
fraction of cycles with different sizes was proposed [1Q8jng the degree dis-
tribution P(k) and the standard cluster coefficient distribut@(k). However,
this estimate yields a lower bound for the total number ofeyand cannot be
applied to bipartite networks, as shown below. The aim «f 8gction is twofold.
First, to show that by using botti; andC, one is able to improve that estimate,
being suited at the same time to either monopartite and fitipaetworks. Sec-
ond, to explicitly show some limitations of the estimatekteand discuss their
applicability.

The estimate in Ref. [109] considers the set of cycles witardral node, i.e. cy-
cles with one node connected to all other nodes composingyttie. Figure
6.11a illustrates one of such cycles, where the central aadesach pair of its
consecutive neighbors forms a triangle, within a total amiaf four adjacent
triangles. In such set of cycles, to estimate the number désywith sizes one
looks to the central node of each cycle which has a numbeg safyneighbors.
The number of different possible cycles to occuti$s, k) = (Sfl) (5’21)! , since
one has(sfl) different groups of nodes and in each one of these groups there
are (s — 1)!/2 different ways ordering the nodes into a cycle. The fraction
no(s, k) of cycles which is expected to occurig(s, k) = Cs(k)*~2, since the
probability of having one edge between two consecutivehimgs isCs (k) and

(a) (b (c)

Figure 6.11: lllustrative examples of cycles (size= 6) where the most con-
nected noded) is connected tqa) all the other nodes composing the cycle,
forming four adjacent triangles. Ifb) the most connected node is connected
to all other nodes except one, forming two triangles and aecycle of size

s = 4, while in (c) the same cycle = 6 encloses two sub-cycles of size= 4
and no triangles (see text).
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one must have — 2 edges between the— 1 neighbors. Therefore, the number
of cycles of sizes is estimated as

kmaa

N = Ngo Y P(k)no(s,k)po(s, k), (6.4)
k=s—1

whereP (k) is the degree distribution angd is a factor which takes into account
the number of repeated cycles. This geometrical factor eaomputed for each

particular case of-cycles but the estimates can be carried out without thaaipl
computation of the factor [109].

The estimate in Eq. (6.4) is a lower bound for the total nunabeycles since it
considers only cycles with a central node. For instanceign@=11b while cycles
of sizes = 4 can be estimated with Eq. (6.4), the cygle- 6 cannot since it has
no central node, and in Fig. 6.11c the above equation carstioiae any cycle
of any size. In fact, Fig. 6.11c illustrates the type of cga@pearing in bipartite
networks, where no triangles are observed. For such cyélés) = 0 and
therefore all terms in Eq. (6.4) vanish yielding a wrongrestie of the number
of cycles.

To take into account cycles without central nodes (Figslit.dnd 6.11c), one
must consider the clustering coefficiefij(k) defined in Eq. (6.3). One first
considers the set of cycles of sizewith one node ¢) connected to all the
othersexceptone, as illustrated in Fig. 6.11b. In this case, since theee a
s — 2 nodes connected to nodeone hasni(s, k) = (,*,)(s — 2)!/2 differ-

ent possible cycles of size with k& the number of neighbors of node The
fraction of then(s, k) cycles which is expected to be observed is given by
p1(s, k) = C3(k)*~*Cy(k)(1 — C3(k)), since the probability of having — 4
connections among the— 2 connected nodes S5 (k)*~*, the probability that

a pair of neighbors of node has to share a common neighbor (different from
nodeo) is Cy (k) and the probability that these same pairs of neighbors are no
connected i$1 — C5(k)). Writing an equation similar to Eg. (6.4), where instead
of no(s, k) andpo(s, k) one has (s, k) andp; (s, k) respectively and the sum
starts ats — 2 instead ofs — 1, one has an additional numbaf, of estimated
cycles which is not considered in estimate (6.4). Notice, thiace forN, one
considers at least one sub-cycle of size 4, this additional estimate contributes
only to the estimate of cycles with size> 4. We call henceforth sub-cycle, a
cycle which is enclosed in a larger cycle and which does notaio itself any
shorter cycle.

Still, the new estimatéV, + N is not suited to bipartite networks, since it yields
nonzero estimate only fos = 4. To improve the estimate further one must
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consider not only cycles composed by one single sub-cyckzefs = 4, as
done in the previous paragraph, but also cycles with any eumbsub-cycles

of sizes = 4. Figure 6.11c illustrates a cycle of size= 6 composed by two
sub-cycles of sizd. In general, following the same approach as previously, for
cycles composed hysub-cycles of size one finds, (s, k) = w (57’g )
possible cycles of size calculated for a node with neighbors and a fract|on
pq(s, k) = C3(k)*=2972Cy(k)1(1 — C5(k))? of them which are expected to be
observed. Forp = 0 one considers cycles as the one illustrated in Fig. 6.11a,
while forg = 1 andq = 2 one considers the set of cycles with one and two sub-
cycles of sizet, as illustrated in Figs. 6.11b and 6.11c respectively. Singmp
overk andgq yields our final expression

[s/2]-1  kmaeo

Ne=Ngs > Y Plk)ng(s, k)py(s, k). (6.5)

q=0 k=s—q—1

where[z] denotes the integer part of In particular, the first termg(= 0) is
the sum in Eq. (6.4). The upper linfi¢/2] — 1 of the first sum results from the
fact that the exponent @5 (k) in p,(s, k) must be non-negative: — 2¢ — 2 >

0. The estimate in Eqg. (6.5) not only improves the estimatedar computed
from Eq. (6.4), but also enables the estimate of cycles upltwger maximal
size. In fact, since in the binomial coeﬁicie@t’jl) of Eq. (6.4) one must have

s —1 < k < knaz, One only estimates cycles of size upitQ... + 1, while in

Eq. (6.5) the maximal size &,,.., as can be concluded using both conditions
s—2¢g—2>0ands — ¢ —1 < kjnaz.

Figure 6.12 compares two cases treated in Ref. [109], batin avidegree dis-
tribution P(k) = Pyk~" and coefficient distribution€'s (k) = C(O)k @, using
one value ofx < 1 (Fig. 6.12a) and another ore > 1 (Fig. 6. 12b) Dashed
lines indicate the estimate using Eq. (6.4), while soligédiindicate the estimate
using Eq. (6.5). In both cases, the latter estimate is lafg@ra. < 1 the differ-
ence between both estimates decreases with thes sif¢he cycle. Forv > 1
the difference between the estimates increasesaityond a size* < kaz-
Clearly, from Fig. 6.12b one sees thiat,. + 1 is the larger cycle size for which
Eq. (6.4) can give an estimate, while for Eq. (6.5) the edénmoceeds up to
2kmae (partially shown). In both cases, the typical size for whigh attains a
maximum is numerically the same for both estimates, as éggeMoreover, for
a > 1 (Fig. 6.12b), beyond a size of the orderiof.., Ns/(Ngs) in EQ. (6.5)
decreases exponentially with slightly different as observed for Eq. (6.4). In
fact, the deviation of Eq. (6.4) from the exponential taldue to the fact that for
very large cycle sizess(~ k..q.) EQ. (6.4) can only consider very few terms in
its sum.
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Figure 6.12: Estimating the number of cycles using Eq. (@ld3hed lines, and
Eq. (6.5), solid lines. Here we impose a degree distribuki¢h) = Pyk~"7 with
Py = 0.737 andy = 2.5, and coefficient distribution§'s 4 (k) = O?E?Zk*“ with

a = 2, = U.00,aa = 0.9 an =1, =017, aa=1.1.In
c” =2,¢” =033, =09and(b) C{” =1,C{” =0.17,a = 1.1. |
all casesk,,,q = 500.

Another advantage of the estimate of Eq. (6.5) is that it t@aycles in bipartite
networks. For bipartite networks there are no connecti@ta/éen the neigh-
bors, i.e. all subgraphs are similar to the one illustrateBig. 6.11c. Therefore
all terms in Eqg. (6.5) vanish except those for which the exporof Cs(k) is
zero, i.e. fors = 2(q 4+ 1). Consequently, sincgis an integer, Eq. (6.5) shows
clearly that in bipartite networks there are only cycles wéresize, as already
known [99]. Moreover, substituting = (s — 2)/2 in Eq. (6.5) yields a simple
expression for the number of cycles in bipartite networlksnaly

Emax
Ng™ = Ng, Y P(k) (8/22)! <sl;2> Ca(k)*/271. (6.6)
k=s/2

A simple example to illustrate the validity of Eq. (6.5) isetfully connected
network, where each node is connected to each other onds leetse the number
of cycles with sizes is given by N, = (f) @ The factor(s — 1)! counts the
arrangements between— 1 nodes in each combination efnodes, while the
division by two is due to the undirected links. To compig from Eg. (6.5)
one has for the particular case of the fully connected ndtwB(k) = Cs(k) =
Cy(k) = dk—N+1, kmaz = N — 1 andg, = 1/s. Consequently the only nonzero
term in the first sum is the one fgr= 0, while the nonzero term in the second
sum is the one fok = N — 1, yielding the same result as above.
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Figure 6.13:(a) The exact number of cycles as a function of the size for the
pseudo-fractal network [3] compared wiih) N, /Ng, of the analytical expres-
sions in Egs. (6.4), dashed lines, and (6.5), solid linesmsmall to large curves
one has pseudo-fractal networks with= 2, 3, 4, 5 generations (see text).

Both the expression in Eg. (6.4) and the one in Eqg. (6.5) atecpéarly suited for
networks or subnetworks where nodes are highly connectssttioother, since in
those situations there is a very large number of centraliyneoted cycles as the
ones illustrated in Fig. 6.11. Highly connected subnetwanppear, for instance,
in social networks which are composed by communities [2H.Ref. [109],
for instance, the estimate of small cycles from Eq. (6.4pimpared to the true
values computed for several empirical networks, namelyltibernet, the co-
authorship web and semantic networks. While o 3 and4 the estimate is
clearly good, fors = 5 there is a clear underestimation, due to the appearance
of no centrally connected cycles. Of course one expects simtlarly to what
is observed in Fig. 6.12, the estimate in Eq. (6.5) improkesone used in [109]
for such situations.

Next we illustrate this point using a particular networke fhseudo fractal net-
work, already described in section 4.1.1. For these netsydhle exact number
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of cycles with sizes can be written iteratively [114] as

N = Z( l 1>N§m>, (6.7)
.

=3
for s > 4 and NS = N{™ 4 gm,

Figure 6.13 shows the real number of cycles of the pseuduafraetwork
(Fig. 6.13a) with the quantitW, /(Ng,) (Fig. 6.13b) for the pseudo-fractal net-
work. In Fig. 6.13b solid lines indicate our estimate, whikshed lines indicate
the previous estimate in Ref. [109]. In both cases, the weddienation is very
significant when compared to the exact number from Eq. (6N8vertheless,
even in this case, the estimates predict the shape of the digttibutions. Up to
our knowledge, complex networks for which the exact numlbeyoles may be
computed having most nodes highly connected are not known.

It is important to notice that triangles and squares may apipeany multipartite
network (except in bipartite ones, where triangles are rahpserherefore, the
estimates described and studied in this Section can besappt only to bipartite
networks but also to any multipartite network of any ordertHe next Section
we will focus on the applicability of the clustering coeféait C; in empirical
sexual networks (monopartite and bipartite) with the ainedmpare simulated
results for such networks.

6.2.3 Cycles and clustering in sexual networks

In this Section we apply both coefficientg andC; in Egs. (6.2) and (6.3) to
analyze the two real networks of sexual contacts previquagented. As Figure
6.7 sketches, in these two networks one can see that cyclééferient sizes

appear. While the network with only heterosexual contactdearly bipartite,

the network with homosexual contacts is monopartite.

For the two networks in Fig. 6.7, Table 6.2 presents the aeffisC3 andC,
with the same simulations of the model shown in Table 6.1. Wessees, although
the heterosexual network has less squares than the honabsetwork due to

its smaller size(; is much larger. Another feature common to both networks is
L/N ~ 1,i.e. an effective coordination numberaf /N ~ 2.

While in the heterosexual network the number of squares andetjuently the
value ofCy is overestimated, for the homosexual network the null mgabddls
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| | (Cs) | (Cy) |

Heterosexual 0 0.00486
(Fig. 6.6a)

Homosexual 0.02980 | 0.00192
(Fig. 6.6b)

Heterosexual 0 0.0451
(Null model)

Homosexual 0.011 0.00373
(Null model)

Homosexual 0.0145 | 0.00477
(Null model, samel")

Heterosexual 0 0.01273
(Agent Model)
Homosexual 0.02302 | 0.01224
(Agent Model)
Heterosexual 0 0.12859

(Scale-free)
Homosexual 0.08170 | 0.02787
(Scale-free)

Table 6.2: Clustering coefficients and cycles in two realwoeks of sexual
contacts (top), illustrated in Fig. 6.7, one where all cotgaare heterosexual
(Fig. 6.7a) and another with homosexual contacts (Fig.)6.lfbeach case one
indicates the values of both clustering coefficiefitsandC, in Egs. (6.2) and
(6.3) respectively. The values of these quantities are emetpwith the ones of a
null model (see text) with the same degree distributionvi@r tases, one where
the number of triangles is fixed and another where this rf&ini is not imposed,
and also with networks constructed with the agent modelgmtesl in the previ-
ous section [69] and with th8 A scale-free network withn = 2. Samples of
100 realizations were used in each case.

reasonable results for both clustering coefficients, aliindhe large discrepancy
between the number of triangles and squares. In order to @antpe number

of squares without the effect of the number of triangles i tietwork, as in
section 6.1.2, we consider also the case of a null model wédd@ionally to

the degree distribution, the numbBErof triangles is also the same. In this case,
Table 6.2 still shows an underestimation@f and a much larger numbér of
squares. Notice that, while the total number of triangleséssame, the standard
clustering coefficientCs) can be nevertheless different, since it is an average
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over the local clustering coefficient of each node, whicheae}s not only on the
number of triangles the node belongs to but also on its degree

@ (b)

s

Cy(k)
C,(k)

Figure 6.14: Comparing clustering coefficigtit(k) in Eq. (6.3) between net-
works obtained from the agent model (solid lines) used toadypce real net-
works of sexual contacts (bulletfa)Monopartite caseN = 250. (b)Bipartite
case N = 82. Same simulations of the model as presented in Fig. 6.8.

Using the same number of nodes as in the real networks diestrin Fig. 6.7
and considering two types of nodes for the heterosexuah(tiip) case, we ob-
tain with the agent model similar results {6 andCy, as shown in Table 6.2
where values represent averages over samplég(ofealizations. As one sees,
in general, the agent model yields values much closer tortles tor the empir-
ical networks, than the two null models considered aboveandkably, for the
bipartite case not only the number of connections and thebeuwf squares are
numerically the same (as was shown in table 6.1), but@ldgs of the same order
of magnitude. Similar values of the topological quantites also obtained for
the monopartite case, with the exception(iyf

In Fig. 6.14a we show the clustering coefficient distribnsidor the monopartite
network of sexual contacts sketched in Fig. 6.7b, while gn Bil4b we plot the
distribution for the bipartite network (Fig. 6.7a). In bdtbures bullets indicate
the distributions of the empirical data, while solid linaeslicate the distributions
of the networks obtained with the agent model, imposing Hreessize as the
real network, i.e. stopping the simulation when the numli@oonected agents
equals the size of the corresponding empirical network takidg averages over
a sample ofl 00 realizations.
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Figure 6.15: Estimating the number of cycles for the agerdehosing Eqg. (6.5)
for N = 1000 (solid lines),N = 5000 (dashed lines) and&/ = 10000 (dotted
lines) in(a) a monopartite network and ip) a bipartite network, both obtained
with the agent model.

The results above concern small empirical networks. To awpthe particular
study of sexual networks reproduced by our model, largewaordds of sexual
contacts should be also studied and comparisons with a rmadeif90] must be
carried out to validate the agent model. The main point retbat the results
above already show that the complementary clustering casifiC, is suited

to quantify the cliquishness of neighborhoods in either apantite and bipar-
tite counterparts of the same complex networks, while thadsrd clustering
coefficient is not.

With the agent model one is able to construct larger netwitrds the empirical
ones. In such large networks cycles of different size mayappnd one impor-
tant question is to know the frequency of cycles of any ordiésing the agent
model for large networks, and computing only their degregrithution and the
two clustering coefficients we can estimate the distributibcycles in those net-
works. Figure 6.15 shows the distribution of the fracti¥p/(Ng,) of cycles
as a function of their size, for a monopartite network (Fig. 6.15a) and a bipar-
tite network (Fig. 6.15b) composed &f = 1000, 5000 and10000 nodes. Here,
while monopartite networks show an exponential tail precHay a region where
the number of cycles is large, bipartite networks are cormpad cycles whose
number depends exponentially on their size. Furthermoeeofaserves a clear
transition at a characteristic size, which seems to scaletive network size.
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6.2.4 Sumary and discussion

We introduced a clustering coefficient similar to the staddane, which in-
stead of measuring the fraction of triangles in a networksuess the fraction
of squares, and showed that with this clustering coefficieigt also possible
to characterize topological features in complex netwouksially done with the
standard coefficient. We showed explicitly that the rangeatdies of the proba-
bility to acquire long-range connections in small-worldwerks and the typical
clustering coefficient distributions of either random sefike and hierarchical
networks are approximately the same. In addition, we shawatthis second
clustering coefficient enables one to quantify the clignéds in bipartite net-
works where triangles are absent. Thus, one should takegteéa and squares
simultaneously as the two basic cycle units in any network.

An application of both clustering coefficients was propgseinely to estimate
the number of cycles in any network, either monopartite oftipartite. Using a
recent estimate which yields a lower bound of the number oliesyin monopar-
tite networks up to a size < k.. + 1 wherek,,, 4, is the maximum number of
neighbors in the network, we deduce a more general expresgiech not only
improves the previous estimate but is also suited for bilganetworks and en-
ables one to estimate cycles of size uRkg,.... Furthermore, in the particular
case of bipartite networks our estimate yields as a natoradeqguence that only
cycles of even size may appeatr.

To illustrate the applicability of the complementary ckritg coefficient in bi-
partite networks, we studied a concrete example of two dexetavorks, one
where only heterosexual contacts occur (bipartite nethamki another with ho-
mosexual contacts (monopartite). The results obtaindutivi two real networks
were found to be similar to the ones obtained with the agentatiatroduced in
Sec.6.1.1.

All in all, our analytical expression gives a simple way tdraxt information
concerning the distribution of cycles in multipartite netks, and in particular

the clustering coefficiert', can be regarded as a suited measure of neighborhood
cliquishnesses in bipartite networks.



Chapter 7

Model of mobile agents for
social interaction networks

The topological features of networks of acquaintancesduomehtally differ from
other networks [2, 115]. First, they are single-scale nétwand present small-
world effect [33]. Second, they are divided into groups anoaunities [2]. Ad-
ditionally, while those networks are dynamical, evolvingime, their evolution
process differs from standard growth models as those thefrge.g. the World
Wide Web, or from copying mechanisms proposed for bioldgiesworks. An
interesting developmentin this area is given in [116] wheesenple procedure of
transitive linking is proposed to generate small-worldvaks. While each one
of the mentioned features can be reproduced with some previmdel, there
is still no single model that incorporates simultaneousipamical evolution,
clustering and community structure.

In this chapter we show that all these characteristics carfr®@duced in a very
natural way, by using standard concepts and techniquesghysical systems.
Namely, we propose an approach to dynamical networks basedsystem of
mobile agents representing the nodes of the network. Weshdlv that, due
to this motion, it is possible to reproduce the main propsriil, 2] of empiri-

cal social networks, namely the degree distribution, thetelring coefficient)

and the shortest path length, by choosing the same averggeedmeasured in
the empirical networks, and adjusting only one paraméterdensity of the sys-
tem. The community structure emerges naturally, withobeliag a priori the

community each agent belongs to, as in previous works [IM@teover, this ap-
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Figure 7.1: Snapshots of the system of mobile agents, wheredges between
two agents indicate that they already collided with eacleota) Snapshot after
the first collision,(b-c) two subsequent snapshots within one cluster of colli-
sions. Filled nodes (blue) and unfilled nodes (red) reptesendifferent types

of nodes, e.g. males and females (see Sec. 7.5 for details).

proach gives some insight to further explain the structfienapirical networks,
from a recently available large data set of friendship nete&¢118] concern-
ing 90118 students, divided amorigyl schools from USA, constructed from an
In-School questionnaire (see details of this databasedpten 8). The acquain-
tance between pairs of students was rigorously defined. &adent was given
a paper-and-pencil questionnaire and a copy of a list widryestudent in the
school. The student was asked to check if he/she participateny of 5 activi-
ties with the friend: like going to (his/her) house in the lsesven days, or meeting
(him/her) after school to hang out or go somewhere in thedagtn days, etc.
Other studies [33] have used a slightly different definitafrfriendships and
obtained the same kind of degree distribution, an indicatiothe robustness of
the concept of friendship.

7.1 The Model

In this chapter we examine a stationary version of the modesented in
Sec. 6.1.1 and used to model growing networks of sexual ctmtalere social
contacts are introduced by setting a link joining the twordag@fter a collision,

till its removalwhen one of the agents leaves the system when reachingcertai
age. Therefore, during the evolution of the system, eachtade characterized

by its numbetk; of links and by its aged;.
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Since collisions represent social contacts their dynamigdas should fulfill
some sociological requirements. Namely, it is known [88} tlnany social inte-
ractions occur more commonly between individuals havingaaly a large num-
ber of previous contacts. For instance, here we keep theitelop-date rule
(Eq. 6.1).

The exponenty in Eq. (6.1) controls the velocity update after each callisi
For o = 0 the velocity of each agent is constant in time, and consetyuire
kinetic energy densit%pv2 of the system is constant. Far > 0 the velocity
increases with degrele. In this range, the valuer = 1 (Jv| « k) marks a
transition between a sub-linear regime € 1) and a supra-linear regime: (>
1) with different degree distributions[69, 123]. Throughthis chapter we will
considera = 1 in most of the situations, showing that it produces the bigta
dynamics to reproduce real networks of social contacts.hdukl be noticed
that while positive values oft yield dynamical laws which fulfill sociological
requirements, the equation of motion (6.1) is also able twsiter completely
different situations, whera < 0, i.e. where the ability to acquire new contacts
decreasewith the number of previous contacts. In this research, we fecused
in the regimes fory > 0.

As one may notice, contrary to collision interactions whevelocity vector is
completely deterministic [89], here momentunm& conserved. This is a conse-
qguence not only of the increasewbut also of the fact that after one collision the
moving direction is randomly selected. The main reasonHisriandom choice
is that, as a first approximation it is plausible to assumé ghaial contacts do
not determine which social contact will occur next.

Concerning the residence time or ‘age’ parameteduring which the agents
remain in the system, 4 — oo, each agent will eventually collide with all
the other agents forming a fully connected network. Wheneaen the average
residence time of the agents is finite the system will reaclorarivial quasi-
stationary states [33,119], as described in section 7.2.

The aging scheme considered here is simply parameterizedrbg threshold in
the age of the agents. More precisely, each agéntnitialized with a certain
ageA;(0) which is a random number uniformly distributed in the in&@@, ;]
with T, being the maximal age an agent may have. Being updated &ocgdod
A;(t+At) = A;(t)+ At, the age eventually reachds(t) = T;, when the agent
i leaves the system, yielding a total residence time- .4;(0). Computationally
the replacement of an old agent by a new one is carried out\sinypremoving
all the connections of the old agent and updating its veldoeithe initial value
vo With a new random direction.
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Before proceeding in characterizing the behavior of sugrstem it is important
to a/-ddress three last points to understand the paralteldes the model and
real systems.

First, the two-dimensional continuous space where node& nsmot the phys-
ical space where individuals travel, meet or establishat@iquaintances. In-
stead, it represents a projection of a highly dimensionalilean space whose
metric may be related to a so called the social distance 1114; two close
nodes have similar affinities (same tastes, same behatioy, @&d therefore it
is probable for them to establish an acquaintance, i.e. l@eo It should be
stressed that the metriciislatedto social distance, but also incorporates effects
of random factors promoting two persons to meet or estalflishdship con-
nections. We have no rigorous explanation for the fact thatcadimensional
projection of such a ‘large’-dimensional space sufficeseforoduce empirical
data of acquaintances. But the fact is that it does, and ftireréor simplicity
we will consider a two-dimensional system. One could alses@ter higher di-
mensional systems of mobile agents but then the ‘projestdcity in Eq.(6.1)
would change.

Second, since the system of mobile agents is used to extcachplex network,
one could ask where the main paramejeed7; appear in the network struc-
ture. One easily concludes that increasing the depsitynfines the accessible
region of agents thus promoting the occurrence of collsiamong them which
are more confined in space. In other words, increasing theitgeone increases
the clustering coefficient [13]. As fdfy, the larger the residence time, the larger
the number of collisions an agent may have. Thus, incredsirigcreases the
average numbefk) of connections.

Finally, in a space of affinities what is the meaning of a vity&t The velocity
can be interpreted as measure of the accessible regionw#magent within this
social space which increases, decreases or remains coafteareach collision,
depending on the value of.

7.2 The quasi-stationary regime

In the QS state the dynamical and topological quantitiedifite around an
average value after a transient time of the ordeRBf. Figure 7.2 illustrates
the convergence toward the QS state for two different vatdi&s, namely for
T, = 30.75 andT, = 73.35. Here, the convergence is characterized by plotting
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Figure 7.2:(a) Average ageA(t) vs. time.(b) Number of links per agenf\//N,
vs. time. (c) Average energy vs. time. Two different time of life are shown
T, = 73.35 andT; = 30.75, at one realization of a system &f = 4096, with

vo = v/2 andp = 0.02

the effective coordination given by the fractidfi(t)/N between the total num-
ber M of connections and the total numb&r of agents (Fig. 7.2a), the mean
energyl/2v%(t) (Fig. 7.2b) and the mean ag&(t) (Fig. 7.2c), as function of
time ¢, the bar >’ for v(¢) and.A(t) represents the average over all the agents
in a given time¢t. In all three cases, the above quantities increase in thierear
stages of the network growth attaining a maximum value atoun 7,/2 where

the agents start dying, resulting in the decrease of th&iegdill a minimum at

t = T,. For the studied initialization af;, uniformly distributed in rang@®, 7;],

the maximum at ~ T,/2 is due to the fact that the agents have on average a
life-time equal tal /2, while the minimum is due to the extinction of all the first
‘generation’ of agents.

When the average residence time is too small, two agentdei no time to
collide at least once, and consequently no network is forntnl the contrary,
whenTy is too large, each agent will cross the entire system andla ¢oh-
nected network appears. To avoid these two extreme regireesonsider an
average residence time which is neither very small nor lardgen compared to
the characteristic time between collisions.
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Figure 7.3:(a) Numerical simulation of average agel) vs. T; /7o (circles), the
straight line has slop®&/87y (Eq. 7.3).(b) Results of the numerical simulation of
AvsT; /7y (diamonds) compared to the result of Eq. 7.12 (solid lig@)velocity
modulus from the simulation (stars), compared to Eq. 7.@0d$ne). The sim-
ulations represent averages in the quasi-stationary eegiser 100 realizations,
in a system ofV = 10%, with p = 0.02, vy = /2, for different values off;.

For that, we define a collision rate, as the fraction betwberaverage residence

time T, — A(0), and the characteristic timeof the mean free path defined as

1

VTp2r{v)’

where(v) is the average velocity of the agents. With this assumptemolli-
sion rate reads

(7.1)

_ T —A0) 1
N T - 2UOT0

A (0)(Ty), (7.2)
where(), means an average over the value for each agent at differepskots
in the quasistationary stat&{), 7o is the characteristic time of the system with
the initial velocityvy, i.e. o = 1/(2y/7rpvy) and. A(0) = T;/2 is the average
initial age of the agents.

Att = 0 we haveA(0) = T;/2, later att = T;/2, half of the population has been
replaced by new individuals which hayd),s; = 7;/2, while the other half has
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(A)ana = 3T;/4, these processes of birth and death produce a mean age which
is the average of the two valuéd);s; and{A)2,q:

(A) = 5T}/8. (7.3)

In Fig. 7.3a we show numerical results(of) vs. T} /7, (circles) and the straight
line has slop& /87, which confirms Eq. 7.3.

The number of collisions of an agent ; in a two dimensional diluted gas, in-
creases with time and is proportional to the radius of thentsg), its velocity
v; and the density of agentg)([120]:

nei(t) = prv/2mu(t)t, (7.4)

The inverse of the coefficient in Eq. 7.4 is the charactertstie between colli-
sions. For simplicity we write it in terms of the initial velity (vo), and thus we
have:
dne,; 1
e .~ (t). (7.5)

dt ToVo

Because links are produced due to collisions, we write tlygesdeof an agent as
a function ofn ;,

ki(t) = (1 = fi(t))nei(t), (7.6)

where f;(¢) is the fraction of neighbors of agehthat leave the system due to
their age. Changes in the degree of an agent affect its ¥el@cording to the
velocity up-date rule of Eq. 6.1):

(O (t) = v + 'Ulki (t) (77)
With Eqgs.[ 7.4-7.7], we can write a differential equation foy(t)

d’Ui
dt

— 0 P gt + (1 - Fi)ui 1) (7.8)
dt ToVo

Because we do not know an exact expressionffr), we have to make some

approximations. We asumfe(t) = —t/(27;), which implies that aftet = T, the

degree of an agent equals half of its collisioks(1}) ~ n.,(1;)/2. Substituting

fi(t) into Eq. 7.8, we obtain:

d’Ui(t) . U1 t )
praa 7—Ovo(l - E)vl(t), (7.9)
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summing over all the particles and integrating it over thenval [0, T}] gives:

Tyv1

(v(T1)) = voeZmom . (7.10)

Note that the resulting value is a constant that depends; @nd the selected
initial conditionsry, vg. Figure 7.3c compares the expression of Eq. 7.10 to the
average velocity modulus obtained from the simulations fEsult of the simu-
lation represents an average in the quasi-stationary eegiver 100 realizations,

in a system ofV = 10%, with p = 0.02, vy = v/2, for each value of/.

From Eq. 7.2 we defing,

T,
2’[)07'0

A= (n.) = v) (7.11)

as a characteristic quantity, which gives the number ofsiofis during the av-
erage life time of agents, and using Eq. 7.10, its approxanas given by,

Tyv
A= (n.) = ﬂez*lovlo (7.12)

27’0

Figure 7.3b presents the comparison between the numeailcailation of\ and
Eq. 7.12. Both expressions Eq. 7.10 and Eq. 7.12, estiméter Itlee results for
lower values off; /7.

In Figure 7.4 we compare the values obtained from simulatwithe average
degree(k) vs. T}/ with Eq. 7.13. This is calculated substituting Eq. 7.12 with
the previous approximatiofk(7;)) ~ \/2, which gives:

T, Tv
(k) = ﬁezfovlo. (7.13)

Equation 7.13 works better for lower densities and loweneslofT; /7.

In contrast, as we show in the inset of Fig. 7.4b, we find tkat= \/2 (solid
line) is valid for all densities. In fact, given this linealationk()), A being the
appropriate control parameter to determine the emergeihgeyiant connected
component in the system. By varying the collision rafeone finds a critical
value\. marking a transition from a state composed by several srhsitars to
a state where a giant cluster emerges after attainin@theln the next Section
7.3 we characterize the critical transition occurring at
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Figure 7.4: Comparison of the average dedigeof the components of the net-
work coming from the simulation (circles) with Eqg. 7.13 (goline). Inset:
Numerical results ofk) vs A (circles), the straight line is a guide to the eye with
slope0.5. The simulations conditions are the same as those desdabEi. 7.3

7.3 Critical behavior

A cluster is defined as a group of agents connected by linkie that in contrast
to lattice models, were clusters are given by occupiectkatites connected by
nearest-neighbors distances, for this model, each clgstes a group of agents
in contact at a certain time. Isolated agents are regardeldisters of size unity
and any cluster consisting stonnected agents is called &gluster. We borrow
again the notation from Stauffer’s book on percolation th¢®1] and define here
ns = Ns/N as the number of-clusters per agent, wherg, is the number of
clusters of sizes and V the total number of agents in the system. In Fig. 7.5
we show from left to right: the fraction of agents in the lssgelusterG/N, in
Fig. 7.5a, the total number of clusteys n;, in Fig. 7.5b and the mean size of
clustersy_ s?n,. As we see qualitatively from the figure far= 2.04 clusters
of small sizes coexist in th€.S and for\ = 11.04, there is one giant cluster
with a large fraction of the population. For a given valuelpfwe calculate\
numerically in theQ) S state and average at different times the valué&'ofThe
resultis plotted in Fig. 7.6b, for different number of age = L x L, with L =
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Figure 7.5:(a) Fraction of agents in the largest clus@fN vs. time. (b) Total
number of cluster§_ n, vs. time. (C) Mean size of clustery_ s?n, vs. time.
Two values ofl; /7, are presented, namel§,/, = 2.2 andT; /7o = 5.02, other
simulations conditions like in Fig. 7.2.

32, 46, 92, 128 and256. At the same timeg = >~ s2n, is calculated excluding
the largest cluster from the sum (Fig. 7.7b). According tedtandard method of
scaling theory [121], we expe€t andy to follow

G =L PIVF[(AN = X\)L™YY] (7.14)

x = LGN = A) L"), (7.15)

This is confirmed by the collapses of the curves near theitr@mgA — A\, ~ 0),
in the Figs. 7.6a and 7.7a, for the valuesf3, and~ reported in the central
column of table 7.1, with\, = 2.04.

In order to test the scaling relation for the cluster numbé&isr a system with
N = 26 agents, we calculate bins of the cluster size distributiodifferent
values ofA. Following Ref. [81], we takel bins (16 — 31, 32 — 63, 64 — 127,
128 — 255) and plot them for differenk, like shown in the inset of Fig. 7.8. For
each bin we take the ratio, /ns(\.) and plot it vs. (A — X\;)s? usings as the
geometric average over the two extremes of the bin size and

o= (7.16)
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Figure 7.6:(a) Confirmation of the scaling relation in Eq. 7.14, for the syss
sizes of the right part and the values@tndv reported in table 7.1 and, =
2.04. (a) Fractions of agents in the largest clustefN vs. A (numerical results
in the Q.S for a fixed value off} /7). Results for different numbers of agents:
N = L x L, with L = 32, 46, 92, 128 and256.

MF mobile agents PercolatioBd)[81]

v 05 13401 1.33333
v 2.4+0.1 2.38888
3 1  013+0.01 0.13888
o 05 040001 0.3956

Table 7.1: Critical exponents related to the emergenceefjtant cluster in a
random graph model (percolatidd F), for the network of mobile agents pre-
sented here, compared to the exact resulziqfercolation.

using the values off, v and ). obtained previously. Eqg. 7.16, confirms that
the scaling relation of the phase transition belongs to thieeusality class of
2d percolation. It is known that the emergence of a giant ctustea random
graph depends ofk) with its critical value atk). = 1, and the phase transition
belongs in the same universality class as mean field pei@olétee exponents
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Figure 7.7:(b) Confirmation of the scaling relation of Eq. 7.15, for the eyst
sizes of the right part and the valuesofindv reported in table 7.1 and, =
2.04. (@) Mean cluster siz&" s?n; vs. A (same simulations as in Fig. 7.6).

in the first column of table 7.1) [122]. For our model we obseln the same
way, the emergence of the giant clusteffat. = 0.5\, = 1.02, and in contrast
the universality class correspondtbpercolation, as shown in table 7.1).

Before ending this Section, we stress that the correlatiporeenty presented
in the Tab. 7.1 is the one obtained from finite size scalingis Elxponent can
be also explicitly calculated as the linear size of clus{se [81]), namely by
computing the correlation lenggt)\),

2 E R3s%n
2 s T2 S
&= 7252715 . (7.17)

Being2Rk? the average squared distance between two cluster sitesh ighial-
culated for each cluster explicitly from the spatial position of the agents with
respect to the position of the center of mass of the clusfe= >°7 | %, as
follows:

S L 2
RR=Y Iri = rol” (7.18)
S
=1



Model of mobile agents for social interaction networks 117

4 : T
o=1/(y+B)
Os=16-31
—~ 3| ©s=32-63
6@ A s=64-127
c <]s=128-255
=
<
~
c 2t
O
a 2,
0 Wﬁ

Figure 7.8: Collapse of curves from the inset, plottingns(A:) vs. (A — Ac)s?
(see details in text)Inset: Bins of the cluster sizex; vs. A, for s =16 — 31,
32 — 63,64 — 127, and128 — 255.

Thus, apart from a constant factor, the correlation lengthé radius of those
clusters which give the main contribution to the second munoé the cluster
size distribution near the percolation threshold. We ekgeio diverge as\
approaches., as

€ ~ A= Al (7.19)

The result of the numerical calculations of Eq. 7.19 is showfig. 7.9, where
the solid line has a slope of1.3 yielding a correlation exponent in agree-
ment with the previous results (see Tab. 7.1). Since thetageave on a two-
dimensional plane and have only a finite life time, they caly establish con-
nections within a restricted vicinity, and this effect asponds to a connectivity
which is short range at each snapshot of the system. Thusuailh the clusters
in the agent model are not quenched in time, the underlyimguacs yields a
short range&d percolation.
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Figure 7.9: Correlation length as a function of\ — A.. Symbols indicate the
result of simulations performed for different values)oénd the solid line has a
slope ofy = —1.3.

7.4 Properties of the network

In this section we will study the degree distributifiik), the clustering distribu-
tionsC(k) characterizing the cliquishness of the agents neighbal$iand the
average path lengthin the QS state.

In Fig. 7.10 we compute the degree distributiBtk), by counting the fraction
of nodes having: neighbors. Two different velocity updates are illustratede,
namelya = 0 (triangles) andv = 1 (diamonds). Clearly, the degree distribution
depends strongly on the collision update rule, i.e. on theevaf « in Eq. (6.1).

More precisely, fore« = 0, the velocity of each agent is always constant, the
resulting degree distribution being a consequence of feetéfe timeT; to create
links and of the collision rate, yielding a Poissonian,

P(k) = <’Z—>!ke*<k>. (7.20)

For this valuenx = 0, the distribution of degree was calculated for a fixed value
of T; /7o = 9.5 the resulting network hag&) = 2.52, introducing this value
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Figure 7.10: Degree distribution of the giant cluster indq@si-stationary state,
averaged ovet00 iterations for a system oV = 10 agents. Results are pre-
sented for the velocity update rulewith T; /7 = 9.5 (diamonds), compared to
Eq. 7.20 (solid line), evaluating the resultifig = 2.52. And also for the veloc-
ity update rule of section 6.1.1, witfy /7y = 3.0 (circles), compared to Eq. 7.21
evaluated at the resulting) = 2.62.

in Eq.7.20, we obtain the solid line in Fig. 7.10, which shadhat the degree
distribution of the network is well approximated by a Porgsn. In this way,
one can argue that far = 0 the system produces a two-dimensional geometric
random graph [124] in the QS state.

Fora = 1 the velocity in Eq. (6.1) increases linearly with the numdsigsrevious
collisions. As we will see, this kind of dynamics reveals torhost suited to re-
produce the statistical features of real social netwonés &ec. 7.5). In this case,
the initial age of agents uniformly distributed (see Set) Yields an exponential
velocity distribution and consequently an exponentiakrdeglistribution

1

_ (5
o T . (7.21)

Pk) =

In Fig. 7.9 the dashed line indicates Eq. (7.21) evaluated)at= 2.62, which
results beindl; /7y = 3.0 used in the numerical simulation (triangles). So, for
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this valuea = 1 the agent model is capable of producing a two-dimensional
exponential graphs in the QS state.
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Figure 7.11:(a) Degree distribution of the giant cluster in tlgs, for several
values ofA = 5.24,8.04,13.04,23.76 and57.36 (symbols). Lines indicate the
corresponding exponential fit with an exponential (see EQ1)). HereN =
64 x 64 anda = 1. For other system sizes the results are similar.

In the following we will consider the value = 1 in Eq. (6.1) and study how the
degree distribution depends on the collision rate

Figure 7.11 shows the degree distribution in the QS stata for5.24 (circles),
8.04 (squares)]3.04 (diamonds)23.76 (up triangles) and@7.36 (left triangles),
plotting with lines the exponential in Eq. (7.21) evaluatéth the corresponding
(k). As one sees, while for smallthe exponential expression fits well the ob-
served degree distributions, for largé) the numerical results have a lower cut-
off than the analytical expression. Therefore, one coredulat the agent model
is able to reproduce exponential distributions for low ealwof the collision rate
(A < 10) and that other non-trivial distributions are generatenéasing the col-
lision rate. The latest ones are the ones observed in embpgtcial networks
(see Sec. 7.5).

Another property of interest to characterize in the netwsiiks clustering coef-
ficient (see Sec. 3.1.4). Figure 7.12 shows the mean deg@endent clustering
coefficientC(k) for the same mobile agents systems in Fig. 7.11. It is interes
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Figure 7.12: Clustering coefficient distribution for thenmma simulations of
Fig. 7.11, namely for (left to right) = 5.24,8.04, 13.04,23.76 and57.36. The
solid line is a guide to the eye with slofi¢2 (see details in text). Here = 1,
N = 128 x 128 and averages ovéf0 realizations were taken.

ing to note that, in contrast to random graphs, which haveausteting coeffi-
cient independent oh, here we observe a dependence of the ferrh—* with

a € [0.4,0.6]. In other words, Fig. (7.12) shows that the clustering coieiffit de-
creases with the degree, a feature which indicates theeaexistof an underlying
hierarchical structure[101]. An analytical approach taerstand this structure,
remains to be performed and is beyond the scope of this work.

To investigate small-world effects in our system, we corepre networks
of the model of mobile agents with random networks havinggame num-
ber N of nodes and where each pair of nodes is connected with a lpfibpa
p = 2M/(N(N — 1)). With this probability one obtains a random network
with approximately the same effective coordinatiaiy N (same(k)) as the one
observed in the model of mobile agents.

As seen from Fig. 7.13a, the average path length of the medehall compared
to the system size. Moreover, as seen in Fig. 7.13b the clastfficient in
the agent model (circles) is much larger than in the randoamigmparts (trian-
gles). However, the networks generated by the model of raa@gjents are not
small-world, since to have the small-world property[1kitlso required that the
increase of the shortest path length with the system sizetifaster tharin V.
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Figure 7.13: Thermodynamic limit of the networks in the systof mobile
agents. (a) Shortest path lengtli as a function of the system siz¥, for

T, /70 = 5.02, compared tdn NV (dashed lines). For large network sizes the solid
line indicates a fit = e=3/N (see text)(b) Average clustering coefficien€()

as a function ofV for the agent model (bullets) compared to the corresponding
random graph with the sanj&) (triangles), having a fit (solid line) @' ~ 1/N.
Herep = 0.02.

From Fig. 7.13a one sees that this is only true for small sysiees (V < 10%).
For larger systems, the fitted numerical results yietd e —3/N.

In Fig. 7.13b one sees the behavior of the average clustdfictert when the
system size is increased. Interestingly, one clearly saeisdependence on
N, beyondN > 103, whereC' ~ 0.08. For higher density valueg this N-
independent value af' increases. This result is quite in contrasit& random
graphs which scales with/N, as illustrated in Fig. 7.13b with triangles.

7.5 Real world network of social interactions

In this section we show that the presented model is suitablegroduce empi-
rical networks. As we showed in the previous section, whilesmall (k) the
degree distribution of the giant cluster is exponentialhaf torm of Eq. (7.21),
for larger (k) it deviates from this shape. The same deviatiofkasncreases is
in fact found in empirical data, from the friendship netwsdf the84 schools.
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Figure 7.14: Reproducing the distribution of friendshigaaintances in empiri-
cal social networks [118] with the agent model. In all cadedes represent the
empirical data, while solid line indicate the result of thedsl of mobile agents.

Figure 7.14 shows several plots of the degree distributfom® nine of the
schools (circles) compared to the distributions obtainét ¥he agent model
(solid lines) for the same number of agents. The values ®ctilision rate in
the simulations were taken from = 2(k) where the average degree is the one
found in the corresponding school. As one sees, in all casasils of the distri-
butions are well fitted by the model. We found very convincggeement with
the model and the entire database of empirical networks.

For each of the schools, Fig. 7.15a shows the average shpatbdength (cir-
cles), and the clustering coefficient C (triangles). Salié$ indicate the results
obtained for the agent model using the same range of valués$,aiveraged over
100 realizations withNV = 2209 andp = 0.1. Sincel depends on the network
size, it is divided by the shortest path lengghof a random graph with the same
average degree and size. Clearly, the agent model predicisaely both the
clustering coefficient and the shortest path length for émesaverage degree.

By computing the average degrée of each school one is able to obtain the
value ofT; /7y for which the agent model reproduces properly the empidatd,
as illustrated in Fig. 7.15b. Here solid lines indicate thediction curve for the



124 7.5 Real world network of social interactions

101' T T T T 8
' ! Y
L ] "To
/A Schools 4
r (b) agents 12
0
L 105
<k2>ScI'
[ 55
o A Schools
[ (a) agents
_2 1 1 1 1
Vs —5 6 7 8 9 55,105 °
<k> <k™>

Figure 7.15: Reproducing statistical and topologicaldfess of empirical social
networks with the model of mobile agen{s) Average shortest path lengtiand
clustering coefficien€' as functions of the average degr@e. Symbols repre-
sent the results of empirical data and dashed lines the afions. (b) Plot of
T,/ 7o as a function of k) for the agents models (solid line). The curve is used as
a prediction for the suitable value ©f/7, to reproduce a given school by know-
ing its average degre). Stars illustrate two particular schools for Figs. 7.16
and 7.18 havindl; /7 = 4.75(school 1) and5.0 (school 2) respectively(c)
Second momentk?) for each school vs. the second moment calculated for the
corresponding simulation with the agent model, the sohié is a guide to the
eye with slope one.

agent model, while triangles indicate the valueZgfr, chosen to reproduce the
social network of the schools with the resulting valug/of. Moreover, the sec-
ond momentk?),, obtained with the simulations of the agent model is a rescal-
ing of the same quantit{k?) s, measured for the empirical school networks, as
shown in Fig. 7.15c.

Figure 7.16a shows the degree distribution averaged olv#reabchools, com-
pared to the average of the ones obtained from the agent miotddhtions using
the chosen values @f; according to the relation sketched in Fig. 7.15b. As one
clearly sees, the degree distribution obtained with theagedel fits much bet-
ter the empirical data than the exponential (dotted liné}@isson (dashed line)
distributions for a giver{k). The inset in figure 7.16a shows the comparison of
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Figure 7.16(a) Degree distributior? (k) averaged over all the schools (symbols)
compared taP (k) of the simulations averaged ovéd realizations (solid line)
with the given selection df; /7y (see Fig. 7.15). The inset shows the results for
a particular school (school 1}jb) Average degreé,,,, of the nearest neighbors
as a function of.. Dashed and dotted lines indicate the Poisson and expahenti
distributions respectively, for the same average degrge

the network of one particular school (school 1 in Fig. 7.88)] the average over
20 realizations of its corresponding model (WiHY 7o = 4.75).

It has been recognized that social networks show degreelations, in the sense
that the degree of the nodes at the end points of a link arendepiendent [2].
This can be quantified by computidg,, (k), the average degree of the nearest
neighbors of a vertex of degréd115]. Figure 7.16b shows a good agreement of
this value between real data and the model for the same netwbfFig. 7.16a.
Similar to other social networks the mixing is assortat®g [.e. K,,,, increases
with k, butin contrast to networks with scale free degre#ritiistion (i.e. collab-
oration networks) K .., (k) for friendship networks presents a cutoff due to the
rapid decay in the degree distribution.

Further, the typical community structure found in sociatwaks, namely the
existence of several subnetworks highly interconnectél wifew connections
between each other, is also reproduced by the agent mode!, WMe use a precise
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Figure 7.17:(a) Enclosed in a box is an illustrative example of trajectonés

4 agents (labeled from to 4) forming a3-clique sketched if(b). The inset
enlarges the region bounded by the box. The arrows indieaiether regions

of the system, where orfeclique community is observed. In these cases the
communities are composed by nodes as sketched (o).

definition of network community recently proposed [21] lzhee the concept of
k-clique community. In Fig. 7.17 we plot the system of mobijeats, drawing
only the trajectories of the agents which belong to 8volique communities,
having4 and 10 agents and sketched in Fig. 7.17b and Fig. 7.17c respectivel
Agents that form a community share a region in space and swgéthtlarger tra-
jectories are responsible for building up the communitghibuld be pointed out
that the agent motion in the system does not have the stfaiglaird meaning of
human motion in physical space, but may be better relatddaffinities among
individuals.

Figure 7.18a shows the size distribution3aflique communities in a particular
school (school 2) compared to the simulation for the suitablue ofT; /7, (see
Fig. 7.15), while in Fig. 7.18b the average over all schoslsdmpared to the
average ovet0 realization of the corresponding model for each school.diinb
cases, the agent model reproduces the distribution of camtyrsizes observed
for the empirical data, particularly the feature relatedhte existence of a big
community having a large fraction of the population, namely 103 agents.

In the particular case of sexual contacts it has been reptréd the degree distri-
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Figure 7.18: (a) Distribution of community sizes of 3-clique communities
for one particular school (school 2)) the corresponding average over the
schools of the data set. Symbols indicate the distributicthe@ empirical data,
while lines indicate the results of the corresponding satiah, with error bars.

bution presents a power-law [83]. The agent model may ajsmdeice networks
with power-law distributions as subsets of the social netwsimulated above,
by assigning to each agent an additional property. Figur@ ghows with trian-
gles the cumulative degree distribution of the sexual aintatwork presented
in Fig. 6.7b from Sec. 6.1.2. The dashed line indicates thygegdedistribution
of a social contact network simulated with the agent modeleathe solid line
is the degree distribution of a subset of contacts from tletasoetwork. The
contacts in the subset are chosen by assigning to each ag#nttiasic prop-
erty which enables one to select from all the social contidetones which are
sexual. Namely, when two agents form a link, as stated bgfoilink is now
marked as a 'sexual contact’ if the sum of the property vabfébe two agents
is greater than a given threshold. These values are assigrihd agents with
an exponential distribution and the conditional threslisld N/2, following the
scheme of intrinsic fithess proposed in another context bgatalli et. al. [92].
Interestingly, one is able to extract from the typical disttions of social con-
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Figure 7.19: Cumulative degree distribution of the number sexual partners

in a real empirical network of sexual contacts (triangle&hw250 individuals,
compared to the simulation of the agent model (solid lineg, dotted line is a
guide to the eye with slopg The simulated sexual contact distribution (dashed
line) is in fact a subset of the total social contact distiimu (see text). Here
N = 4096, T}/ = 5.5 and (k) = 7.32 and the average size of the resulting
sexual network i220.

tacts shown throughout the paper, power-law distributiodgS which resemble
much the ones observed in real networks of sexual contacts.

7.6 Summary

We presented a novel approach to construct contact netwmaked on a system
of mobile agents. For a suitable collision rule and agingesohwe have shown
that one is able to produce quasi-stationary states whiglodeice accurately
the main statistical and topological features observe@@emt empirical social
networks. TheQS state of the agent model is fully characterized by one sin-
gle parameter and yields a phase transition belonging tarihversality class of
two-dimensional percolation. Moreover, we showed thatintypducing an ad-
ditional property labeling the ability to select a partautype of social contact,
e.g. sexual contacts, the degree distributions reducesemplaw distributions as
observed in real sexual networks. Summarizing, we gavesaeci that motion
of the nodes is a fundamental feature to reproduce sociabnks$, and therefore
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the above model could be important to improve the study ang seave as a
novel approach to model empirical contact networks.
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Chapter 8

Community structure and
and role of attributes in
friendship networks

8.1 Motivation

Schools are a primary social system, besides the family iolwédmny adolescent
participates. They constitute a representative sociaksyw/here it is possible to
identify recurrent patterns of human interactions. Thalfiieation ofgrouping
patterns in schools can provide a valuable source of infoomaused to elabo-
rate preventive/organizational plans in direct benefihefanalyzed schools and
their surrounding communities. Typical in-school quastiaires provide infor-
mation about friendship nominations made by students [3%)]. 1ISuch data sets
can be organized and analyzed as social networks: nodebeastudents and
links are the reported friendships.

Previous analysis in the social sciences [8, 32, 125-127]} nsodels to identify
how some of the attributes of the network members are coedlgith their incli-
nations in choosing group relationships. In particulasgdgegation of schools as
a function of the racial diversity has been a topic of analirsmulti-ethnic coun-
tries in Western Europe [125] and the USA [32,118]. Thesdistusuggested
that the way schools organize students could affect the tfwacial friendship

131
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Grade| 7th 8th 9th 10th 11th 12th
% |1rE1J16£2[19£2[ 17£1 [15£1] 14+£1
Race White  Black Hispanic Asian| Other
% 583 [14£3] 13£2 [ 44£1 | 10£1
Gender Female Male
% 49.6 + 0.7 | 49.7£0.7
Clustering Coefficient Friendship nets. Community nets.
(©) 032+£009 | 02+01
Shortest-path length Friendship nets. Community nets.
{0) 4+1 | 3+1

Table 8.1: Average over all the schools of the percentagkeoftudents popu-
lation in each grader¢h-12th), by different races: white, black, hispanic, asian,
mixed (or other), and per Gender (Female and Males). Thegeaf two topo-
logical characteristics of the networks of friendship anthmunities (see expla-
nation in text) is also shown: the clustering coefficient relaverage distance
among students in the network.

segregation in a school.

Despite these advances, there is clear need to decipheratinestatistical fea-
tures of overlapping community structure in such data séisiwis a key ques-
tion to interpret the global organization of networks. Tttisipter approaches this
issue proposing a different set of tools from those usedguely [128-131]. Re-
cent works in the context of statistical physics have apghied the analysis of
empirical social networks [20, 33, 90, 132—-134]. Theserioutions are strongly
related to the study of the structural and hierarchical wndeof the networks,
with the aim of characterizing emerging collective phenomeln this chapter,
in addition to a topological study, we incorporate the asialyf attributes, or
(colors) of the nodes, and show that this is a crucial aspect for ifyémg pref-
erences from the different ethnic groups. Toational representativeample
of school networks presented in [32,118], we apply thresholalysis, do net-
work characterization and community extraction and preposiovel approach
for quantifying ethnic preferences. The presented metifiadalysis gives a new
insight into the data.
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8.2 Networks of Friendships

The friendship networks presented here are constructeddroin-school ques-
tionnaire of the Add-Health [118] friendship nominationdy; 90118 students
took this survey in 1994-1995. The analyzed data are lintibestudents who
provided information from schools with response rate§@% or higher. Each
student was given a paper-and-pencil questionnaire angyaafa list with ev-
ery student in the school. In the data files the activitiessaramed to create a
weighted network. Weights are in the range froynrmeaning the student nomi-
nated the friend but reported no activity,@aneaning the student nominated the
friend and reported participating in all five activities withim/her).

The structure files contain information GA871 nodes divided ir84 networks
(schools). As a first view into the data, we identify how theolehpopulation is
distributed according to the different known attributes, grade, race and sex,
the results are shown in Table 8.1. The amount of studerasghrthe different
grades and per gender are on average uniform, with perentdg 16% and
%50 respectively. A relevant characteristics, however, i$ ifnanost of the ana-
lyzed samples of schools the majority of the population igevhn Figs. 8.1a-c,
we visualize the friendship networks for two schools witheggd135]. Nodes
represent students, with a different color according téhkisrace. A link is
drawn among nodes if at least one of the student nominatesthbelike a friend.
In order to provide the maximum information in the visuafiaa of the networks,
we introduce artificially by hand the spatial distributidin@des, corresponding
to the different grades, placed counter clockwise, stanith the 7th grade at
lower right corner and ending with the 12th grade. One alrezh see that
the links among the grades clearly differentiate the retstiamong the upper
grades (high school) and the lower grades (middle schoepaftion of colors
within the 6 groups, however, is not artificially introduced; the appaduster-
ing of nodes according to the same color is due to the facttkiegt are more
densely interconnected. Fig. 8.1a is a characteristic Eanfphe84 schools, we
call it here, school, in this school the great majority of the population is white
(70%), which contrasts to two non-characteristic samples, ach@nd school
3 visualized in Figs. 8.1b and c, where black§%) and hispanics50%) are
overrepresented respectively with respect to the average.
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Figure 8.1: (a)-(c) Networks of friendships from schools 2 and 3 (respec-
tively). Nodes represent students, with a different cotmoading to his/her race.
Spatial distribution of nodes corresponds to the diffeggatles, placed counter
clockwise, from 7th to 12th gradéd) Left: G/N fraction of sites in the largest
connected componeii for the networks with mutual links only (circles) and
networks with mutual and not mutual links (squares) verstsshold weighto...
Only links with average weight in both directions> w,. are kept.Right: Av-
erage cluster size excluding the largest component forahmsnalysis as in the
left part.

8.3 Role of weights and directionality

In a friendship network, one would expect the presence ofiailinks, those are
links with nomination in both directions and even the weggttiould be close to
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each other. We apply threshold analysis to measure the iciuef weights and
directionality in the links.

First, we analyze the network formed only by mutual linksjehshould have the
more reliable information about stronger relations orftifgiendships inside the
networks. We introduce the mean of the weight in both dicedtito characterize
the weight of each linki). We examine different thresholds af () for creating
links, i.e. alink is created only if there is a mutual link and> w.. The values
of the weights is froml to 6, the lighter possible restriction i& = 1, which
includes any mutual link present in the network with the minm weight for
each direction. In the left part of figure 8.1d (circles) wegent the calculations
of G/N, the fraction of nodes that belong to the largest clusterws. In the
right side,>", s’ns, the mean cluster size excluding the largest clustrig
presented. Interestingly the size@fwhen considering only mutual connections
is roughly half of the population, and the network is splivarious components.

In order to examine the influence of weights, we make the etumtalysis for a
threshold weight but now considering the network as untiga link is formed
if at least one nomination exists, and & w.); w is taken as zero if the link in
that direction is missing. For this case, we find that the petpan is connected
in a giant component only if weaker links below a criticalvalofw,. = 2 are
included. This effect is shown in both sides of Figs.8.1d §guares).

With the direction and weight analysis we conclude that thpupation is con-
nected in a single component due to the weak undirected links

In our further analysis of community detection we assume @hiink exists if
any of the students nominates the other, and we do not cormigethreshold
for the weight, a link exists due to the nomination and is petelent on the
number of activities realized. Imposing the minimum resion possible for the
creation of a link, perhaps we are dealing with a network @fuaintances or
affinities instead of real friendships; but those netwogikits something about
the preferred social relationships of the students at theds.

8.4 Community detection: The role of triads

It is widely accepted that most of social networks have a canity structure,
i.e., posses groups of vertices that have a high densityggsdithin them, with
a lower density of edges between the groups [136,137]. Ieraaldetect the
community structure within each school we use the “cliqueglation method”
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Figure 8.2: Network of 3-clique communities at schoo{d)Yand school 2(¢)).
Compared to the corresponding networks of 4-clique comtimen{b) and (d)
respectively). The color is assigned according to the ratteeamajority of nodes
in the community and the node size is proportional to the sfuaot of the
number of nodes in the community.

, recently proposed in Refs. [21] and [22]. A community is dedi as a group
of fully connected graphs that share many of their nodes.sMwi refer to a
k-cliqgue community, as a union of altcliques (complete subgraphs of size k)
that can be reached from each other through a series of atjactiques (i.e.
sharingk — 1 nodes). The set of identified communities from each frieish
network constitutes itself, a network: Each community i®de) where the links
are represented by the original nodes (students) sharegidogyammunities and
the size of each community is the number of its nodes. We shatitis method
of community detection is a powerful tool for the visualipatand representation
of the qualitative information from social networks, forgipurpose we analyze
in detail the information that can be extracted from the twaotipular schools
mentioned above.

Fig. 8.2 shows the network &fclique communities extracted from the friendship
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networks of school and schoo®. Figs. 8.2a and c are tl3ecligue communities
of friendship networks of schodland schoo?®, respectively. In turn, Figs. 8.2b
and d are thd-cligue communities extracted from the same schools. Tea ar
of the circles represents the number of nodes and each néoleicoelated to

a race. Although, each community can have students froraerdiit races, we
assign to it the color of the majority of the members of the pamity. We have
analyzed also the grades of the majority in each communittygimown) and keep
the counter clockwise distribution of nodes per grade. Tdmagation among
middle and high schools friendships is observed clearlysétool2 which has
two large communities with majority of students from upp@h(— 12th) and
lower (7th — 8th) grades. For schodl, the largest community has students from
all the grades.

A particular characteristic that we find for the friendshigtworks, is that =

3 is the optimal value where a highly structured network of oamities are
observed (Figs. 8.2a and c) and the great majority of theestisdoelong to any

of those communities. In contrast, = 4 detect more cohesive communities
and less tharz0% of the school populations is present in those communities.
For other studied networks [21], like protein networks diatmoration networks,
the optimal value for detecting communitieskis= 4 or 5, in contrast, triads
(triangles) are found to be the elementary unit of high stfri@ndship networks.

One of the interesting aspects of such a study is that onv¥kedémore cohesive
groups the number of communities becomes balanced everasesavhen the
ratio of the sizes of the ethnic groups is far from 1. From Hee® Figs. 8.2b
and d) we conclude that when in minority, the students teridrta stronger and
extensive ties, thus, the number of more densely interadedecommunities
becomes over-represented compared tdithe3 case.

8.5 Complex networks of Communities

Further, we characterize the structure of the extractedar&s of 3-clique com-
munities over all the schools. We calculate the degree arel distribution,
clustering coefficient, average degree of the nearest heigland shortest path
length; and compare the results with the original friengstatworks.

In Fig. 8.3a we present the cumulative degree distributiefined as the fraction
of nodes having degree larger thapaveraged over th&l friendship networks
at the schools, and compare it with the average of the carnetipg84 networks

of communities. The networks of friendships have a scalegsponding to the
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Figure 8.3: Different network properties averaged over cbmplete dataset
of schools, for the community networks (circles) and foefidship networks
(squares)(a) Cumulative degree distributior(b) Degree-dependent clustering
coefficient.(c) Average degree of the nearest neighl§d). Cummulative distri-
bution of the membership numben) and of(d) the overlap sizes¢?) for the
community networks.

natural cutoff in the number of friends; e.dk) ~ 4. Similar evidence was
reported previously for other friendship networks [33]telrestingly, the degree
of the community networks have a much broader scale, foligvei power-law
of the form~ k=7 with v ~ 1.5. Thus at the level of communities the rich get
richer’ [138], this information is relevant for the undemstling of community
formation and should be taken into account for the formatatef models of
social networks [133].

Another property of interest to characterize the networthésclustering coeffi-
cient. The local clustering coefficien®() of a vertex; with degreék;, is defined
as the ratio of the number of triangles connected to it anithalpossible number
of triangles &;(k; — 1)/2). The mean degree-dependent clustering coefficient
is the average of the local clustering over all vertices wiggreek. This quan-
tity is analyzed for the two types of networks and presenteBig. 8.3b. For
the friendship networkg’(k) varies slightly withk for most of the observek-
range; decaying only for larger degrees. In contrast, femtwork of commu-
nitiesC(k) follows a power lawy~ k=<, with o ~ 2.8. This kind of dependence
of the clustering coefficient as an inverse power of the nadgek, can be sig-
nature of hierarchical structure, related to the selfsirty of some complex
networks [15, 139, 140].

An interesting quantity in social networks is the averaggréle of nearest neigh-
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bors, k.., (k). Assortativity, is a feature characteristic of social natve e.g.,
knn (k) follows a power law with positive exponent, which means thades of
larger degree tend to be connected among themselves. Wehfihdhe ana-
lyzed friendship networks, can be identified as assortbéeause:,,,, increases
with & (Fig. 8.3c), but in contrast to networks with scale free degdistribu-
tion (i.e. collaboration networks};,,, (k) present a cutoff due to the rapid decay
in the degree distribution. The networks of communitieg;ontrast, are disas-
sortative, i.e.k,, follows a negative power lawy k=2, with 3 ~ 1.1. This
indicates that communities with larger degree do no tendhémesmembers. As
observed in the two sample schools, large communities ondle in the com-
munity networks, represent groups with different kind diraties , i.e. high and
middle/junior schools. Those communities in turn shareletts (have links)
with other smaller communities from people of the same aggd@), but do not
share many students among themselves. That is why in the@retwf commu-
nities hubs are not strongly connected and the network &sdatative. Thus,
identifying differentiated community hubs with differeimterests of its mem-
bers, we expect that other social networks analyzed at te¢ ¢ communities
to be disassortative as well.

For the available data we also calculate the membersh)pof each student,
which is the number of communities that the students beltmgBig. 8.3d dis-
plays the cumulative distribution of the membership nunibgn), which shows
that on average, each student belongs to a limited numbemofunities (less
thanb5). In turn, any two communities can shar® nodes, which defines the
overlap size between these communities. Fig. 8.3e showawbege of the
overlap distribution for all the schools, which is a powew laith exponen®.9.
We can conclude that a student belongs at mostifferent clique-communities
inside the school, and that there is no characteristic apesize in the networks.
Similar characteristics have been observed in other sacidlbiological net-
works but not in their randomized versions [21].

Additionally, as shown in the table 8.1, the clustering &oint, (C') for friend-
ship networks and community networks have both a similaramevalue near
0.3, which is larger than an equivalent random graph of the samee # turn,
the shortest path lengtty) is less than the logarithm of the number of nodes (not
shown). It means both the friendship and community netwprksent charac-
teristics of small-worlds.
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Figure 8.4: Measuring preferences of inter-racial coripestr — 7.

(a)Probability of inter racial connections— r’. From top to bottom: proba-
bility of directed links from whitesi = W), blacks ¢ = B), hispanics{ = H)
and asians to races = W (circles), B (squares)H (diamonds), and4 (tri-
angles). Racial preferences manifest themselves as sytiteteviations of the
ratio P(r,r')/{P.(r,7")) from 1. (b) P/(P.) in decreasing order fror to 4,
for the nominations made fromto r'. (c) Statistical significance’ of these
deviations. The combination @) and(c) reveals relations — +’ that are signi-
ficatively absent. The results are the average ovesdtszhool networks.

8.6 Ethnic preferences

We propose a quantitative method to measpreferential nominations as a
function of the attributes of the students. A nomination barconsideregref-

erential if pairs of nodes with given attributes are significativeipre recurrent
within the empirical networks than those in their randordizersions. In the
studied sample of friendship networks, we find the strikipgearance of quan-
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titatively preferential nominations among students of shene race, as a char-
acteristic behavior present in each grade and common toreaiz group from
all schools. Here we present in detail the measure of pne¢erein the school
networks as a function of the race known for the nodes, witlseparating the
information by grade.

In each directed network we identify the frequency of eacthef25 possible
race pairs, formed from the races attributed to the nodes. To focus on those
pairs that are significatively recurrent, we compare thémetwork to suitable
randomized networks.

The randomized networks have the same single nodes chridstcteas those
of the real networks: Each node in the randomized networkkés race and
the same number of incoming and outgoing edges as the condisiyg node
has in the real network. For randomizing the networks we egnpl Markov-
chain algorithm, based on starting with the real networkrapéatedly swapping
randomly chosen pairs of connections{ B, C — D is replaced bydA — D,
C — B) until the network is randomized [90, 134]. Switching is Ipittited if
either of the connectiond and D or C and B already exit in any direction. Thus
we preserve the number of mutual edges, switching only tivte different
mutual edges. these deviations. The combinatidiajpnd(b) reveals

In Fig. 8.4a from top to bottom we present results for the nfiaimr races iden-
tified at the schools: white, black, hispanic and asian. Beheace-, we plot

the probabilityP(r, ") of existing a directed link: — r/, to a node with race
r’. The presented results are the average oveg4tsehools,P shows that the
common behavior for each racial group is to nominate asdsgestudents with
the same race (intra ethnic nominations) more likely thadesits from any of
the other races (inter ethnic nominations). The comparisaandomized net-
works takes into account the effects of differences in thewrh of each race
population. Racial preferences manifest themselves dsregsic deviations of
the ratioP(r,r") /(P (r,r")) from 1. In Fig. 8.4b, we preserit/(P.) in decreas-
ing order from1 to 4, for the nominations made for each racand indicating

with a different symbol the race of the nominated nodesFrom this profile

becomes clear not only the preferences for intra-ethnicdmations, but also that
symmetrically, some inter-ethnic nominations are fodrtiames less than in the
randomized versions, e.g. those from asianblacks and blacks-» whites. In

Fig. 8.4c, we show the statistical significan€ef these deviations, defined as:

P(r,r") — P-(r,1")

or(a,a’)

Z(r,r') = , (8.1)

whereo,.(r,7’) is the standard deviation @%.(r, ') in 100 realizations of a ran-
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Figure 8.5: Relative significance of nominatio¥/'(P,) vs. the number of nodes
in each school network)\) (a)For white — white andwhite — black nom-
inations. b) Forblack — black andblack — white nominations.(c) and(d)
display same results as {a) and(b) vs. fraction of the minority, i.e. black pop-
ulation (fy). P/P, can be fitted by a negative power law of the foffn®, with

a = 0.6. for black < black nominations and. = 0.5 for black < white nomi-
nations. This shows that although heterogeneity decréhseslative frequency
of b < b, it does not favor inter-ethnic relations— w.

domized network. The combination of these two plots revesligionsr « »’
that are significantly absent.

Next, we illustrate how the measured quanftyr, »')/(P,(r,7’)), can be used
to obtain certain characteristics of the groups of schosla @hole. In the fol-
lowing, we focus on the relations of two ethnic groups: btk and whites
(w). In Fig. 8.5a we represent the obtained valué’gf. vs. N, the number of
nodes in each school network. We present the values for thmnasions from
whites, intra ethniew — w and inter ethniev — b. Equivalently, in Fig. 8.5b the
corresponding nominations from blacks— b andb — w. These figures show
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a sample ob4 schools which have at lea@2% of any of both races (white and
black). In Fig.8.5a and Fig.8.5b, it is clear that intra é&hmominations occur
equally or more frequently than in the randomized netwofR&R,. > 1), while
inter ethnic nominations are less likely to occ&/F, < 1), and these results do
not depend on the total number of the populatidf).(

When we plot the same quantities as function of the fractioth@ minority it
is possible to extract some relevant tendencies from theeesgmple. Note that
P/P, vs. f,, for b — bis greater than unity and tend to one only whgn~ 1
(top of Fig. 8.5c), just for such valueB/P, of w — w is then considerably
greater than unity (top of Fig. 8.5b). These figures showhbét races present
the following behavior: When the population of a given raisethe majority
(fraction f ~ 1), then their intra-ethnic nominations resemble those efrtin-
domized networks?/ P, ~ 1, but when they represent a minority & 1) such
population tends to make intra-ethnic nominations of i/ P, > 1).

In contrast,P/ P, for inter-ethnic nominationsy — b can for both groups, be
fitted by a negative power-law of the foriff*, with o ~ 0.5 (lower parts of
Fig. 8.5b and of Fig.8.5c). These results suggest that tredse of racial hetero-
geneity does not favor the inter-ethnic nominations ambegricreasing minor-
ity and the race of the majority, but has the opposite effectimilar conclusion
has been reached for the same Add Health data base of fripmutsiminations
with a totally different method of analysis [32].

8.7 Summary

To conclude, a network-theory approach coupled with thdyaisaof attributes

is demonstrably useful in analyzing the structure of frigmd nominations at a
national representative sample of schools in the USA. Theysénables us to
unveil a number of significant results. We measured thabafih racial hetero-
geneity decreases the relative frequency of intra-ethigndship nominations of
the minority, it does not favor inter-ethnic relations. alds are the basic build-
ing block of highly structured network of communities whiate scale free and
dissasortative. Mutual strong nominations of friendshiprabt form a single

connected component in the friendship samples.

The non-trivial community structure has implications ie tpreading of infor-
mation at schools. The reported features related to trindsthnic preferences
give insight into the social organization and should be nakéo account in the
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formulation of agent based models of social systems. Wekfthiat the results
and the set of analytical tools presented here will be of@stefor further studies.



Chapter 9

General Conclusion

In this thesis different aspects of dynamical interactionsmodels of complex
systems have been investigated. In a first stage, we preddtile agent inter-
actions through the topology of static networks, i.e. eastleninteracts with a
fixed set of neighbors. We demonstrated that the resultpioion dynamicen
stochastimetworks, which are common representations of social mitsycan
be successfully mapped intieterministic hierarchicahetworks. This result im-
plied both numerical and analytical advantages. First vasveld that the use of
hierarchical networks considerably lowers the computatitime for simulating
realistic spreading dynamics, e.g. election processethéuwe used the deter-
ministic structure to develop an analytical expressiondicaurately predicts the
results of the dynamics of opinion simulated on stochagtiearks. The studied
kind of interaction came from previously accepted modelgmhion dynamics:
at each simulation step the resultioginionor state of a node is represented by
anintegernumber assigned as a function of its previous state and tnermter-
action with its neighbors. As a further aplication, we pre@d a general opinion
model, where each node can hameltiple opinions each one represented with a
real number and aoiseterm is added. Even with those generalizations, the kind
of transition into the absorbing state of the dynamics shibteedepend on the
effective dimension of the interaction, and to be indepenhdéthe topological
correlations of the prescribed networks. Thus, a hieraethiepresentation is
shown to be an appropriate representation to solve anallytigeneral kinds of
opinion models.

Another kind of spreading dynamics here investigated wa®detofinfection
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propagation Each agent could be eithsusceptibleor infectedthrough con-
tagion. An infection lasted a selectéiche of infection after which, the agent
became susceptible again. Resembling real systems, agaumt@as only pos-
sible through physical contacts among pairs of the typ&ected-susceptible
and the possible contacts waret prescribed a priori. The agents were free to
move in a two dimensional cell and the infection propagatedgh collisions
in the cell. In a first, theoretical approximation, the matimle was simplified,
and given by a Lennard-John interaction potential. We skidvat for different
densities of cell occupation the dynamics of infection apgieg generates set
of critical exponents. That is, we obtained a continuousgatian of exponents
vs. the density of agents, that allowed us to recover inrigdi previously known
results. In the limit of low densities the exponents coieaidth the reported va-
lues formean-fielccalculations, while in the limit of high densities, the abtd
exponents reproduce the results reporteddgular 24 lattices

A mobile agent approach showed to be a very convenient wagmémgtion of
contact networks. A contact network was generated stafitimg a colliding pair
of agents and keeping track of the successimatacts which in turn, increased
the magnitude of the velocity and created links of the resulting network. In-
troducing a parameter stlectivitydefined as the probability tejecta collision
as newcontact one could obtain either perfect growing scale-free netwar
networks with accelerated growth, in which the averageekegf the network in-
creases linearly with time. As an interesting applicatibe,generated networks
compare favorably to the topology of empirical data fromedeee networks of
sexual contacts, in terms dégreedistributions andlegree-dependent clustering
distributions. It was shown that the observed numbers désyaf the empirical
networks, are considerably less than from those of tiagidomized versionsn
other words, the cycle structure dusteringobserved in the real networks is not
just a direct consequence of its degree distribution, budratrivial property of
that kind of social networks. This observed structure id wegdroduced by our
proposed model. Both the spatial correlation generatetidynovement and the
increasing velocity with collisions happen to be the fundatal ingredients in
the generation of social contact networks.

This aspect was verified in a stationary version of the mod#élen introducing

a maximal ageafter which anold agent is replaced by mewone, the resulting
contact networks havengle scaledegree distributions and are able to reproduce
all the observed topological features of a large data ba#éeotiship networks.
With the two free parameters of the modethe maximal ageind thedensity

of agents in the cell, the averadegreeand averagelustering coefficientould

be adjusted to the observed values in the empirical data &ate to the spa-
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tial correlationscommunity structuresmerge naturally in the contact networks
generated by the model, which in turn, agree in terms of dedigribution and
degree correlations with the empirical friendship netvgorkhe resulting model
constitutes a successful approach to reproduce the varautrivial topological
characteristics of social networks with the least numberdpiisting parameters.

In order to properly analyze our empirical data sets we hasbime cases to
develop appropriate tools of analysis, which constitutetth@ same time, some
contributions in the field of analysis of complex networksr Ehe case of bi-
partite networks coming from the data of empirical sexualtaots, we defined

a clustering coefficien’, based on squares or cycles of size four, as a com-
plement to the standaxds; based on triangles. As a function of both clustering
coefficientsC; andC, we developed an expression that gives a good estimate to
the numbers of cycles of different sizes in a network. Inipalar, the given ex-
pression is suited for bipartite networks, like it is theeasheterosexual contact
networks.

In another context, we developed a method of analysis thaduared novel as-
pects in the large data base of analyzed friendship netwivkshowed that the
weight and directionality of links play an important rolethre data set and that
mutual strong links do not form a large connected comporrettié empirical
friendship networks. The friendship networks present b demmunity struc-
ture, making it possible to identifgetwork of communitiesvhere each node
represents a community or group of friends and two comneméire connected
by the persons they share. We showed that the measured ketwi@mommuni-
ties are scale-free and present non trivial degree cowakatA crucial aspect of
the data set resulted to be the correlation of pairs of naglaganction of its col-
ors orattributes Comparing the empirical networks to its randomized versjo
we developed an appropriate method to quantify the degresei@l segregation
in the analyzed sample of friendship networks. Measuresdan correlations
among the colors or attributes have been far less investighain the correlations
based on degree or topological patterns. As we showed faatbe of friendship
networks, this kind of analysis may constitute also a vergdntant source of
information in the characterization of other social netkgyrand also networks
in other branches of research.
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9.1 Outlook

The results presented along this thesis constitute thalisigulocks for some
issues that could be further investigated. We outline ed¢hem separated by
topicg:

e Opinion dynamics

Our results presented some advances in the problem of gobpimion

dynamics on static networks. However, the observed indigreze among
the dynamics to consensus and the details of the networktstay as a
constant for diverse models of opinions, makes us to questeather a
static picture of a network is really an appropriate treattrier this kind

of models. Recent literature on affiliation networks haswahthat the
structure of group memberships plays a major role in theaspod atti-

tudes or opinions which may affect, for instance, individoidentations
toward social interactions. These considerations risejthestion: Does

the network structure determine the opinion interactions the opinion

affinity determine the network structure?A dynamical interplay of opin-
ion and social network formation is a topic that deservestmbestigated
and may lead to more realistic representations of opiniamadhics and
their associated networks.

¢ Infection Spreading
We showed that a dynamical treatment of the interplay amofegiion
time and the time between contacts presents a rich behahichwlearly
affects the spreading of infections within a modeled potpaha An impor-
tant application of this aspect, concerning sexually tn@tted infections,
is a systematic study of the infection dynamics incorpagathe empirical
observations concerning the time (“gap”) between the enahohdivid-
ual’s partnership with one sexual partner and the startehtxt partner-
ship. The gap can be positive, indicating that there is a moa interval
between the two partnerships, or negative, indicating tti@partnership
are concurrent, i.e., that they overlap [141]he incorporation of mea-
sured gaps with the required topology for the network of sekxaontacts
and its interplay with infection periodsis a research topic that deserves
more attention.

1currently we are investigating part of the open questionstimeed here.

2While writing this manuscript a recent contribution in thisrea has appeared in
http://arxiv.org/pdf/physics/0603023. A model is presehwhere with a probability) a node con-
vinces a neighbor and with probability — ¢ it creates a new link with a node sharing its same
opinion. They showed a continuous phase transition to cmuseas a function af.
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o Networks of Mobile agents

The models presented here provide a framework for the sttidgraplex
networks as a result of the collisions of mobile agents. Tigiroof the
found properties can be traced back to the very presencenmicmities,
due to the fluctuations in the number of individuals in anzstrepresen-
tation of a social space. The presented approach establshenderful
bridge between the developments of granular gas theoryrenthodeling
of complex networks. In the quasi-stationary regime it isgpble to adapt
diverse rules of collisions and driving mechanisms inggg#d in the con-
text of granular gases [89,142]. For example, a kind of qoestould
be: How is characterized the network emerging from collisionlas that
model the coordination or grouping of animals during their otion, and
the swarming processes that are observed ubiquitously ituna?.

It is important to mention here that the aim in our method isiéwelop
the simplest model possible, looking at the aggregate kvelnot at the
level of its constituent units. In this sense, our modelgrest or perhaps
could be seen as a convenient complement of the models irigbtiplihe
agent-based modelind\BM) [143] which deals withindividual complex
behavior, includindearningandadaptation Our mobile agentsuccess-
fully incorporate elements of granular gas theory in the eting of com-
plex networks. This is clearly a challenging, even distoughidea.

With this idea in mind | would like to finish this thesis, bowimg a remark
form Philip Ball [NatureEditor]:

'By seeking to uncover the rules of collective human aa#jttoday’s
statistical physicists are aiming to return to their rootSocial statistics
also guided Maxwell and Boltzmann towards the utilizatibprobability

distributions in the development of the kinetic theory cfegga Physica A

314(2002) 1-4.
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