Jump to content

COX6A1

From Wikipedia, the free encyclopedia
(Redirected from COX6A1 (gene))
COX6A1
Identifiers
AliasesCOX6A1, COX6A, COX6AL, CMTRID, cytochrome c oxidase subunit 6A1
External IDsOMIM: 602072; MGI: 103099; HomoloGene: 3219; GeneCards: COX6A1; OMA:COX6A1 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_004373

NM_007748

RefSeq (protein)

NP_004364
NP_004364.2

NP_031774

Location (UCSC)Chr 12: 120.44 – 120.44 MbChr 5: 115.48 – 115.49 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Cytochrome c oxidase subunit 6A1, mitochondrial is a protein that in humans is encoded by the COX6A1 gene. Cytochrome c oxidase 6A1 is a subunit of the cytochrome c oxidase complex, also known as Complex IV, the last enzyme in the mitochondrial electron transport chain. A mutation of the COX6A1 gene is associated with a recessive axonal or mixed form of Charcot-Marie-Tooth disease.[5][6]

Structure

[edit]

The COX6A1 gene, located on the q arm of chromosome 12 in position 24.2, contains 3 exons and is 2,653 base pairs in length.[5] The COX6A1 protein weighs 12 kDa and is composed of 109 amino acids.[7][8] The protein is a subunit of Complex IV, a heteromeric complex consisting of 3 catalytic subunits encoded by mitochondrial genes and multiple structural subunits encoded by nuclear genes. This nuclear gene encodes polypeptide 1 (liver isoform) of subunit VIa, and polypeptide 1 is found in all non-muscle tissues. Polypeptide 2 (heart/muscle isoform) of subunit VIa is encoded by a different gene, COX6A2, and is present only in striated muscles. These two polypeptides share 66% amino acid sequence identity.[5]

Function

[edit]

Cytochrome c oxidase (COX) is the terminal enzyme of the mitochondrial respiratory chain. It is a multi-subunit enzyme complex that couples the transfer of electrons from cytochrome c to molecular oxygen and contributes to a proton electrochemical gradient across the inner mitochondrial membrane to drive ATP synthesis via protonmotive force. The mitochondrially-encoded subunits perform the electron transfer of proton pumping activities. The functions of the nuclear-encoded subunits are unknown but they may play a role in the regulation and assembly of the complex.[5]

Summary reaction:

4 Fe2+-cytochrome c + 8 H+in + O2 → 4 Fe3+-cytochrome c + 2 H2O + 4 H+out[9]

Clinical significance

[edit]

A mutation leading to a 5 base pair deletion in the COX6A1 gene is associated with Charcot-Marie-Tooth disease (CMT). CMT is the most common inherited neuropathy and can result from mutations in over 30 different loci. Expression of COX6A1 is significantly reduced in affected individuals.[10]

The Trans-activator of transcription protein (Tat) of human immunodeficiency virus (HIV) inhibits cytochrome c oxidase (COX) activity in permeabilized mitochondria isolated from both mouse and human liver, heart, and brain samples. Rapid loss of membrane potential (ΔΨm) occurs with submicromolar doses of Tat, and cytochrome c is released from the mitochondria.[11]

References

[edit]
  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000111775Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000041697Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ a b c d "Entrez Gene: COX6A1 cytochrome c oxidase subunit VIa polypeptide 1".
  6. ^ Hey Y, Hoggard N, Burt E, James LA, Varley JM (Sep 1997). "Assignment of COX6A1 to 6p21 and a pseudogene (COX6A1P) to 1p31.1 by in situ hybridization and somatic cell hybrids". Cytogenetics and Cell Genetics. 77 (3–4): 167–8. doi:10.1159/000134565. PMID 9284905.
  7. ^ Zong NC, Li H, Li H, Lam MP, Jimenez RC, Kim CS, Deng N, Kim AK, Choi JH, Zelaya I, Liem D, Meyer D, Odeberg J, Fang C, Lu HJ, Xu T, Weiss J, Duan H, Uhlen M, Yates JR, Apweiler R, Ge J, Hermjakob H, Ping P (Oct 2013). "Integration of cardiac proteome biology and medicine by a specialized knowledgebase". Circulation Research. 113 (9): 1043–53. doi:10.1161/CIRCRESAHA.113.301151. PMC 4076475. PMID 23965338.
  8. ^ "Cytochrome c oxidase subunit 6A1, mitochondrial". Cardiac Organellar Protein Atlas Knowledgebase (COPaKB). Archived from the original on 2018-07-20. Retrieved 2018-07-18.
  9. ^ Voet D, Voet JG, Pratt CW (2013). "Chapter 18". Fundamentals of biochemistry: life at the molecular level (4th ed.). Hoboken, NJ: Wiley. pp. 581–620. ISBN 978-0-470-54784-7.
  10. ^ Tamiya G, Makino S, Hayashi M, Abe A, Numakura C, Ueki M, Tanaka A, Ito C, Toshimori K, Ogawa N, Terashima T, Maegawa H, Yanagisawa D, Tooyama I, Tada M, Onodera O, Hayasaka K (Sep 2014). "A mutation of COX6A1 causes a recessive axonal or mixed form of Charcot-Marie-Tooth disease". American Journal of Human Genetics. 95 (3): 294–300. doi:10.1016/j.ajhg.2014.07.013. PMC 4157141. PMID 25152455.
  11. ^ Lecoeur H, Borgne-Sanchez A, Chaloin O, El-Khoury R, Brabant M, Langonné A, Porceddu M, Brière JJ, Buron N, Rebouillat D, Péchoux C, Deniaud A, Brenner C, Briand JP, Muller S, Rustin P, Jacotot E (2012). "HIV-1 Tat protein directly induces mitochondrial membrane permeabilization and inactivates cytochrome c oxidase". Cell Death & Disease. 3 (3): e282. doi:10.1038/cddis.2012.21. PMC 3317353. PMID 22419111.

Further reading

[edit]
[edit]

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy