Load–store architecture

(Redirected from Load–store)

In computer engineering, a load–store architecture (or a register–register architecture) is an instruction set architecture that divides instructions into two categories: memory access (load and store between memory and registers) and ALU operations (which only occur between registers).[1]: 9–12 

Some RISC architectures such as PowerPC, SPARC, RISC-V, ARM, and MIPS are load–store architectures.[1]: 9–12 

For instance, in a load–store approach both operands and destination for an ADD operation must be in registers. This differs from a register–memory architecture (for example, a CISC instruction set architecture such as x86) in which one of the operands for the ADD operation may be in memory, while the other is in a register.[1]: 9–12 

The earliest example of a load–store architecture was the CDC 6600.[1]: 54–56  Almost all vector processors (including many GPUs[2][better source needed]) use the load–store approach.[3]

See also

edit

References

edit
  1. ^ a b c d Michael J. Flynn (1995). Computer architecture: pipelined and parallel processor design. Jones & Bartlett Learning. ISBN 0867202041.
  2. ^ "AMD GCN reference" (PDF).
  3. ^ Harvey G. Cragon (1996). Memory systems and pipelined processors. Jones & Bartlett Learning. pp. 512–513. ISBN 0867204745.


pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy